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Abstract: Several drugs now employed in cancer therapy were discovered as a result of anticancer
drug research based on natural products. Here, we reported the in vitro antioxidant and anticancer
activity followed by in silico anticancer and estrogen-like activity of Psidium guajava L. essential oil
against ER-« receptors which lead to potential inhibitory action against breast cancer pathways. Meth-
ods: The bioactive compounds in guava essential oil were screened using gas chromatography-mass
spectrometry (GC-MS). Similarly, the antioxidant properties of the extracted oil were evaluated using
2,2-Diphenyl-1-picrylhydrazyl scavenging assay. Furthermore, the in vitro anticancer activity of guava
oil was observed through the MTT assay and an in silico molecular docking experiment was also
carried out to ensure that they fit into the estrogen receptors (ERs) and possess anticancer potential.
Results: The GC-MS profile of the essential oil revealed the presence of 17 chemicals, with limonene
(51.3%), eucalyptol (21.3%), caryophyllene oxide (6.2%), caryophyllene (5.6%), and nerolidol (4.5%)
occupying more than one-third of the chromatographic spectrum zone. Guava leaves’ essential oil (EO)
inhibited DPPH (2,2-diphenyl-1-picrylhydrazyl) radicals and exhibited concentration dependent free
radical scavenging activity, acting as a potent antioxidant with an ICs value of 29.3 & 0.67 pug/mL. The
outcome of the MTT assay showed that the extracted guava oil had nearly the same efficacy against
breast and liver cancer cells at a low concentration (1 pug/mL), giving 98.3 + 0.3% and 98.5 + 0.4% cell
viability against HepG2 at 1 pug/mL, respectively. When the concentration of essential oil was increased,
it showed a small reduction in the percentage of viable cells. While conducting an in silico study of all
the screened compounds, the potential for hydroxycaryophyllene, caryophyllene, caryophyllene oxide,
humulene, terpineol, and calamenene to inhibit tumor growth was bolstered due to a resemblance to
4-hydroxytamoxifen, thereby implying that these compounds may act as selective estrogen receptor
modulators (SERMs). The ADME analysis of the compounds indicated above revealed that they exhibit
excellent drug likeness properties and follow the Lipinski rule of five. Conclusions: Consequently, they
have a substantial anticancer therapeutic potential and can be used for novel drug discovery in the effort
to minimize the global burden of breast cancer.
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1. Introduction

It is obvious that traditional medicine has always played an important role in the
primary health care of people, especially in developing countries. Psidium guajava (P.
guajava) (family Myrtaceae), commonly known as guava, is a medicinal tree native to
Central America and cultivated mainly in tropical and subtropical regions of the world [1].
It can grow at an altitude of about 1500 m above sea level with an annual rainfall of less
than 1000 mm [2]. This widespread tropical plant belongs to the Myrtaceae family and is
one of the most common fruit crops in the Nepalese Terai, inner Terai, and mountainous
regions due to its high value, medicinal properties, and income potential [3]. In addition
to its high nutritional value the plant is also associated with a long history of traditional
use. Hundreds of years ago the guava plant was valued not only for its delicious fruit
but also for the various parts of the plant which are important in folk medicine. Since
ancient times the tree has been valued for its therapeutic properties which range from
antibacterial /antifungal activities to anticancer properties [4]. It has been documented that
the decoction prepared from guava leaves was eaten daily to eliminate problems such as
painful menstruation, miscarriage, and uterine bleeding. Additionally, it was used to treat
lung and stomach cancer [5,6].

Essential oils are basically defined as the predominantly volatile component of a plant,
separated by a physical process, which has the odor and other characteristic properties of
that plant. Extraction of essential oils can be accomplished through various techniques,
such as hydrodistillation, steam distillation, hydrodiffusion, or even by using solvents [7].
Traditionally, essential oils have been used to treat insomnia, convulsions, epilepsy, bron-
chitis, asthma attacks, wounds, pain, obesity, and diabetes mellitus. Nowadays, essential
oils are also greatly popular due to their use in the treatment of microbial diseases as well
as their anticancer, antioxidant, and anti-inflammatory properties [1].

The essential oil extracted from guava leaves, referred to in this text as guava leaf
essential oil (GLEO), contains resin, tannins, flavonoids, triterpenes, malic acid, eugenol,
cineole, and fat. Due to the presence of these compounds, guava leaves are suitable
for various medicinal uses such as the treatment of diabetes, hypertension, diarrhea,
respiratory diseases, obesity, fever reduction, wound healing, anti-inflammation, and pain
relief [8]. The presence of compounds such as phenols, terpenes, terpenoids, quercetin,
glycosides, acetic acid, protocatechuic acid, citric acid, glutamic acid, malonic acid, cis-
aconitic acid, trans-aconitic acid, epicatechin, asparagine, and xanthine make it an excellent
antioxidant [9]. Guava leaves have shown inhibitory effects on several cancer cell lines, such
as breast cancer [10] (MCF-7 and MDA-MB-231), prostate cancer [11] (PC-3, DU 145 and
LNCaP), cervical cancer [12] (HeLa), colon cancer [13] (COLO320DM), and nasopharyngeal
cancer [14] (KB).

The hexane fraction of guava leaves has been shown to inhibit the AKT/mTOR/S6K1
pathway, which is related to tumorigenesis, angiogenesis, and metastasis [15,16]. In vitro,
in vivo, and in silico studies revealed anticancer and estrogenic effects of Psidium guavaja L.
(guava), as evidenced by the compounds meroterpenes, guaial, psidial A, psiguadial A,
and psiguadial B, respectively [17].

Estrogen receptors which are found in endometrial cells, breast cancer cells, and ovar-
ian stromal cells, are responsible for controlling proliferation, maturation, metabolism,
differentiation, homeostasis, inflammation, and apoptosis in breast cancer. The estrogen re-
ceptors are activated as a result of the binding of a steroidal ligand-173-estradiol, commonly
known as estrogen, to a cell.

Estrogen receptors alpha (ERx) and beta (ERf3) are mainly found in humans. ER«x
is most expressed in the uterus and mammary glands. Studies illustrated that in 70% of
human breast cancers cases ERx was found to be overexpressed. It has also been clinically
proven that ERx plays an important role in breast cancer [18-20]; therefore, selective
estrogen receptor modules (SERMs) such as tamoxifen and raloxifene are commonly used
in the treatment of breast and other related cancers.
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It is also evident that breast cancers develop resistances to SERMs [21,22] after a
certain period of exposure. Therefore, the continuous search for new ER« inhibitors in
anticancer drug discovery is extremely worthwhile. In silico modeling allows for the
screening of small molecules, called ligands that can target larger macromolecules such
as proteins. The affinity of such small molecules for the active site of a protein can be
predicted computationally based on binding energy. The compounds exhibit strong and
stable interactions allowing them to be considered as potential drug candidates. In recent
years, the investigation of potential drug molecules using computational modeling has
increased due to its fast, inexpensive, and effective technology.

In this research, GLEO was tested for antioxidant potency and in silico docking studies
were performed on the compounds detected by GC-MS to assess their affinity on ER-«
receptors, which leads to the potential inhibitory action towards the breast cancer pathway.

2. Materials and Methods
2.1. Sample Collection and Extraction of Essential Oil

Samples of P. guajava leaves were collected in Kathmandu, Nepal (27°4058.3284"
N, 85°19'45.5376" E). The collected specimens were authenticated by a botanist at the
Natural Product Research Laboratory, Thapathali, Kathmandu. The voucher specimen
was deposited in the National Herbarium and Botanical Laboratory (KATH), Godawari,
Lalitpur, Nepal.

The air-dried and crushed leaves were cut and then hydrodistilled for 3 h in a
Clevenger-type apparatus. The obtained essential oil was dried over anhydrous sodium sul-
fate and stored in sealed vials in a refrigerator at 4 °C until further analysis was performed.

2.2. Gas Chromatography-Mass Spectrometry (GC-MS) Analysis of Essential Oil

The composition of the essential oil extracted from the leaves of P. guajava (GLEO) was
determined using a gas chromatography-mass spectrometer (GCMS) (Shimadzu GC-2010
Plus, Shimadzu, Kyoto, Japan) in conjunction with a capillary column RTX-5 MS with
dimensions 60 m x 0.25 mm X 0.25 um. Helium was used as the carrier gas with a flow
rate of 106.1 mL/min at a pressure of 23.3 Pa. The injector was set at 250 °C and the
operating temperature was 40-230 °C (3 °C/min), with the split ratio set at 150:1. The
detector voltage was adjusted depending on the tuning result. The sample was diluted
with hexane and 1 pL of the diluted sample was injected into the gas chromatography (GC)
column at a column oven temperature of 40 °C. The constituents of the EO were identified
by comparing the mass spectra with NIST and the FFNSC 4 mass spectra library [23] of the
GC-MS data system and confirmed by comparing their Kovates retention indices (KI) with
the reported masses in the range 40-350 [24].

2.3. Determination of Antioxidant Activity

Antioxidant activity was determined using the assay proposed by Mensor et al. to
capture free 2,2-diphenyl-1-picrylhydrazyl (DPPH) radicals [25]. 100 uL of the plant extract
at different concentrations in 50% (v/v) dimethyl sulfoxide (DMSO) (125 to 3.9 pg/mL)
were mixed with 100 uL of DPPH solution (0.01 M) in methanol. The reaction mixture
was shaken and allowed to react in the dark for 30 min. Finally, the absorbance was
measured at 517 nm in a microplate reader (EpochTM 2 microplate spectrophotometer,
BioTek Instruments, Winooski, VT, USA). Quercetin solution in methanol (1.25-20 pug/mL)
was used as an antioxidant standard and 50% (v/v) DMSO was used as a negative control.
The entire experiment was repeated in triplicate. Free radical scavenging activity was
calculated using the following formula.

A —A
% inhibition = ( control Sample> % 100
Acontrol

where, Acontrol i the absorbance of the control and Agample is the absorbance of the sample.
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2.4. In-Vitro Anticancer Activity Assay

The anticancer activity of the extracted oil from the leaves of P. guajava was studied
using the MTT test. For this purpose, the extracted essential oil (at different concentrations)
was diluted into the culture medium, added to the wells, and incubated for 48 h. Then MTT
(3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) (5 mg/mL) was added to
each well and incubated for another 4 h. At the end of the incubation period the supernatant
was removed from each well of the plates and DMSO was added to dissolve the formazan
crystals. The absorbance of the samples and the blank were measured at 540 nm, and
the value of the blank was not considered for measuring the actual absorbance of the test
samples. The entire experiment was repeated in triplicate [26-28] and the percentage cell
viability was calculated using following formula:

Mean OD (Sample)

1
Mean OD (Control) x 100

Cell viability (%) =

2.5. In-Silico Modelling for Potential Anti-Cancer Constituents

The 3D structure of the human estrogen receptor alpha protein (PDB id: 3ERT) [29] in
complex with 4-hydroxytamoxifen submitted by Shiau et al. [29] was downloaded from the
protein data bank (PDB) (https://www.rcsb.org/, accessed on 20 August 2022) (Figure 1).
The crystal structure was generated using an X-ray diffraction method with a resolution
of 1.90 A. Furthermore, the native ligand 4-hydroxytamoxifen was separated and used
as a ligand for re-docking. 3D structures of the tested compounds (detected from the
GC-MS) were downloaded from PubChem (https:/ /pubchem.ncbinlm.nih.gov, accessed
on 20 August 2022). Additionally, AutoDock Tools 4 [30] was used for the preparation of
the docking files and AutoDock Vina [31] was used for molecular docking. The docked
complexes were visualized in Discovery Studio visualizer (BIOVIA, Dassault Systémes,
Discovery Studio Visualizer, 4.5, Dassault Systemes, San Diego, CA, USA).

Figure 1. The structure of the human receptor alpha protein (3ERT) extracted from the protein data
bank after removing water molecules and cocrystallized ligand molecules.

2.5.1. Preparation of Receptors and Ligands

The cocrystallized ligand 4-hydroxytamoxifen was removed from the pdb file for 3ERT
using PyMOL 2 [32] and saved in a .pdb format. The missing residues in proteins were
added and the energy was minimized using DeepView (http://www.expasy.org/spdbv/,
accessed on 21 August 2022) [33]. The energy minimized pdb file was opened in AutoDock
Tool 4 [34] for further processing. Water molecules were removed, and polar hydrogens
were added to the protein. The macromolecule was checked for the missing atoms and
was repaired. The appropriate Kollman charges were added to the protein and saved as a
.pdbqt file after assigning the AD4 atom type [35].

Similarly, the ligand file was converted to .pdb format from .sdf format using Open
Babel (http:/ /www.openbabel.org, accessed on 21 August 2022) [36]. Further, Gasteiger
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charge was computed and the root for the torsion tree was detected using AutoDock 4.
After choosing the torsion and setting the number of torsions the files was saved in pdbqt
format. The same action was repeated for all the ligand files.

2.5.2. Docking Using AutoDock Vina

The dockings between the macromolecule and the ligands were performed using Auto
Dock Vina tool [31]. The active site of the 3ERT was determined by taking from the native
hydroxytamoxifen, cocrystallized inhibitor. The centers for docking were 29.944, —1.861
and 24.611 (center_x, center_y, center_z) with spacing 18, 14 and 18 (size_x, size_y, size_z)
on the X, Y and Z axes.

2.5.3. Analysis of Docking Result

The docking results were analyzed on the basis of the binding score. Discovery Studio
2021 was used for the visualization of the interaction between the macromolecule and
the ligands. The configurations with the lowest energy of binding were chosen for the
visualization and further analysis. The interaction between the hydroxytamoxifen and the
3ERT obtained by docking was compared to the interaction shown in the protein data bank.
For the study of amino acid interaction between ligands and the macromolecule, only the
ligands with binding affinity equal to or less than —8 kcal/mol were taken.

2.6. Complementarity Assessment Using AlteQ) Orbit-Free Quantum Chemical Method

In order to make a more detailed selection of the structures obtained using the docking
method, we used a recently proposed approach that assesses the complementarity of the
electronic structures between the enzyme and ligand. This approach is based on the AlteQ
orbit-free quantum chemical method and is described in detail in the literature [37-39].
In short, in the case of high complementarity between the electronic structures of the
enzyme and ligand, a high correlation between the sum of the distances SUMRLRE and the
complementarity factor (CF;), which is determined at a point m in the intermolecular space
and dependent on the electron density supplied by the enzyme and ligand to this point,
should be observed.

CF = acr1 + bcpr X SUMRLRESUMRLRE = Ry + Rne

where Ry is the distance between the m-th point in space and the /-th ligand’s atom with
the greatest contribution to the ligand’s electron density at that point. Ry is, analogously,
the distance between the m-th point and e-th enzyme’s atom with the greatest contribution
to the enzyme’s electron density at that point. acpyx and bcpy are parameters of the equation.

_ PE X Pe(CNT) PL X P1(CNT)
CF = ln(Ne ) —0—ln<N1

where pg and py, are the outer shells” electron densities of the enzyme and the ligand at the
m-th point (in e/ A3); Pe(cNT) and pycnr) are the electron densities at the centers of the e-th
enzyme atom and the /-th ligand atom, respectively; Ne and Nj are the atomic numbers of
the e-th enzyme atom and the /-th ligand atom, respectively.

2.7. ADME Analysis

The drug likenesses of the ligands were tested on the basis of the Lipinski Rule
of 5. The parameters taken as per the Lipinski rule are molecular weight, lipophilicity
(MLOGP), number of hydrogen bond acceptors, number of hydrogen bond donors, and
molar refractivity [40]. The ligand files in the .sdf format obtained from PubChem were
entered in the SwissADME individually [41] (http://www.swissadme.ch, accessed on
23 August 2022) and the values of the 5-Lipinski parameter were analyzed.
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3. Results and Discussion
3.1. GC-MS Analysis of Essential Oil

GC-MS analysis of the essential o0il detected the presence of 17 major compounds,
which have been listed in Table 1 and the structures were drawn using ChemDraw Ultra,
Version 12.0.2.1076 (Figure 2). Constituent concentration in the tested oil was directly calcu-
lated from their peak area. GC-MS analysis displayed that extracted oil primarily contains
limonene (51.3%) and eucalyptol (21.3%). Apart from these, some other phytocompounds
such as caryophyllene oxide (6.2%), caryophyllene (5.6%), and nerolidol (4.5%) were also
found in lower concentrations. A similar pattern of volatile component composition was
reported in the essential oil of guava leaves in a study conducted by Satyal et al. (2015) [42].

Table 1. Different compounds detected from GC-MS with their retention time.

Peak Number Retention Time (min) Compound Area Area Percentage
1 14.5 Benzaldehyde 52,096 0.5
2 15.7 Myrcene 63,902 0.6
3 17.6 Limonene 5,248,363 51.3
4 17.8 Eucalyptol 2,177,857 21.3
5 17.9 Ocimene <(Z)-, beta-> 135,011 1.3
6 18.4 Ocimene <(E)-, beta-> 61,578 0.6
7 20.9 Linalyl anthranilate 83,586 0.8
8 25.4 Terpineol <alpha-> 129,922 1.3
9 34.0 Copaane <alpha-> 110,063 1.1
10 36.0 Caryophyllene <(E)-> 572,209 5.6
11 37.4 Humulene <alpha-> 72,787 0.7
12 40.2 Calamenene <alpha-> 88,207 0.9
13 41.5 Nerolidol <(E)-> 460,010 45
14 42.8 Caryophyllene oxide 637,587 6.2
15 43.6 Copaborneol 90,736 0.9

Muurola-4,10(14)-
16 44.4 diene-1-1-beta-ol 119,809 1.2
17 448 Caryophyllene <14- 131,421 1.3

hydroxy-9-epi-(E)->

The major constituent Limonene is well established as a safe anticancer agent against
various forms of carcinogenesis [43]. Evidence from the clinical trials (NCT01046929,
NCT01459172) revealed its effectiveness against breast cancer which has established
limonene as a potent breast cancer preventive agent. Notably, the major compounds
revealed in guava leaf essential oils have been shown to have strong anticancer potential.

3.2. Antioxidant Activity of Essential Oil

The antioxidant property of GLEO was determined using DPPH-scavenging assay
and compared with quercetin as the standard. The secondary metabolites present in the
GLEO were found to have the ability to donate electrons, turning the purple color of
DPPH to yellow. The ICsy value is the concentration at which the initial concentration
of DPPH is minimized by 50% and is used for the calculation of antioxidant potency
(Iustrated in Figure 3). The lower the ICsy value, the greater the antioxidant potency of
the essential oil. The DPPH-scavenging was found to be concentration dependent with
24 + 2%, 30 4+ 3%, 44 £+ 1%, 53 £ 3%, 55 + 2%, and 61 + 2% inhibition at concentrations
of 3.1, 6.3, 12.5, 25, 50, and 100 png/mL, respectively. The statistical calculation for the
ICs value was performed and found to be 29.3 £ 0.7 ug/mL, which is higher than that
of standard quercetin (ICsy value:5.23 £ 0.38 pg/mL). The standard quercetin has an
ICs¢ value 5.23 & 0.38 pg/mL. The primary content of monoterpenes like limonene and
eucalyptol act as a radical scavenger through an electron or hydrogen donating mechanism
and the potential for antioxidant activity was shown to be closely correlated with the
antioxidant activity previously reported [44]. As part of comparative study, we found
results similar to those obtained by Zang et al. (ICsp of 17.66 £ 0.07 ug/mL) [45].
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Figure 3. Antioxidant property (ICsp) of GLEO along with its logarithmic equation and R? value.
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3.3. In Vitro Anticancer Activity

In vitro anticancer activity of oils extracted from P. guajava leaves was evaluated
through the MTT assay against liver and breast cancer cell lines. In vitro results demon-
strated that the oils extracted from P. guajava leaves hold mild to significant inhibitory
potential (Table 2). Briefly, P. guajava oils displayed 98.3 £ 0.3% and 98.5 £ 0.4% cell
viability against HepG2 at 1 ug/mL, respectively. The results indicated that at lower
concentrations (1 pg/mL) the extracted oil has similar efficacy against breast and hep-
atic cancer cells. Furthermore, a minor upsurge in the concentration of oils extracted
from P. guajava leaves (at 2 and 10 ug/mL) demonstrated slight downregulation in the
percentage of cell viability (97.2 & 0.4%, 89.3 & 0.5% cell viability against HepG2 and
96.2 + 0.3%, 89.5 £ 0.3% cell viability against MCF-7, respectively). At 25, 50, 75, 100,
200, and 250 pg/mL concentrations the oils extracted from P. guajava leaves also illus-
trated a pattern of continuous incremental change in inhibitory activity (82.3 £ 0.4%,
78.3£ 0.2%, 72.1 £ 0.3%, 68.3 & 0.5%, 62.2 £ 0.5%, and 54.7 &= 0.3% cell viability against
HepG2; 84.3 + 0.3%, 78.7 &+ 0.3%, 72.4 &+ 0.2%, 67.3 £ 0.4%, 58.3 £ 0.4%, and 52.6 & 0.3%
cell viability against MCF-7, respectively). These results clearly establish the benefit of
the extracted oils from P. guajava leaves. To study potential toxicity, the extracted oil was
evaluated over 12A normal cells (normal breast cells). The toxicity and specificity studies
demonstrated that the plants have only minor effects on normal cell lines and can be
allowed for further application.

Table 2. Percentage viability of cancer cell lines of the oils extracted from P. guajava leaves at diffe-
rent concentrations.

Percentage Viability
Source Concentration Cancer Cell Lines Normal Cell Line
(ug/mL)

HepG-2 MCEF-7 MCF-12A

Control - 0 0 0
1 98.3 + 0.3 98.5 + 0.4 995 + 0.2
2 972 + 0.4 96.2 + 0.3 97.1 +0.3
. 10 893+ 0.5 89.5 + 0.3 932405
Oil extracted 25 823 + 04 843 + 03 912405
from P 50 783 + 0.2 78.7 + 0.3 90.1 + 0.3
guajava 75 721402 724 +02 89.2 +0.5
leaves 100 683 + 0.5 673+ 0.4 89.1 + 0.4
200 622 4+ 0.5 58.3 + 0.4 88.3 + 0.2
250 54.7 4+ 0.3 52.6 4+ 0.3 87.8 +0.3

All values are expressed as mean + SEM (n = 3).

3.4. In Silico Modelling for Potential AntiCancer Constituents

Docking analysis allows the prediction of position, orientation, and conformation of
ligands in the binding site of the larger macromolecule [46]. The reference ligand, hydroxy-
tamoxifen, was also included in the docking analysis to validate the docking procedure.
Among the eight conformations of hydroxytamoxifen obtained from docking, the con-
formation with the lowest binding affinity (—9.7 kcal/mol) was superimposed with the
experimental conformation, thereby validating our docking methodology. The interaction
between the hydroxytamoxifen and the 3ERT obtained from docking was graphically com-
pared with the interaction provided in the protein data bank. Both the interactions were
superimposed with slight changes in the terminal regions. The superimposition is shown
in Figure 4.
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Figure 4. The superimposition in the binding position of the cocrystallized hydroxytamoxifen (blue
colored) and computationally obtained binding position of hydroxytamoxifen (green colored).

The reference ligand hydroxytamoxifen was found to have the greatest binding score
with an affinity of —9.7 kcal/mol. Alternatively, the docking analysis using AutoDock
Vina revealed that caryophyllene and caryophyllene oxide have the highest affinity for the
ER among all the compounds in guava essential oil. Caryophyllene and caryophyllene
oxide are natural bicyclic sesquiterpenes, which have been experimentally proven to have
anticancer properties in vitro [47]. Humulene which showed an affinity of —8.3 kcal/mol
has also been proven to exhibit anticancer properties in vitro [48,49]. The anticancer proper-
ties of muurola-4,10(14)-dien-8beta-ol, copaborneol, and copaene against breast cancer has
been less studied in vitro. Since our molecular docking analysis clearly showed a strong
affinity between these compounds and estrogen receptors of choice, these compounds
can be further explored as potential anticancer agents. The binding affinity for all the
compounds has been presented in Table 3.

Table 3. Table showing the binding affinity of all the compounds used in docking.

S.N. Name of the Ligand Affinity (kcal/mol)
1 Hydroxytamoxifen -9.7
2 Caryophyllene —8.4
3 Caryophyllene oxide -84
4 Humulene —-8.3
5 14-Hydroxy-9-epi-(E)-caryophyllene —8.2
6 Calamenene -8.0
7 Muurola-4,10(14)-dien-8beta-ol —-79
8 Nerolidol -7.9
9 Copaborneol —7.8
10 Copaane -7.7
11 Linalyl anthranilate —72
12 Eucalyptol —6.3
13 Terpineol —6.2
14 Limonenel —6.1
15 (E)-beta-ocimene —54
16 (Z)-beta-ocimene —-5.3
17 Myrcene =51

The interactions between selected ligands with ER-« are shown in Figures 5 and 6. The
five ligands with an affinity less than —8.0 kcal/mol were selected for graphical illustration.
The amino acid responsible for the interaction was Leu346 for most of the ligands. Moreover,
amino acids such as Leu384, Leu387, Leu349, Ala350, Trp383, and Leu525 are involved
in the interaction. Different types of interactions such as van der Waals, alkyl, Pi-alkyl,
Pi-sigma and conventional hydrogen bond are present with the van der Waals and the
alkyl interactions being the most common. The amino acids involved in the interaction of
selected ligands are presented in Table 4.
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(a) (b)

(©) (d)

Figure 5. Interactions between the protein molecule and ligands shown in a 3D representation. Only
interacting atoms are shown. (a) cryophyllene, (b) cryophyllene oxide, (c) humulene, (d) 14-hydroxy-
9-epi-(E)-caryophyllene, and (e) calamenene. The H bond donor and acceptor tendency is given in
color index.
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Figure 6. Interactions between the protein molecule and ligands shown in a 2D representation.
Interacting atoms as well as pocket atoms are shown (a) cryophyllene, (b) cryophyllene oxide,
(c) humulene, (d) 14-hydroxy-9-epi-(E)-caryophyllene, and (e) calamenene. The legend for the
interactions involved is given in the left lower box.
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Table 4. Ligands and the amino acid responsible for the interaction and the type of interactions
present. The amino acid involved in van der Waal'’s interaction is not given in the table.

Amino Acids Responsible

S.N. Name of Ligands for Interaction Types of Interaction
1 Caryophyllene Leu346 van der Waals, Alkyl
2 Caryophyllene oxide Leu346 van der Waals, Alkyl
3 Humulene Leu346 van der Waals, Alkyl
4 14-Hydroxy-9-epi-(E)- Leu346, Leu384, Leu387 van der Waals, Alkyl, Conventional
caryophyllene hydrogen bond
5 Calamenene Leu346, Leu384, Leu349, van der Waals, Pi-sigma,
Ala350, Trp383, Leu525 Pi-alkyl, alkyl
3.5. Complementarity Analysis of the Electronic Structures of Enzyme and Ligand
It was found that for experimentally discovered structures: the square of the correlation
coefficient Rcor2 does not fall below 0.81; the maximum value of the complementarity factor
MAX (CF1) characterizing the efficiency of enzyme-ligand overlaps should be —5-+—2; and
the parameters of the linear equation should be as close to the experimental complex as
possible because interaction with the site is mainly due to similar overlaps involving the
same amino acid residues. These principles were used to select the most correct structures
obtained through docking. Docked complexes of calamenene (model 18) and muurola-
4,10(14)-diene-1-1-beta-ol (model 3) demonstrated the best complementarity among all
docked complexes (Table 5).
Table 5. Complementarity parameters of docked and experimental (3ERT) “enzyme-ligand” complexes.
; acri- bcri- . . MIN
Ligand Coefficient Coefficient Reor2 Sigma Npoints (SUMRLRE) MAX (CFD
calamenene (model 18) 6.26 —4.003 0.840 0.24 835 3.304 —6.776
Muurola-4,10(14)-
diene-1-1-beta-ol 6.396 —4.031 0.918 0.34 5650 2.742 —4.184
(model 3)
3ERT 9.041 —4.820 0.972 0.29 5582 2.420 —2.570

3.6. ADME Analysis

The ligands showing an affinity less than —8 kcal/mol were studied for druglike-
ness properties using Lipinski’s rule of 5. Lipinski’s rule considers molecular weight,
lipophilicity, number of H bond donors and acceptors, as well as molar refractivity of the
compound for the evaluation of the druglikeness of a compound. Among the 15 ligands,
the analysis of the five compounds was performed for ADME study and the analysis
revealed that all the compounds pass druglikeness tests. Compounds cryophyllene oxide
and 14-Hydroxy-9-epi-(E)-caryophyllene showed zero violation while the compounds
cryophyllene, humulene, and calamenene showed one violation (MLOGP > 4.15) of the
Lipinski test. The computation ADME predictions of the ligands are illustrated in Table 6.

3.7. Probable Mechanism of Action

The discovery of molecular biomarkers is vital considering breast cancer is a very
diverse disease. The PI3K/Akt/mTOR signaling pathway is a significant intracellular
pathway that promotes cell proliferation in breast cancer. Tuberous sclerosis (TSC), which
acts as a GTPase activating protein for Rheb, is inhibited by the activation of Akt. Phe-
nomenologically it stimulates mTORC1 to undergo anabolic growth of its cells via its action
on S6K1 and 4EBP1, which consequently promotes protein synthesis, metabolism, and
cell proliferation [50,51]. There is credible evidence that caryophyllene and caryophyl-
lene oxide have a significant role in inhibiting the PI3K/Akt/mTOR signaling pathway,
thereby asserting anticancer potency [52]. Moreover, the volatile compounds from the
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GLEO are supposed to exhibit the mechanism of action followed by selective estrogen
receptor modulators (SERM) to inhibit the proliferation of breast cancer cells. The molecular
signaling pathway of estrogen and estrogen receptor-like ligand activation and competitive
inhibition, protein—protein interaction with other transcription factors for the regulation of
genes through indirect binding following serum response element transcription activation
(specificity protein 1 and activator protein 1), ligand dependent activation of various signal-
ing pathways which regulates the multiple mediators supporting transcription without ER
binding to DNA [53]. An overview of the mechanistic approach which is supposed to be
exhibited by the compounds from GLEO is illustrated in Figure 7.

Table 6. Table showing the parameters for druglikeness of the selected ligands.

Name of the

Molecular Weight Lipophilicity H-Bond H-Bond Molar

Molecule (gm/mol) (MLOGP) Acceptor Donor Refractivity Drug Likeness

Yes; 1 violation:

Caryophyllene 204.35 4.63 0 0 68.78 MLOGP > 4.15

Caryophyllene oxide 220.35 3.67 1 0 68.27 Yes; 0 violation

Yes; 1 violation:

Humulene 204.35 453 0 0 70.42 MLOGP > 4.15

14-Hydroxy-9-epi- 22035 3.56 1 1 69.94 Yes; 0 violation
(E)-caryophyllene

Calamenene 202.34 5.45 0 0 68.07 Yes; 1 violation:

MLOGP > 4.15
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‘ having good affinity to estrogen receptor

Growth factors Amino acids
(IGFR, EGFR.HER2) O
Alpha estrogen @, -
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‘ {
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Figure 7. An illustrative approach to the mechanism of action of compounds from guava leaves
essential oil against estrogen receptor. RTKs: Receptor tyrosine kinase; EGFR: Epidermal growth factor
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receptor; HER2: Human epidermal growth factor receptor 2; IGFR: Insulin-like growth factor recep-
tor; SRC: Steroid receptor co-activator; pi3K: Phosphoinositide 3-kinase; ERK: Extracellular signal
regulated kinase; PELP: Proline, Glutamate and Leucine Rich Protein; MT A1l: Metastasis Associated
Protein-1; GPER: G-protein coupled estrogen receptor; TSC: Tuberous sclerosis; 4EBP1: Eukaryotic
initiation factor 4E binding protein 1; PTEN: Phosphatase and tensin homolog; mTORC1/2: Mam-
malian target of rapamycin complex 1/2; HIF-1: Hypoxia inducible factor 1; Akt: protein kinase B;
Glutl: Glucose transporter 1; GTPase: Guanosine triphosphatase; IRS: Insulin receptor substrate;
PI3K: Phosphatidylinositol 3 kinase; S6K1: S6 kinase 1. (The Figure was generated using Bio-render).

4. Conclusions

In this article, we elucidated the composition of the essential oil of guava leaves in
order to explore its antioxidant properties and anticancer potency. The GC-MS analysis of
volatile oils revealed the presence of various anticancer compounds implying a promising
DPPH-Scavenging potency. The in vitro anticancer test accomplished using an MTT assay
showed a promising result that indicated guava essential oil may work against hepatic and
breast cancer cells at different concentrations. Similarly, the in silico study on anticancer
activity revealed the high affinity of our reference ligand (hydroxytamoxifen) towards the
receptor (x-ER). Since, «-ER is primarily responsible for the progression of breast cancer and
since hydroxytamoxifen, a metabolite of hormonal drug tamoxifen, showcased an excellent
binding affinity with the receptor, our ligand may be beneficial as it inhibits the estrogen
from binding with estrogen receptors, thereby inhibiting cancer cell proliferation. The
compounds shown to have significant docking scores were found to have an excellent drug-
likeness property (ADME) as they pass the Lipinski’s rule of 5 test. With all these results,
we can conclude that the volatile compounds in GLEO selectively bind to «-ER receptors
and could be potential therapeutics for estrogen dependent antiproliferative activity.
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