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Abstract: Dipeptidyl peptidase 9 (DPP9) is a member of the dipeptidyl peptidase IV family. Inhibition
of DPP9 has recently been shown to activate the nucleotide-binding domain leucine-rich repeat
1 (NLRP1) inflammasome. NLRP1 is known to bind nucleic acids with high affinity and directly
interact with double stranded RNA, which plays a key role in viral replication. DPP9 has also recently
emerged as a key gene related to lung-inflammation in critical SARS-CoV-2 infection. Importantly,
DPP9 activity is strongly dependent on the oxidative status. Here, we explored the potential role
of DPP9 in the gastrointestinal tract. We performed transcriptomics analyses of colon (microarray,
n = 37) and jejunal (RNA sequencing, n = 31) biopsies from two independent cohorts as well as plasma
metabolomics analyses in two independent cohorts (n = 37 and n = 795). The expression of DPP9 in
the jejunum, colon, and blood was significantly associated with circulating biomarkers of oxidative
stress (uric acid, bilirubin). It was also associated positively with the expression of transcription
factors (NRF-2) and genes (SOD, CAT, GPX) encoding for antioxidant enzymes, but negatively with
that of genes (XDH, NOX) and transcription factors (NF-KB) involved in ROS-generating enzymes.
Gene co-expression patterns associated with DPP9 identified several genes participating in antiviral
pathways in both tissues. Notably, DPP9 expression in the colon and plasma was strongly positively
associated with several circulating nucleotide catabolites (hypoxanthine, uric acid, 3-ureidopropionic
acid) with important roles in the generation of ROS and viral infection, as well as other metabolites
related to oxidative stress (Resolvin D1, glutamate-containing dipeptides). Gene-drug enrichment
analyses identified artenimol, puromycin, anisomycin, 3-phenyllactic acid, and linezolid as the
most promising drugs targeting these DPP9-associated genes. We have identified a novel potential

Antioxidants 2022, 11, 2177. https://doi.org/10.3390/antiox11112177 https://www.mdpi.com/journal/antioxidants

https://doi.org/10.3390/antiox11112177
https://doi.org/10.3390/antiox11112177
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/antioxidants
https://www.mdpi.com
https://orcid.org/0000-0002-0140-1418
https://orcid.org/0000-0002-2883-511X
https://orcid.org/0000-0002-7603-1458
https://orcid.org/0000-0003-1339-9076
https://orcid.org/0000-0003-2791-6599
https://orcid.org/0000-0001-5577-6162
https://orcid.org/0000-0002-1823-0299
https://orcid.org/0000-0003-1424-8958
https://orcid.org/0000-0002-9366-5129
https://orcid.org/0000-0002-3784-1503
https://orcid.org/0000-0002-7442-9323
https://orcid.org/0000-0003-3788-3815
https://doi.org/10.3390/antiox11112177
https://www.mdpi.com/journal/antioxidants
https://www.mdpi.com/article/10.3390/antiox11112177?type=check_update&version=1


Antioxidants 2022, 11, 2177 2 of 19

pathogenic mechanism of viral infection in the digestive tract and promising existing drugs that can
be repositioned against viral infection.

Keywords: viral infection; gastrointestinal tract; transcriptomics; metabolomics; SARS-CoV-2

1. Introduction

The innate immune system is the host’s first line of defense. It uses a large set of
pattern recognition receptors to detect pathogens and injuries [1]. The family of nucleotide-
binding domain leucine-rich repeat proteins (NLRPs) constitutes a subset of sensor proteins
involved in the initiation of the host innate immune response and mediate innate immunity
by forming inflammasomes. NLRP1 was the first inflammasome-forming sensor to be
identified [2]. It is highly expressed in epithelial barrier tissues. It has recently been
shown that 3C proteases of enteroviruses cleave human NLRP1, leading to its activation by
functional degradation [3]. It has also been recently shown that NLRP1 bind nucleic acids
with high affinity. Thus, human NLRP1 has been reported to directly interact with double
stranded RNA, a typical intermediate of viral replication, predominantly through binging
with its leucine-rich repeat, thereby activating the inflammasome [4].

Inflammasome activation may lead to cell death. Therefore, it needs to be tightly
regulated. Notably, the dipeptidyl peptidase (DPP) family has shown an important role in
immune function [5]. Its enzymatically active members have the rare ability to catalyze the
cleavage of Xaa-Pro dipeptides from the N termini of peptides and proteins [6]. The best
characterized member of this family is DPP4, which was identified as a functional receptor
for MERS-CoV [7]. Notably, circulating DPP4 levels and enzyme activity were associated
with viral infections, including hepatitis C virus, Epstein-Barr virus [8] and MERS-CoV [9].
Much less is known about other members such as DPP8 and DPP9 [6]. However, recently,
DPP9 has been identified as a novel repressor of the NLRP1 inflammasome activation
both in humans [10] and rats [11]. The suppression of NLRP1 by DPP9 requires both
its catalytic activity and its binding to NRLP1. Dissociation of the UPA-CARD fragment
of NLRP1 from DPP9 results in accumulation of UPA-CARD fragments and subsequent
inflammasome activation. DPP9 lacking catalytic activity exerted a stimulatory effect on the
NLRP1 inflammasome, which was not observed in a NLRP1-binding-deficiend and catalytic
inactive DPP9 [10]. Notably, thiol groups of DPP9 are targets of oxidation-reduction
processes that impact upon enzyme activity. Cysteine residues may be responsible for
both alkylation- and oxidation-induced inactivation [12]. Interestingly, oxidized DPP9
recovers its catalytic activity when treated with reducing agents such as reduced glutathione
(GSH). Remarkably, a recent genome-wide association study (GWAS) in 2244 critically ill
SARS-CoV-2 patients from intensive care units in the UK identified DPP9 as a potential
previously unrecognized mediator [13]. The DPP9 locus was also suggested as the peak for
severe SARS-CoV-2 in another recent GWAS study of severe SARS-CoV-2 with respiratory
failure [14]. In a recent study, transcriptomics analyses from peripheral blood revealed that
the expression of DPP9 was significantly increased in SARS-CoV-2 patients compared to
healthy controls or patients with bacterial infections [15].

To date, no study has analysed the expression of DPP9 in tissues from the digestive
system and peripheral leukocytes and the potential relationship with viral infection. Here,
we evaluated the transcriptomics profiles of colon (microarray, n = 37) and jejunal (RNA
sequencing, n = 31) samples from two independent cohorts from Italy and Spain, respec-
tively, in relation to the DPP9 expression. In addition, we also investigated the DPP9
expression in association with circulating biomarkers of oxidative stress, genes encoding
for antioxidant enzymes and transcription factors involved in ROS-generating enzymes.
Finally, the plasma metabolic signatures linked to the expression of DPP9 in the colon
(n = 31) and plasma (n = 795) of a third independent cohort were also evaluated.
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2. Materials and Methods
2.1. Colon Cohort

This cohort comprised human participants recruited as part of the FLOROMIDIA
cohort [16], which is a pilot study to investigate OMICS signatures in individuals with
a BMI between 20 and 60 kg/m2 [16] (Table S1). The colon transcriptomics data from
n = 37 subjects from the FLOROMIDIA study are deposited in GEO with accession number
GSE158237. Inclusion criteria included: Caucasian origin; stable body weight 3 months
preceding the study, no systemic disease, and absence of any infections or use of antibiotics
one month before the visit. The existence of liver illness, specifically an infection with
HBV/HCV and tumor disease, thyroid dysfunction (based on a biochemical work-up),
and alcohol consumption (>20 g/day) were all exclusion factors. The Policlinico Tor
Vergata University of Rome’s ethical commission (Comitato Etico Indipendente Policlinico
Tor Vergata, approval number 113/15, 17 July 2015) validated and accepted the written
informed consent provided by each subject.

2.2. Jejunum Cohort

This cohort included morbidly obese (BMI > 35 kg/m2) patients recruited at the
Endocrinology Department of Dr. Josep Trueta University Hospital (n = 31) (Table S2)
in 2016. All subjects had a stable body weight for at least three months before the study
and were of Caucasian origin. Subjects were studied in the post-absorptive state. Exclusion
criteria included: (i) any systemic disease other than obesity; (ii) presence of any infections
in the previous month before the study; (iii) liver diseases (specifically tumor disease
and infections) and thyroid dysfunction, which was specifically excluded by biochemical
work-up. The Ethics committee of the Hospital Dr. Josep Trueta revised, validated and
approved the protocol (Project Code LBPFGF19, approval number 2016.051). Before being
admitted to the study, participants received an explanation of its objective and were asked
to sign a written statement of informed consent.

2.3. Metabolomics Validation Cohort

To validate the metabolic profiles found in the Colon cohort, we analysed plasma
samples provided by n = 795 healthy subjects aged > 50 years in fasting conditions from a
previous published cohort [17].

2.4. Clinical Biochemistry of Colon Cohort

Plasma glucose concentrations were determined twice by the glucose oxidase method
using a Beckman glucose analyzer II (Beckman Instruments, Brea, CA, USA). Total plasma
cholesterol, HDL-C, and total plasma triglycerides were measured the cholesterol esterase–
cholesterol oxidase–peroxidase reaction (Cobas CHOL2, Roche, Basel, Switzerland), the
cholesterol esterase–cholesterol oxidase–peroxidase reaction (Cobas HDLC3, Roche, Basel,
Switzerland), and the glycerol phosphate oxidase and peroxidase (Cobas TRIGL, Roche,
Basel, Switzerland) enzymatic colorimetric methods, respectively.

2.5. Clinical Biochemistry of Jejunum Cohort

All participants gave their full consent to the collection of their medical histories and
anthropometric data. A sample of blood was given while fasting. Standard laboratory
techniques were used to measure the lipid and fasting plasma glucose profiles with an
analyzer (CobasR 8000 c702, Roche Diagnostics, Basel, Switzerland). Glycated hemoglobin
(HbA1c) was determined by high performance liquid chromatography (ADAMRA1c HA-
8180V, ARKRAY, Inc., Kyoto, Japan). Uric acid levels in the jejunum and Imageomics
cohorts were measured by standard laboratory methods using an analyzer (CobasR 8000,
c702, Roche Diagnostics, Basel, Switzerland).
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2.6. Colon Transcriptomics

Biopsies from the descendent colon were obtained during routine colonoscopy screen-
ing for cancer from patients negative from neoplasms. The biopsies consisted of mucosal
samples, which includes epithelium, lamina propria and basal membrane. Samples were
maintained in RNAlater (Thermo Fisher Scientific, Waltham, MA, USA), to preserve RNA
integrity. Then, samples were immediately transported to the laboratory. The handling
of tissue was carried out under strictly aseptic conditions and stored at −80 ◦C. RNA
purification was performed using RNeasy-Tissue Mini-Kit (Qiagen, Hilden, Germany).
Total RNA was quantified by Qubit® RNA BR Assay kit (Thermo Fisher Scientific) and the
integrity was checked by using the RNA Kit (15NT) on 5300 Fragment Analyzer System
(Agilent, Santa Clara, CA, USA). Colon transcriptomics was performed with Affymetrix
HUGENE 2.0 ST ARRAY FORMAT 100.

2.7. Jejunum Transcriptomics

During gastric by-pass surgery, intestinal epithelium from the jejunum was removed
and stored in RNAlater (Thermo Fisher Scientific) to maintain RNA integrity. Following
that, samples were sent immediately to the laboratory. Tissue was handled and stored in
strict aseptic conditions at a temperature of −80 ◦C. RNA was purified using the RNeasy-
Tissue Mini-Kit (QIAgen). Total RNA was quantified, the integrity was checked and
the RNASeq libraries were prepared and sequenced as previously described [18]. RNA-
seq reads were mapped against human reference genome (GRCh38) using STAR soft-
ware version 2.5.3a [19] with ENCODE parameters. Genes were quantified using RSEM
version 1.3.0 [20] with default parameters and using the annotation file from GENCODE
version 29.

2.8. Circulating DPP9 Expression Analysis for Metabolomics Validation Cohort

Blood RNA Kit (Qiagen, Hilden, Germany) was used to isolate RNA from blood. RNA
concentrations were assessed with Nanodrop ND-1000 Spectrophotometer (Thermo Fisher
Scientific, Waltham, MA, USA). Total RNA was reversed transcribed to cDNA using High Ca-
pacity cDNA Archive Kit (Applied Biosystems, Darmstadt, Germany). Gene expression was as-
sessed by real time PCR using an LightCycler® 480 Real-Time PCR System (Roche Diagnostics
SL, Barcelona, Spain) with SYBR green technology suitable for relative genetic expression quan-
tification (Roche Diagnostics SL, Barcelona, Spain). Glyceraldehyde-3-phosphate dehydroge-
nase (GAPDH) was used as endogenous control. The commercially predesigned KiCqStart®

primers used were as follows: DPP9 (forward sequence: 5′-CCACCAAGGTTTATCCAATG-3′,
reverse sequence: 5′-ACTCATCGACTTCCTCATAC-3′). The optimal sample concentration
was 800 nM.

2.9. Plasma Non-Targeted Metabolomics for Colon Cohort

After blood was drawn, the serum was promptly shock-frozen and kept at −80 ◦C
until metabolomics analysis. Samples were thawed prior to the extraction process, and
100 µL of each serum sample was pipetted into randomly selected wells of 96-well plates
with a 2 mL capacity. Each 96-well plate received a pipetted sample of human reference
plasma. Additionally, samples of human pooled serum were pipetted into six wells. These
samples were utilized as technical replicates and for the evaluation of process variability.
To act as process blanks, we pipetted 100 µL into 6 wells of each 96-well plate. To assess
extraction effectiveness, protein was precipitated, then metabolites were extracted using
methanol (475 µL) containing four recovery standard chemicals.

We maintained two aliquots as a reserve and used two for the reverse phase (RP)/Ultra
Performance Liquid Chromatography-Tandem Mass Spectrometry (UPLC-MS/MS) anal-
ysis in the positive and negative electrospray ionization (ESI) mode. The samples were
reconstituted with 50 µL of 0.1% formic acid (FA) for positive ESI mode analysis and 50 µL
of 6.5 mM ammonium bicarbonate, pH 8.0, for negative ESI mode analysis. Additionally,
QC internal standards were mixed into the reconstitution solvents for both ionization
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modes in order to monitor instrument performance while also acting as retention reference
markers. Thermo Fisher Scientific GmbH, Dreieich, Germany, provided the linear ion trap
LTQ XL mass spectrometer and a Waters Acquity UPLC system for the analysis (Waters
GmbH, Eschborn, Germany). For acidic (solvent A: 0.1% FA in water, solvent B: 0.1% FA
in methanol) and basic (solvent A: 6.5 mM ammonium bicarbonate pH 8.0, B: 6.5 mM
ammonium bicarbonate in 95% methanol) mobile phase conditions, optimized for positive
and negative ESI mode, respectively, two separate columns (2.1 100 mm Waters BEH C18
1.7 m particle) were used. The columns were produced in a gradient of 99.5% A to 98% B in
11 min at a flow rate of 350 µL/min following injection of the sample extracts. The LTQ
XL mass spectrometer’s ESI source was directly coupled to the eluent flow. Turn-by-turn
recordings were made of full scan mass spectra (80–1000 m/z) and data-dependent MS/MS
scans with dynamic exclusion. Using Metabolon hardware and software, raw data was
retrieved, peaks were detected, and quality control was performed (Durham, NC, USA).
Utilizing retention index (RI), accurate mass (+/− 10 ppm), and MS/MS, compounds
were identified by comparison to Metabolon’s library entries (Durham, NC, USA). Finally,
to verify the consistency of peak identification across the multiple samples, chemicals
were manually reviewed and corrected, as appropriate, by data analysts at Metabolon
utilizing proprietary visualization and interpretation software. The data was provided
with the value at its original scale being the area under the curve of the compound peak.
Compounds were screened for defective groups for additional analysis. If a compound
was absent from more than half of the samples, it was removed.

2.10. Plasma Non-Targeted Metabolomics for Metabolomics Validation Cohort

Ref. [21] in accordance with previously mentioned procedures [20], we extracted
metabolites from plasma samples using methanol, which contained phenyl-alanine-C13
as an internal standard. Samples were prepared and the data was collected as previously
described [22].

2.11. Statistical Analysis

To test normality and homogeneity of variances of clinical variables we used the
Shapiro Wilk test. For categorical variables, results are expressed as counts and frequencies;
for continuous variables that follow a normal distribution, results are shown as mean and
standard deviation (SD); and for non-normally distributed continuous variables, results are
shown as interquartile range [IQ]. To determine the correlation between gene transcripts
and clinical variables we used Spearman’s rank correlation analysis. False Discovery Rate
(FDR) for multiple testing correction.

2.11.1. Gene Co-Expression Patterns

We used Spearman’s rank correlation adjusting p-values with the Benjamini-Hochberg
correction for multiple testing to identify gene transcripts linked to the DPP9 expression
from colon samples. For jejunal samples, gene transcripts associated with DPP9 were
identified using the DESeq2 R package [23]. Functional pathway enrichment analyses were
performed on significant genes based on Reactome Gene sets using Metascape [24] with
all measured genes as the gene background. Only terms with p-value < 0.01, a minimum
count of 2, and an enrichment factor > 1.5 were considered. From these terms, only those
with a q-value < 0.05 after correcting for multiple testing were considered as significant.
p-values were calculated based on the cumulative hypergeometric distribution.

2.11.2. Enrichment Networks

As functional enrichment analysis is inherently redundant and thus identifies related
or overlapping terms, we employed enrichment networks to collapse redundant terms into
single clusters with high intra-cluster similarity. Clusters were obtained from a hierarchical
clustering on the enriched pathways. Those pathways with a Kappa scores > 0.3 were con-
sidered as a cluster. Only the 10 most significant pathways in each cluster were represented
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in the networks. The enrichment network was then visualized in using Cytoscape [25].
Each node represents an enriched pathway, where node size is proportional to the number
of genes and node colour represents cluster ID.

2.11.3. Gene-Gene Interaction Networks

Gene-gene interaction networks were constructed from significant gene transcripts
with the OmniPath, InWeb_IM, and BioGrid databases using Metascape. The resultant
network contained the subset of genes that interact with at least one other member of the
input list. To simplify large networks and provide more interpretable results, we applied
a mature complex identification algorithm (MCODE) [26] to extract densely connected
relevant clusters embedded in the large network. Then, a functional enrichment analysis
was applied to each cluster independently to annotate its putative biological roles based on
the three most significantly enriched Reactome gene sets.

2.11.4. Machine Learning Variable Selection Analysis

We used a machine learning variable selection strategy to identify metabolites as-
sociated with DPP9 levels. After adjusting for age, sex and BMI, we used the random
forest-based Boruta algorithm [27]. This is comprised of four steps: randomization, model
building, statistical testing and iteration. For statistical testing, we used a Bonferroni cor-
rected two-tailed binomial test to select relevant features and assess whether these features
are important (significantly higher, selected), unimportant (significantly lower, rejected) or
tentative (non-significant). The algorithm was run with 400 iterations, a 0.005 cut-off for the
Bonferroni adjusted p-values, and 2000 trees. The associations between DPP9 expression
levels and selected important features were evaluated using a Spearman correlation.

Variable importance measures (VIMs) obtained from random forest models do not
provide the sign of the association with the response variable. Therefore, to facilitate
the interpretation of the models, the contribution of each metabolites for the prediction
of the DPP9 expression was determined by the exact computation of SHapley Additive
exPlanations (SHAP) scores by leveraging the internal structure of the random forests
models [28]. The exact computation of SHAP values guarantees that explanations are
always consistent and locally accurate. By contrasting the model prediction with and
without the feature for each individual, SHAP values establish the significance of a given
value in a given feature. As a result, depending on how that characteristic interacts with
other aspects of the individual, the same feature with a certain value may have a different
SHAP value for different individuals. The R packages “treeshap” and “SHAPforXGBoost”
were used to calculate and plot the SHAP scores.

2.11.5. Gene-Drug Enrichment Analyses

Gene-Drug enrichment analyses were performed with DrugBank and STITCH databases
using the WebGestalt [29] and GeneSetDB [30], respectively.

3. Results

We first assessed the relationship between the expression levels of DPP9 and NLRP1
in both the jejunum and colon samples. In both cases, we found a positive association
between their expression levels (Figure 1).

3.1. The DPP9 Expression Levels in Jejunum, Colon, and Blood Are Strongly Associated with
Biomarkers and Genes Involved in Oxidative Stress and Antioxidant Defense

As the DPP9 enzymatic activity is strongly dependent on the oxidative status [12], we
next evaluated the associations of the expression levels of DPP9 in jejunum, colon, and
blood with biomarkers of oxidative stress and antioxidant status such as uric acid [31–33]
and bilirubin [34]. After controlling for age, BMI, and sex, we found a significant association
between the expression levels of DPP9 in the jejunum and the circulating uric acid levels
(Figure 2a), whereas the colonic DPP9 expression levels were negatively associated with
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plasma bilirubin (Figure 2b). In line with this findings, the expression levels of DPP9 in
blood were also positively associated with the circulating uric acid levels in the validation
cohort (Figure 2c).
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rank correlation (adjusting for age, sex, and BMI) between (a) circulating uric acid and the DPP9
expression in the jejunum, (b) plasma bilirubin and the DPP9 expression in the colon. (c) Violin plot
of the circulating uric acid levels and the quartiles of the DPP9 expression in blood in the Imageomics
cohort (adjusted for age, sex, and BMI). (d) Barplot of the Spearman’s correlations of antioxidant and
ROS-generating genes with the expression of DPP9 in the jejunum and (e) colon. Bars are coloured
according to the p-value. Genes above and below the read linies are significant after correcting for
multiple comparisons with the Benjamini-Hochberg false discovery rate correction.

To further assess the effects of the antioxidant status on the DPP9 expression levels,
we evaluated the associations of the jejunal and colonic expression levels of genes coding
for important antioxidant enzymes [superoxide dismutase (SOD), glutathione peroxidases
(GPXs), peroxiredoxins (PRDXs), and other peroxidases (aminoadipate-semialdehyde syn-
thase (AASS), Catalase (CAT), Serine peptidase inhibitor clade B member 1b (SERPIN1B)]
and transcription factors activating genes encoding for antioxidant and detoxyfing enzymes
(NRF-2), as well as ROS-generating enzymes [xanthine dehydrogenase/oxidase (XDH/XO),
and NADPH oxidase (NOXs)] and transcription factors (NF-kB). Notably, we found strong
negative associations among the expression levels of most of these transcription factors
and genes encoding for antioxidant enzymes and the DPP9 expression levels both in the
jejunum (Figure 2d) and colon (Figure 2e). Conversely, the expression levels of transcription
factors and genes codifying for ROS-generating enzymes were positively associated with
the expression levels of DPP9 in both tissues.

3.2. Genes Associated to DPP9 Expression in the Colon Are Involved in Viral Replication,
Antiviral Mechanisms and Metabolism of Nucleotides

We next sought to identify co-expression patterns of genes associated with DPP9 from
the colon microarray. Using Spearman’s rank correlation analyses adjusting p-values with
the Benjamini-Hochberg correction, we identified 605 out of 21,571 genes significantly
associated (P-FDR < 1 × 10−4) with DPP9, 419 positively and 186 negatively (Table S3). To
gain a better insight into the functional pathways involved in these associations we per-
formed an enrichment analysis based on Reactome gene sets using Metascape. Functional
enrichment analyses of colonic genes that were significantly associated with the DPP9
expression highlighted an over-representation of 100 pathways (Figure 3a, Table S4).

As functional enrichment analysis is inherently redundant and thus identifies related
or overlapping terms, we employed enrichment networks to collapse redundant terms
with Kappa similarities >0.3 into single clusters with high intra-cluster similarity. Strikingly,
we identified a cluster comprising all terms with the strongest enrichment that included
eukaryotic and viral mRNA translation, non-sense mediated mRNA decay (NMD), forma-
tion of a pool of free 40S subunits, L13a-mediated translational silencing of ceruloplasmin
expression, GTP hydrolysis and joining of the 60S ribosomal subunit, Cap-dependent trans-
lation, selenocysteine metabolism and mitochondrial translation (Figure 3b, Table S5). We
also identified another cluster containing pathways related to the metabolism of nucleotides
(Table S5) that included genes involved in the catabolism of nucleotides such as ENTPD5,
GPX1, XDH, GDA, and NT5C2 positively associated with DPP9 expression.

To gain a better insight and further characterize the relationships among DPP9-
associated genes we constructed a protein-protein association network from significant
gene transcripts with the BioGrid, InWeb_IM, and OmniPath databases (Figure 3c). To
simplify the large network and provide more interpretable results, we applied a mature
complex identification algorithm (MCODE) to extract densely connected relevant clusters
embedded in the large network. Then, a functional enrichment analysis was applied to each
cluster independently to annotate its putative biological roles based on the three most sig-
nificantly enriched Reactome gene sets (Figure 3d, Table S6). From 12 identified significant
cluster, three contained genes encoding for thirty-six 40S and 60S ribosomal proteins, five
mitochondrial ribosomal proteins (MRPL), and four eukaryotic initiation factor 3s (EIF3s).
These clusters were enriched in eukaryotic and viral mRNA translation, mitochondrial
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translation, and translation initiation complex formation pathways, respectively. All genes
from these clusters had negative associations with DPP9 expression.
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(q-value). Each gene set have been associated with a cluster represented by different colors.
(b) Enrichment network. Each node represents a pathway colored by cluster ID. Colors correspond to
the clusters showed in panel (a). Node size is proportional to the number of input genes falling into
that pathway. Edges thickness represents similarity. Only edges with similarity >0.3 are represented.
(c) Protein-protein interaction network (PPI). (d) Clusters of densely connected genes from the PPI
obtained using the MCODE algorithm.

3.3. Genes Associated to DPP9 Expression in the Jejunum Are Also Involved in Viral Replication
and Antiviral Mechanisms

We performed similar analysis from RNA-seq data of jejunal samples. DESeq2 analyses
identified 3795 genes significantly associated with DPP9 (P-FDR < 1 × 10−4, Table S7). We
thus, limited our gene set functional enrichment analyses to the most significant genes
(P-FDR < 1 × 10−7). In total, there were 289 pathways over-represented after functional
enrichment analyses of jejunal genes significantly associated with the DPP9 expression
(Table S8).

Similarly, to the colon results, we distinguished gene sets negatively associated with
DPP9 expression such as Cap-dependent translation, eukaryotic and viral mRNA transla-
tion, L13a-mediated translational silencing of ceruloplasmin expression, GTP hydrolysis
and joining of the 60S ribosomal subunit, non-sense mediated mRNA decay, formation
of a pool of free 40S subunits, selenocysteine metabolism and mitochondrial translation
(Figure 4a, Table S8).

We also identified a cluster in the enrichment network that comprised the most
enriched pathways including, once again, eukaryotic and viral mRNA translation, non-
sense mediated mRNA decay (NMD), formation of a pool of free 40S subunits, L13a-
mediated translational silencing of ceruloplasmin expression, GTP hydrolysis and joining
of the 60S ribosomal subunit, Cap-dependent translation, and selenocysteine metabolism
(Figure 4b, Table S9). In agreement with the previous results, we also identified three
clusters of genes negatively associated with DPP9 in the protein-protein interaction network
(Figure 4c). The vast majority of these genes encoded for ribosomal proteins and eIFs and
were enriched in eukaryotic and viral mRNA translation, mitochondrial translation, and
translation initiation complex formation pathways (Figure 4d, Table S10).

3.4. Metabolomics Signatures Associated with DPP9 in Plasma

We next applied an untargeted metabolomics approach based on HPLC-ESI-MS/MS in
both positive and negative modes combined with a random forest -based machine learning
variable selection strategy to identify plasma metabolites associated with the expression
of DPP9 in blood in a large-scale validation cohort (n = 795). We found that circulating
DPP9 expression levels were associated with several metabolites including nucleotide
catabolites related to oxidative stress (hypoxanthine, uric acid), metabolites related to fatty
acid oxidation (N-decanoylglycine), lipid mediators involved in inflammatory response
and oxidative stress (Resolvin D1), dipeptides (aspartyl-leucine, glutamyl-phenylalanine,
glutamyl-leucine, methionyl-lysine), and phospholipids (Figure 5a,b).

To facilitate model interpretation, we computed the SHAP values of the signifcant
metabolites (Figure 5c,d). Metabolites related to oxidative stress such as hypoxanthine,
uric acid, N-decanoylgylcine, Resolvin D1, and glutamate-containing dipeptides were
negatively associated with the blood expression levels of DPP9 (Figure 5c,d). Notably,
metabolites participating in nucleotide metabolism were the ones with strongests impacts
on the DPP9 expression levels. These results were confirmed in the colon discovery co-
hort, where we found again a positive association with metabolites involved in nucleotide
catabolism (3-ureidopropionic acid), but negative associations with metabolites with antiox-
idant properties (Tyrosine and bilirubin) (Figure 5e,f). A representation of the nucleotides
metabolism can be found in Figure 5g.
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Figure 4. Pathway enrichment and interactome analysis of gene transcripts significantly associ-
ated with DPP9 in the jejunum. (a) Bar chart of 61 first enriched Reactome gene sets sorted by
Log10(q-value). Each gene set have been associated with a cluster represented by different colors.
(b) Enrichment network. Each node represents a pathway colored by cluster ID. Colors correspond to
the clusters showed in panel (a). Node size is proportional to the number of input genes falling into
that pathway. Edges thickness represents similarity. Only edges with similarity >0.3 are represented.
(c) Protein-protein interaction network (PPI). (d) Clusters of densely connected genes from the PPI
obtained using the MCODE algorithm.
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(c,d) SHAP summary plots, for the metabolites associated with the blood DPP9 expression levels in
the validation cohort (Imageomics, n = 795) measured by HPCL-ESI-MS/MS in positive and negative
models, respecitlvely. (e) Boxplots of the nomalized variable importance measure and (f) SHAP
summary plots for the metabolites associated with the DPP9 expression levels in the colon (n = 37).
The Boruta results are shown as boxplots of VIM for each selected relevant feature. In the boxplots,
the red dot represents the mean and the colour bar above each plot indicates the sign of the correlation
among the feature with the DPP9 expression, with red and green indicating negative and positive
correlation, respectively. Significant features were identified using 5000 trees, 500 iterations, and
P-Bonferroni < 0.005. In the SHAP summary plot, each dot represents and individual sample. The
X-axis represents the SHAP value: the impact of a specific feature (metabolite) on the DPP9 expression
prediction of a specific individual. Features are sorted according to the Boruta results and the overall
importance for final prediction (average SHAP values) is shown in bold. Colours represent the
values of the metabolites normalized concentrations, ranging from yellow (high concentrations of
the specific metabolite) to purple (low concentrations of the specific lipid). (g) Outline of purines
(orange) and pyrimidines (purple) metabolims from adenylate (AMP), inosylate (IMP) and guanylate
(GMP) precursors. Metabolites positively associated with DPP9 expression are highlighted. Enzymes
are shown in red.

3.5. Promising Drugs Targeting DPP9-Associated Genes

Finally, to identify potential existing drugs targeting genes associate with DPP9,
we performed gene-drug enrichment analyses based on both DrugBank and STITCH
databases. DrugBank enrichment analyses highlighted artenimol, puromycin, anisomycin,
and 3-phenyllactic acid, as the most significant drugs both in colon (Figure 6a) and jejunum
samples (Figure 6b), while STITCH-based analyses also identified linezolid (Figure 6c,d).
Protein-drug interaction networks of puromycin, 3-phenyllactic acid and linezolid are
shown in Figure 6e–g.
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Figure 6. Gene-drug enrichment analysis of significant genes associated with the expression of
DPP9. (a) Volcano plot of the gene-drug enrichment results from significant genes associated with
DPP9 in the colon and (b) in the jejunum using the DrugBank database. Significant drugs in bold
(Spearman’s p-value < 0.05, FDR < 0.1). (c) Barplot of gene-drug enrichment results from significant
genes associated with DPP9 in the colon and (d) in the jejunum using the STITCH database. Significant
drugs in bold (Spearman’s p-value < 0.05, FDR < 0.1). (e–g) Protein-drug interaction networks of
puromycin, 3-phenyllactic acid and linezolid, respectively.

4. Discussion and Conclusions

DPP9 is a recently identified member of the dipeptidyl peptidase IV enzyme family.
Despite being highly prevalent in several tissues, little is known about its biological role
compared to the most well-charaterized member of this family, DPP4. However, two recent
studies reporting the cryo-electron microscopy structure of human [10] and rat DPP9-
NLRP1 [11] revealed DPP9 as a checkpoint for activation of the NLRP1 inflammasome.
Inhibition of DPP9 by the small-molecule drug Val-boro-pro results in dissociation of NLRP1
from DPP9 and accumulation of free UPA-CARD fragments that trigger inflammasome
activation. Notably, NLRP1 has recently been reported to sense intracellular long double-
stranded RNAs, which is implicated in viral cellular replication, which subsequently
activates the inflammasome signaling [4]. Notably, recent GWAS studies have identified
that DPP9 was associated with severe COVID-19 [13–15]. To gain further insights into
the role of DPP9 in the gastrointestinal tract, here we explored transcriptomic signatures
associated with DPP9 expression in the jejunum and colon.

We performed a functional enrichment analysis to identify the co-expression patterns
of genes associated with DPP9 expression in the colon from microarray data. We found
an over-representation of 100 pathways which included terms related to eukaryotic and
viral mRNA translation, non-sense mediated mRNA decay (NMD), formation of a pool
of free 40S subunits, L13a-mediated translational silencing of ceruloplasmin expression,
GTP hydrolysis and joining of the 60S ribosomal subunit, Cap-dependent translation, and
selenocysteine metabolism. Another interesting cluster included terms related to mitochon-
drial translation. Of note, all these pathways have been involved in antiviral mechanisms
and contained genes encoding for ribosomal proteins and eukaryotic translation initiation
factors (eIFs). Analyses from RNA-seq data of jejunal samples revealed a striking similarity
with the colon results. We also identified three clusters of genes negatively associated with
DPP9 in the protein-protein interaction network, most of genes corresponding to ribosomal
proteins and eIFs. These genes were also related to eukaryotic and viral mRNA translation,
mitochondrial translation, and translation initiation complex formation pathways.

Remarkably, a recent study identifying human proteins that directly and specifically
bind to SARS-CoV-2 RNA in infected humans cells highlighted translational initiation,
NMD, viral transcription and translation as the cellular pathways most relevant to SARS-
CoV-2 infection [35]. In fact, mRNA translation at the endoplasmic reticulum membrane
is of well-established importance for coronaviruses [36]. NMD is an eukaryotic RNA
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quality-control mechanism known to restrict some viruses replication by suppressing and
degrading viral RNA within cells [37]. Recently, NMD pathway has shown to interfere
with optimal replication of coronaviruses by targeting their RNAs for degradation [38].
Similarly, the cellular ribosomal protein L13a has been identified as an antiviral agent.
It is released from the 60S large ribosomal subunit soon after infection and inhibits the
translation of a specific viral mRNA [39]. Finally, most mRNAs use the cap-dependent
mechanism to initiate translation, where eIFs recognize the cap structure to bind the mRNA
to the 40S ribosomal subunit. The non-structural protein 1 (Nsp1), a major virulence factor
of SARS-CoVs, has recently been shown to bind to the 40S ribosomal subunit, resulting in a
disruption of cap-dependent mRNA translation [40].

We also identified a cluster of pathways involved in nucleotide catabolism positively
associated with the expression of DPP9 in the jejunum. Importantly, virus-infected cells
have a metabolic dependency on nucleotide synthesis to support their proliferation [41].
Several signaling pathways such as MYC, RAS, P53 and mTOR are commonly altered in
viral infections to increase nucleotide synthesis. Mechanisms used by viruses to increase
nucleotide synthesis are not restricted to the induction of anabolic enzymes, but also
interference with catabolic pathways [41].

Importantly, the DPP9 activity is highly dependent on the redox state [12]. Hence,
DPP9 contains several thiol groups that are targeted by redox processes, thereby impact-
ing on its enzymatic activity. Consistently, we found significant associations among the
expression of DPP9 and markers of oxidative stress such as uric acid and bilirubin. Serum
uric acid levels reflect oxidative stress [42]. It is a powerful antioxidant in plasma that can
scavenge O2

− and HO− radicals and has been associated with elevated total serum antioxi-
dant capacity as a mechanism to counteract oxidative damage [33]. Thus, the expression
of DPP9 may be up-regulated to compensate reduced enzymatic activity during oxidative
stress. Bilirubin is another important endogenous antioxidant [34]. However, in conditions
of oxidative stress, biliverdin reductase (that converts biliverdin to bilirubin) is inactivated,
which inhibits the induction of heme oxygenase (that convert heme to biliverdin), thereby
inhibiting the formation of bilirubin [43].

In line with these findings, we found strong negatives associations among the expres-
sion of genes codifying for antioxidant enzymes (SOD, CAT, GPXs) and the expression of
DPP9 both at the jejunum and colon. SOD, CAT, and glutathione-dependent enzymes such
as GPX are the most important antioxidant enzymes. SODs are a family of enzymes that
catalyze the dismutation of superoxide into O2 and H2O2, CAT catalyzes the conversion of
H2O2 into H2O and O2, and GPXs catalyze the conversion of H2O2 or hydroperoxides to
H2O and alcohols through the oxidation of GSH to GSSG [44]. The ARE/Nrf-2 pathway
is the major player in the induction of the expression of antioxidant genes [45]. Nrf-2
is a transcription factor that is a master regulator of the antioxidant response system by
promoting the transcriptional activation of a specific set of target genes containing the an-
tioxidant response elements (AREs) in their promoter regions and encoding for detoxifying
and antioxidant enzymes. Notably, the expression of NRF-2 in the jejunum was strongly
negatively associated with the expression of DPP9.

Contrary to Nrf-2, NF-kB is involved in the transcription of ROS-generating en-
zymes [44]. Notably, we found a strong positive association between the expression
of NFKBs and the expression of DPP9 in both the jejunum and colon. Among the ROS-
generating enzymes, there is a well-established role of XDH and NOX in pathologies
related to oxidative stress [46,47]. We found that the NOX expression was positively asso-
ciated with the expression of DPP9 in the jejunum, whereas the expression of XDH had
the strongest positive association with DPP9 in the colon. XDH catalyzes the oxidation
of hypoxanthine and xanthine to uric acid in the catabolism of purine nucleotides along
with the production of ROS, which represents one of the major sources of free oxygen
radicals in human physiology [48]. Serum uric acid levels reflect XDH activity and ox-
idative stress production [42]. Consistent with these transcriptomic findings, we found
positive associations of DPP9 expression with nucleotide catabolites such as hypoxanthine,
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uric acid and 3-ureidopropionic acid. Importantly, as mentioned above, the generation
of nucleotides is necessary during viral infection to support viral replication [49]. In line
with these results, Resolvin D1 was one of the metabolites most strongly associated with
the expression of DPP9 in blood. It is a pro-resolving lipid mediator, mainly derived from
docosahexaenoic acid, which has shown to attenuate oxidative stress and apoptosis [50,51].
In fact, resolvins that are formed from DHA, are 100–1000 more potent that DHA itself
in protecting against oxidative stress [52]. Several studies provide evidence that serum
gamma-glutamyltransferase (GGT) at the physiological range is a sensitive marker of
inflammation and oxidative stress [53]. GGT initiates the degradation of extracellular
GSH releasing the cysteinyl-glycine dipeptide and transferring the glutamyl part to either
water or some amino acids, leading to the production of glutamate-containing dipeptides.
Notably, we found several of these dipeptides positively associated with the expression
levels of DPP9.

Finally, we identified three potential existing drugs targeting genes associate with
DPP9 in both colon and jejunum by gene-drug enrichment analyses. These drugs are
artenimol, puromycin, anisomycin, and 3-phenyllactic acid. Notably, a network interaction
and molecular docking analysis of 825 differentially expressed genes correlated with ACE2
in SARS-CoV-2 patients highlighted puromycin and anisomycin as the most promising
drugs binding protein structures of SARS-CoV-2. The SARS-CoV-2 protein interaction map
of Gordon et al. also identified linezolid as a potential antibiotic against SARS-CoV-2 [54].
Molecular docking analyses also revealed artenimol as more potent binders of SARS-CoV-2
spike proteins than hydroxychloroquine [55].

The current study presents some limitations. The jejunum and colon cohorts include
mainly subjects with obesity. A higher sample size including subjects without obesity and
overweight would be more representative of the general population. Secondly, the nature
of our study is cross-sectional. Therefore, we cannot infer causation. Pre-clinical in vitro or
in vivo studies up- or down-regulating the expression of DPP9 followed by infecting cells
or rodents with viruses would elucidate the direct role of DPP9.

In conclusion, our transcriptomics and metabolomics results highlight a novel potential
pathogenic mechanisms of viral infection in the digestive system involving DPP9 which
can be targeted by repositioning existing drugs.
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