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Abstract: The relationship between oxidative stress and skin aging/disorders is well established.
Many topical and oral antioxidants (vitamins C and E, carotenoids, polyphenols) have been proposed
to protect the skin against the deleterious effect induced by increased reactive oxygen species pro-
duction, particularly in the context of sun exposure. In this review, we focused on the combination
of vitamin E and selenium taken in supplements since both molecules act in synergy either by non-
enzymatic and enzymatic pathways to eliminate skin lipids peroxides, which are strongly implicated
in skin and hair disorders.
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1. Introduction

Aging is a complex process involving progressive physiological changes in an or-
ganism that leads to senescence. This results in the progressive decline in the resistance
to stress and other cellular damages, causing a gradual loss in cellular functions and
resulting eventually in cell death. López-Otín et al. [1] identified nine cellular and molec-
ular hallmarks of aging being divided into three groups. The primary hallmarks include
genomic instability, telomere attrition, epigenetic alterations, and loss of proteostasis.
Antagonistic hallmarks include deregulated nutrient sensing, cellular senescence, and
mitochondrial dysfunction. Finally, integrative hallmarks include stem cell exhaustion and
altered intercellular communication.

As early as the1950s, Harman [2] proposed that increased production of free radicals
by mitochondria was a driving force in the aging process (Mitochondrial Free Radical
Theory of Aging or MFRTA). Following modifications of this theory, Sohal and Orr [3] and
Viña et al. [4] proposed the cell signaling disruption theory of aging. In the case of excessive
production of reactive oxygen species (ROS), aging only occurs if there is a disruption in the
whole signaling network dependent on physiological ROS for receiving and transmitting
signals in order to process information to cells [5].

With the largest surface area on the body, the skin is extremely sensitive to both
intrinsic and extrinsic aging [6]. Intrinsic aging is influenced by physiological factors, it is
specific to each individual and it is genetically programmed. Extrinsic aging is influenced by
external factors and can lead to premature aging of the skin. Both processes are associated
with an increased production in ROS, thus leading to oxidative stress (OS) [7,8]. Similar to
the skin, the scalp is also subject to ageing, which manifests as a decrease in melanocyte
function or graying, and a decrease in hair production or alopecia. As reported by Trüeb [9],
increased oxidative stress plays a pivotal role in the gradual loss of pigmentation.

In this context, low molecular weight antioxidants and trace elements that are able
to interfere with ROS obtained from diet [10–12] or supplements [13–17] are believed to
represent a good strategy to prevent hair aging and to delay skin damage, such as fine lines
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and wrinkles, dullness, uneven skin tone, dry skin, age spots, rough skin texture, visible
pores and, potentially, and skin cancer.

Among all the antioxidants, vitamin E/selenium have a single profile. Indeed,
both molecules have the particularity to act in synergy in eliminating lipid peroxides
(ROOH) [18] known to be associated in the development of skin and hair diseases [9,19].
Vitamin E can directly interact with lipid free radical (ROO•) [20], while selenium is the
main co-factor of glutathione peroxidase (GPx), a key enzyme that reduces lipid peroxides
into harmless molecules [21]. The aim of the present review was to examine how the
combination of selenium and vitamin E taken orally could potentially contribute to skin
protection. Before that, it is important to inform dermatologists about the link between
oxidative stress, antioxidants and skin aging and diseases.

2. Oxidative Stress Definitions

It is well accepted that oxidative stress (OS) is implicated in the development of
many human pathologies. Initially, pathological OS has been defined as an imbalance
between ROS (free radicals, hydrogen peroxide, and singlet oxygen) and the antioxidant
network in favor of the former, leading to oxidative damage to lipids, more particularly
polyunsaturated fatty acids, DNA as evidenced by the measurement of 8-hydroxy-2′-
deoxyguanosine (8-OHdG) or its oxidized form—8-oxo-7,8-dihydro-2′-deoxyguanosine (8-
oxodG)—and proteins [22,23] implicated in the development of several human pathologies,
such as cardiovascular diseases and atherosclerosis [24], and all cancer types, including
skin [25] and neurological disorders such as Alzheimer’s disease [26]. However, molecular
biology has highlighted that physiological ROS, more specifically, hydrogen peroxide,
control several normal functions at the cellular level [27,28]. Indeed, physiological ROS can
act as secondary messengers, leading to the activation of important protective mechanisms
for our body (e.g., apoptosis, p-53DNA reparation) [29]. To reconcile both deleterious and
physiological aspects of ROS, Sies and Jones [30] defined OS as an imbalance between
reactive oxidative species or ROS and antioxidants in favor of the formers, leading to a
signaling disruption as a consequence of oxidative damages to lipids, and DNA evidenced
by the measurement of proteins. A third interesting and novel concept is adaptive oxidative
stress or hormesis (Figure 1) defined as a phenomenon in which ROS produced in moderate
amounts had beneficial effects to living organisms [31–33].
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becoming a transcription factor then migrates into the cytosol where it binds to DNA. The result is
the activation of genes coding for a large number of antioxidant enzymes (Antioxidant Response
Element (ARE)).

Therefore, these important notions of OS must be well integrated within the framework
of effects provided by antioxidant supplements taken orally (Figure 2). Indeed, the role
of physiological OS can in no way be neglected, especially in the context of antioxidant
supplementation at supra nutritional and even nutritional doses in some cases. If the redox
balance is disrupted by excessive antioxidant consumption taken for long periods, this may
be the cause of increased cancers [34,35].
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Figure 2. The three types of oxidative stress (physiological, pathological and adaptative) according to
the amount (physiological, excess, and moderate) of ROS production and their biological roles.

3. Oxidative Stress and Skin

Human skin is made up of the epidermis on the surface and the dermis below. The
hypodermis is located between the epidermis and the hypodermis. The epidermis, which is
90%–95% keratinocytes, is made up of five layers, including the stratum basale (the deepest
portion of the epidermis), stratum spinosum, stratum granulosum, stratum lucidum, and
stratum corneum or SC (the most superficial portion of the epidermis). Sebum is a lipid film
secreted by the sebaceous glands of the skin, which lubricates the skin and helps to retain
moisture. Skin is the main interface between the body and the environment, providing
a biological barrier against chemical and physical pollutants. Having the largest surface
area of the body, skin is the major organ target for increased oxidative stress resulting in its
alteration of the antioxidant network and, consequently skin aging and diseases [36–40].
As the skin ages, the number of keratinocytes and fibroblasts decreased as a consequent
reduction in the turnover of the epidermis and the subsequent decrease in collagen and
proteoglycans. These changes may lead to a further increase in the production of free
radicals. All this leads to atrophy and contributes to fibrosis [41].

Intrinsic (chronological age) and extrinsic factors contribute to enhanced OS in the
human skin, which induce and accelerate the skin aging process [6–8]. Internal aggressions
are due to food contaminants, mitochondrial dysfunction in keratinocytes and fibrob-
lasts, activation of lipoxygenase and cyclooxygenase in the cytosol, NADPH oxidases,
cytochrome P450 located in the endoplasmic reticulum, inflammation via overexpression of
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activator protein-1 (AP-1) and the nuclear factor kappa B (NF-κB) [42]. These aggressions
are associated in the dermis with a loss of collagen and elasticity, skin atrophy, wrinkles,
degeneration in the elastic fiber network and loss of hydration [43]. External aggressions
result from ozone exposure, pollution generated by automobiles and other industrial
sources, smoking, excessive alcohol consumption, professional or personal stress, insomnia,
cosmetic products, chemical products, pathogens, sedentary lifestyle and an unbalance
diet [42,44]. These aggressions induce rough texture, irregular pigmentation and deep
wrinkles [45]. Both intrinsic and extrinsic OS also contribute to the development of most
common skin diseases such as acne, alopecia areata, atopic dermatitis (eczema), psoriasis,
Raynaud’s phenomenon, rosacea, vitiligo, and skin cancer [46].

An important ROS external source is photo-aging (dermatoheliosis) as the result of
a continuous, long-term exposure to ultraviolet A and B (UVA and UVB) radiation of
approximately 300–400 nm, either natural or synthetic, on an intrinsically aged skin [47].
Direct proof of free radical production during UV-exposed animal and human skin has
been assessed using different detection methods [48–52]. Photoaging is characterized by
the appearance of wrinkles, dark spots, skin thickening, wrinkling, and certain lesions such
as actinic keratosis and cancer. Exposure also leads to inactivation and loss of epidermal
Langerhans cells, which are an important part of the skin’s immune system. Other than
large ROS production, excessive exposure to UV radiation also induces inflammation,
immunosuppression, induction of metalloproteases, DNA oxidative damage and skin
disorders such as psoriasis [16,53].

A high amount of ROS produced in the skin quickly overwhelms skin antioxidant
defense, and consequently, induces important oxidative damages to lipids (lipid peroxides,
large protein-lipid aggregates known as lipofuscin), DNA (8-hydroxy-2′ -deoxyguanosine
or 8-OHdG) and proteins (protein carbonyls). Squalene (2,6,10,15,19,23-hexamethyltetracosa-
2,6,10, 14,18,22-hexaene), cholesterol and sebaceous acids being the main components of
sebum and skin surface lipids are an important target for singlet oxygen oxidation [54].
As shown in Figure 1, polyunsaturated fatty acids, a main constituent of cellular mem-
brane, are also very sensitive to ROS attack resulting in lipid peroxidation process by
auto-oxidation, which is amplified by transition metals such as iron or copper. As reported
by Bickers and Athar [38], oxidation of skin surface lipids may be important in the appear-
ance of wrinkle formation, hyperpigmentation, freckles, acne, atopic dermatitis, and cancer.
Sanders et al. [55] evidenced increased proteins carbonyl as a marker of protein oxidation
in the skin of healthy subjects irradiated with acute UVA exposure. Moreover, photoaged
skin also revealed a significantly lower expression of important antioxidant enzymes in-
cluding superoxide dismutases and catalase in the epidermis and SC. In physiological
conditions, guanosine pairs with cytosine. In contrast, oxidized guanosine (8-OHdG) pairs
with adenosine, resulting in a G-T mutation that accumulates during aging in skin [56].
A dose-response for induction of primary skin fibroblasts (FEK4) by broad-band UVA
(350–450 nm) radiation has been reported by Kvam and Tyrell [57]. All these oxidative
damages are aggravated by the accumulation of labile or free iron, a strong catalyst of ROS
production through the Fenton reaction, during skin aging [58]. Moreover, exposure to
UVA radiation contributes to the degradation of ferritin in the skin and that causes the
release of labile iron leading to the appearance of oxidative damages due to the imbalanced
redox status in the cell. In addition to altering DNA, proteins and the cell membrane
increased ROS production promotes matrix metalloproteinase (MMP) resulting in collagen
breakdown [59].

There is also ample evidence that glucose and advanced glycation end products
(AGEs) play an important role in skin aging [60–63]. Irreversible AGEs are formed in vivo
through three different pathways: The Maillard reaction resulting from the interaction
between a carbonyl group of a reducing sugar with the amino group of a protein leading
to unstable Amadori products, the polyol pathway leading to the conversion of glucose
into fructose being further converted to 3-deoxyglucose and finally the reaction of lipid
peroxidation byproducts with dicarbonyl proteins [64,65]. AGEs can cause the crosslinking
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of mitochondrial proteins in the respiratory chain, reducing the synthesis of ATP and
promoting the production of oxidative free radicals [66,67]. AGEs have been shown to be
increased in the epidermis as well as photoaged and diabetic dermis [68,69]. In both in vitro
experiments [70] and in vivo [71] studies, it has been shown that UV irradiation may also
enhance the formation of AGEs in the skin. A diet too high in sugar (hyperglycemia)
and certain methods of food preparation are also responsible for higher levels of AGEs
in the skin [72]. Interestingly, a non-invasive method (AGE-Reader, DiagnOptics B.V.,
Groningen, The Netherlands) has been developed to measure the skin content of AGEs. It
was shown that skin autofluorescence increases with chronological aging and correlates
with skin deposition of AGEs, making this method a potential tool for investigating the
effect of various anti-aging products in the cosmetic industry [73]. AGEs not only exert
their deleterious actions due to their biological properties, but also through their interaction
with specific receptors for advanced glycation end products (RAGE) that can directly
induce oxidative stress [74,75] and inflammation in skin. Through the alteration of the
physicochemical properties of dermal proteins, decreased cell proliferation, increased
apoptosis and senescence, induction of oxidative stress and proinflammatory mediators, as
well as other pathways, the AGEs/RAGE axis contributes to skin aging.

Another important target for ROS is telomeres that protect the ends of chromosomes
from degradation and from being recognized as double-stranded breaks [76]. The mainte-
nance of telomere length appears to play a fundamental role to delay the aging process [77].
Due to the high G content in telomeric structures, oxidative stress accelerates the telomere
attrition, a leading cause of skin aging [78–82]. In 2011, Buckingham and Klingelhutz [83]
described in detail how the interplay between oxidative stress, DNA damaging, and accel-
erated telomere shortening plays a key in the aging of human skin. Sugimoto et al. [84]
also reported the association between telomere length of the skin with chronical aging
and photoaging confirming previous observations done by Kosmadaki and Gilchres [85].
Jacczak et al. [86] claimed that maintaining the key levels of telomerase component (hTERT)
expression and telomerase activity that provide optimal telomere length, as well as some
non-telomeric functions, represents a promising step in advanced anti-aging strategies,
especially in dermocosmetics.

A key factor in health and skin aging is epigenetics [87,88], which refers to external
modifications to DNA that turn genes “on” or “off.” These modifications, which do not
change the DNA sequence, allow cells to express or not specific genes that are necessary for
the existence of different cell types. As shown in Figure 3, epigenetics intervenes at diverse
levels: DNA methylation, histone methylation and histone acetylation [89]. Histones are
important to help condense DNA into chromatin. Hyper DNA and histone methylation
lead to a low expression of genes, while non acetylated histone hinders gene expression.
In older individuals, Johnson et al. [90] showed that their DNA was characterized by a
specific hypermethylation pattern. In the context of skin aging, Russell-Goldman and
Murphy [91] reported that modification of epigenetic factors may result in deterioration of
the main protective interface of the skin with the external environment. Köhler et al. [92]
showed that young epidermis was characterized by unmethylated CpG in contrast to old
epidermis. de Oliveira et al. [93] reported that UV radiation can alter the DNA methylation
profile in epidermal cells derived from the skin. Recently, Boroni et al. [94] developed a
highly accurate skin-specific DNA methylation age predictor. Based on the analysis of 2266
CpG sites, the authors showed that DNA methylation (DNAm) age was sensitive to the
biological age of the donor, skin disease status, as well as treatment with senotherapeutic
drugs. Recently, Orioli and Dellambra [95] reviewed the important role of epigenetics in
skin cells in relation to natural aging and premature aging diseases. The authors highlighted
that in patients with progeroid syndromes characterized by an accelerated aging process
in various organs, including skin, accumulation of DNA damage, and increased genome
instability, but also epigenetic changes have been evidenced in their skin cells.
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sion (epigenetics). DNMT: DNA metyltransferase, DNDMT: DNA demetyltransferase, HMT: hi-
stone metyltransferase, HDMT: histone demethyltransferase, HDAC: histone deacetylase, HAT:
histone acetyltransferase.

4. The Skin Antioxidant Network

In order to counteract the deleterious effects of ROS, human skin is equipped with a
network of antioxidants, including enzymes and low molecular weight molecules [96]. The
main enzymes, which represent the first line of defense against ROS, are superoxide dismu-
tases (SODs), catalase, glutathione peroxidases (GPxs), glutathione-S-transferase, thiore-
doxin reductase, and many others. Their activity is dependent on some trace elements, such
as copper and zinc (SOD) or selenium (GPx). The second line is composed of low molecular
weight compounds, including vitamins C and E, carotenoids, glutathione, ubiquinone,
lipoic acid, uric acid, polyphenols and melatonin. This last compound has the particularity
to be synthesized in the skin [97] and dotted of antioxidant and anti-inflammatory activ-
ities [98,99]. Through mechanisms involving free radicals, melatonin is metabolized in
skin into metabolites N1-Acetyl-5-methoxykynuramine (AMK) and N1-acetyl-N2-formyl-5-
methoxykynuramine (AFMK) having a much higher antioxidant capacity [100]. Melatonin
has also been shown to be an activator of the Keap1-NrF2 antioxidant pathway in the skin,
but only through topical application [99].

Scarce data are available regarding the antioxidant concentration in the skin. The
best information was obtained as early as 1994 by Shindo et al. [101], showing that the
human striatum corneum exhibits antioxidant capacity with logical increasing intensity
from the dermis to the epidermis, the last being more exposed to the external environment.
Activities of superoxide dismutase, catalase, glutathione peroxidase, and glutathione
reductase enzymes were largely higher in the epidermis compared to the dermis. The
vitamin E (alpha- and gamma-tocopherol) level was 34.2 nmol/g skin compared to only
18.0 nmol/g in the dermis. A difference of 425% and 488%, respectively, was found for
vitamin C and uric acid levels between epidermis and dermis (3798 vs. 723 nmol/g skin;
1071 vs. 182 nmol/g skin). Content of reduced glutathione was 461 nmol/g skin in the
epidermis versus 75.1 in the dermis. The level of ubiquinone was at least 900% higher in the
epidermis than in the dermis (3.53 nmol/g skin vs. 0.35). Notably, the regional differences
in vitamin E levels, the human facial stratum corneum, which is continuously exposed to
environment, contains higher vitamin E levels than the less exposed upper arm [102].

It has been recognized for a long time that natural antioxidants, such as vitamins C
and E, play a key role in skin care exerting different actions including photoprotection,
increased antioxidant activity, collagen synthesis and keratinization [103]. In contrast,
blood antioxidant deficiency has been associated with many skin alterations [104]. For
example, vitamin C deficiency (RDI = 100 mg) is well-known to cause scurvy, a disease
with skin lesions, including petechiae, gum bleeding, ease of developing bruises or slow
wound healing. Cutaneous manifestations accompanying vitamin C deficiency have been
attributed to impaired collagen synthesis [105]. Enlargement and keratosis of hair follicles,
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mainly in the upper arms and curled hairs, the so-called ‘corkscrew hairs’, are also usually
described. Therefore, nutrition, which constitutes the natural way to bring important
antioxidants, such as vitamins C and E, carotenoids, and ubiquinone, is of primordial
importance for skin health [10,106,107]. In this way, the Mediterranean diet, which contains
many bioactive nutrients (vitamins C and E, polyphenols, carotenoids, etc.) has been
shown to be effective in providing internal protection against UVR [108]. In a 15-year
study period performed on 777 subjects, adults aged >45 years who ate foods with high
antioxidant capacity exhibited approximately 10% less photoaging over 15 years than those
who consumed foods with low antioxidant capacity [109].

Exposure to UV contributes to a significant depletion in skin enzymatic and non-
enzymatic antioxidants [110–112]. Rhie et al. [113] reported significant low α-tocopherol
levels in the epidermis of photoaged skin but not in the dermis. Vitamin C and glutathione
levels were lower in the dermis and epidermis of photoaged and naturally aged skin
by contrast to uric acid. Interestingly, UV exposures given for 11–12 days (cumulative
doses of UVA 17.8 ± 1.9 J/cm2) in humans resulted in a significant decrease in plasma
β-carotene [114]. Biesalski et al. [115] also reported a similar observation in addition to a
depletion in vitamin E after 12 days of controlled sun exposure (total UV dose 10.000 j/cm2).

5. Selenium
5.1. Physiological Functions

Selenium (Se) is a natural mineral obtained from food including cereals, breads, millets,
wheat (6.7 oz = 171 µg), Brazil nuts (6 to 8 nuts = 544 µg), meats (3 oz turkey = 32 µg, 3 oz
chicken = 20 µg), eggs (one boiled egg = 14 µg) and mushrooms (3.5 oz = 12 µg) [116–118].
Many papers have highlighted the role of Se in human health [119–123]. In living or-
ganisms, Se is present in various organic forms including selenocysteine (SeCyS) as a
predominant form. It is specifically incorporated into seleno proteins, including six glu-
tathione peroxidases (GPxs), three deiodinases (Dis), 12 selenoproteins (H, I, K, M, N, O, P
(SePP1 or SELENOP), R, S, T, V, W, and three thioredoxin reductases (TrxR1, TRxR2, and
TRxR3) [124,125].

Selenoprotein-mediated biochemical mechanisms (regulation of oxidative stress, an-
tioxidant defense, immune and inflammatory responses and other biological processes play
a key role in the prevention, onset, and clinical outcome of a wide number of important
diseases (cancers, viral infections, mental disorders, diabetes, etc.) [117,126,127]. A special
focus should be given to SELENOP. Besides being the main selenium-transporter, this pro-
tein plays a central role in selenium-metabolism and antioxidant defense by maintaining
the antioxidant capacity of selenoenzymes [128]. TrxRs play a fundamental role in the
regulation of the homeostasis of protein thiol and ROS signaling, both in the intra- and
extra-cellular milieu [129]. GPx isoenzymes reduce hydrogen peroxide (H2O2), organic
hydroperoxides, and (only GPx4) phospholipid hydroperoxides, using reduced glutathione
(GSH) as co-substrate according to the following equations [130]:

H2O2 + 2GSH GPx→H2O + GSSG (1)

ROOH + 2GSH GPx→ ROH + GSSG + H2O (2)

A minimum of 55 µg Se/d seems to be required to maximize the activity of glutathione
peroxidases (GPx1 and GPx3) in order to maintain their antioxidant function at the possibly
highest level [131]. Around 100 µg Se/d effectively saturate selenoprotein P that is used
specifically to assess the body’s Se status [132,133].

It is well-known that Se deficiency is associated with health risks in humans [119].
By contrast, an adequate Se nutritional state has been related to improved outcomes and
reduced risk of developing several diseases [120]. In the case of a low plasma Se con-
centration (<89 µg/L), it is appropriate to increase Se intake through diet or a modest Se
supplementation (50–100 µg/d) in order to reach an ideal plasma Se <122 µg/L [119,134].
Symptoms of Se deficiency include skin damage, weakening of immune defenses, muscu-
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lar, neurological, and cardiovascular disorders, Kashin-Beck disease, and developmental
abnormality. The tolerable upper intake limit is 300–400 µg/d for adults over 19 years
old, a value below standard Americans of 400 µg/day. Chronic Se intake at >900 µg is
toxic due to selenosis development [135]. Signs of Se toxicity include hair loss, dizziness,
nausea, vomiting, facial flushing, tremors, muscle soreness, severe fatigue, irritability, bad
breath, sensitivity to inflammation, stained fingernails, mottling of teeth, nerve lesions and
diarrhea. In severe cases, acute Se toxicity can lead to serious intestinal and neurological
symptoms, heart attack, kidney failure, and death.

5.2. Selenium, Skin Aging and Disorders

In 2000, McKenzie [136] reviewed the potential effect of Se to protect skin from dam-
ages induced by UV radiation. In cultured cells, both selenomethionine (SM) and sodium
selenite (SS) at nanomolar concentrations can protect keratinocytes, melanocytes and fibrob-
lasts from UV-induced cell death, accumulation of 8 OHdG as a marker of DNA oxidation
and apoptosis. UVB-induced accumulation of lipid peroxides in keratinocytes is decreased
by 82% if the cells are pre-treated with 50 nm SM before irradiation with 200 J/m2 UVB.
In a senescent skin equivalent model, Jobeili et al. [137] showed that SS in a concentration
range from 0.633 to 1.875 µM preserved kerotinocytes and delayed senescence by main-
taining epidermal adhesion. In cultured human skin cells, 10 nM SS or 50 nM SM were
able to reduce the lethal effects of UVB radiation on primary keratinocytes by 57.3% and
65.8% respectively [138]. In keratinocytes isolated from young donors, low doses of Se
(30 nM) protect cells against UVA-induced cytotoxicity, whereas the protection efficiency
of Se in old keratinocytes required higher concentrations (240 nM) [139]. Moreover, the
same group showed that Se supplementation significantly enhanced the DNA repair of 8-
oxoguanine (8oxoG) only in the keratinocytes isolated from young donors. In a population
of 8 women treated for 2 weeks with a topical application of SM, the UVB dose necessary
to achieve 1 minimal erythema was increased by 30% [140]. In a recent paper, Alehagen
et al. [141] reviewed all potential mechanisms by which Se may have a positive impact
on aging and potentially on skin aging. As explained below, Se is fully implicated in the
activity of these selenoproteins such as GPx, TRxRS and SeH which are essential for cell
survival [127,129,130]. Indeed, these enzymes play a key role in cellular redox regulation
by reducing ROS and thus lipid and DNA oxidation.

We have shown that below this oxidative stress is associated with telomere shortening
and the aging of human skin [83]. Se contributes to prolonged telomere length [120]. An
observational study on 3194 Americans older than 45 years showed that every increase of
20 µg/Se intake was associated with 0.42% longer telomere length in all participants [142].
In their paper, Jacczak et al. [86] concluded that natural compounds, such as vitamin E,
polyphenols, and Se, able to provide optimal telomere length could represent advanced anti-
aging skin strategies. Another major actor of skin aging is the accumulation of advanced
glycation end products [63]. In a dose-dependent, response, sodium selenite and Se yeast
are able to significantly inhibit the bovine serum albumin glycation induced in vitro by
exposure to glucose/fructose [143,144]. Recently, Du et al. [145] also showed that Se
nanoparticles (SeNPs) have certain inhibition ability against glycation. A particularly
important role of Se is its relationship with epigenetics.

In 2015, Speckmann and Tilman [146] discussed the relevance of a Se-epigenome
interaction for human health. The authors listed fifteen articles showing that Se is able
to reduce DNA methylation by inhibiting DNMT expression in various types of cells.
Inhibition of histone deacetylases. Interestingly an inverse association between plasma
Se and leukocyte DNA methylation [147]. Moreover, inhibition of histone deacetylase
(HDAC) delay has been shown in experimental models to delay aging by maintaining
genome stability [148]. Histone modifications have been shown to be altered by Se via
the inhibition of HDAC activity by the Se metabolism products seleno-ketoacids such
as methylselenopyruvate and α-keto-γ-metylselenobutyrate [149]. Recent papers have
shown that proteins from the sirtuin (silencing information regulator) family (SIRT1-7)
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belonging to the class III histone deacetylases were strongly linked to epigenetic regulation
and therefore genome stability [150]. These proteins can regulate many processes in vivo,
including DNA repair, prevention of telomere attrition and metastasis, decreased oxidative
stress, promotion of longevity, and the protective effect against cancer [151]. Their biological
relevance in the regulation of aging, and age-related diseases has been recently reviewed
by Zhao et al. [152]. By sustaining genome integrity, sirtuins are now considered to
be promising therapeutic targets for anti-aging skin and related diseases [153–155]. Of
interest is that low serum Se (<0.75 µM) is associated with the downregulation of sirtuin
concentration in peripheral blood mononuclear cells [156].

5.3. Se Plasma Concentration, Skin Disorders and Supplementation

A study on the different European countries reported values of mean intake in adults
of 43 µg/d corresponding to normal plasma values between 70 and 120 µg Se/L [157]. A
large consensus defined plasma Se concentrations from 70 to 100 µg/L (0.9 to 1.3 µmol/L)
to reflect Se adequacy [158]. Se supplements usually come in three forms: selenite, se-
lenomethionine and high-selenium yeast (yeast). Burk et al. [159] showed that plasma Se
concentration were markedly increased with the two last forms when compared to selenite.
selenite. When compared to placebo, supplementation with 158 µg/d selenomethionine
for four weeks resulted in plasma Se concentration increase from 121 to 215 µg/L. Such a
plasma value did not significantly increase after 16 weeks supplementation. At a higher
dose of 507 µg/d, plasma concentration rose to 336 µg/L after four weeks. Supplemen-
tation with 226 µg/d and 703 µg/d yeast caused, respectively, plasma concentration to
increase up to 176 µg/L and 341 µg/L. Prolonged supplementation to 16 weeks did not
change these plasma values.

In a meta-analysis of twenty-seven studies, including a total of 1315 patients and
7181 healthy controls, lower plasma Se level was found in patients with psoriasis, acne
vulgaris, chloric acne and atopic dermatitis when compared to the control [160]. By contrast,
no significant difference in Se was found in patients with vitiligo, alopecia areata and
eczema. In older studies, low levels of blood Se-dependent GPx were observed in patients
with psoriasis, eczema, atopic dermatitis, vasculitis, mycosis fungoides and dermatitis
herpetiformis when compared to the control population [161]. In a recent systematic review,
Vaughn et al. [162] demonstrated that plasma Se deficiency may exacerbate atopic dermatitis
(AD). Using hair samples, analyzed by proton induced X-ray emission (PIXE) for 32 mineral
concentrations during one and ten-month health checkups, Yamada et al. [163] confirmed
that Se deficiency significantly increased the AD risk in infants. In 29 acne vulgaris patients,
supplementation with 0.2 mg Se (and 10 mg tocopheryl succinate) for 6–8 weeks slowly
increased Se-GPx levels [164]. In contrast, if the low levels of Se glutathione-peroxidase
in blood from patients with dermatitis herpetiformis increased after five months of Se
treatment, no significant clinical improvement was observed [165]. Fairris et al. [166]
showed that a daily 600 µg of Se-enriched yeast intake for 12 weeks increased plasma Se
concentrations and platelet GPx activity of psoriasis patients, but not in their skin. No
reduction of psoriasis severity was observed.

6. Vitamin E
6.1. Physiological Function

Vitamin E is the collective name for a group of eight fat-soluble compounds, including
four tocopherols (α-, β-, γ-, and δ-tocopherol) and four tocotrienols (α-, β-, γ-, and δ-
tocotrienol). Since vitamin E is fat-soluble, it is mainly found in an amount between 1.3 to
20.3 mg/serving in vegetable oils (soya, corn, sunflower), but also in oleaginous fruits
(walnuts, hazelnuts, and almonds) and whole grain germs [116]. The most abundant forms
of vitamin E in the diet are α-tocopherol and γ-tocopherol. Current nutrient reference
value (NRV) for vitamin E as α-tocopherol is 12 mg/d (17.6 IU (International Unit) and
26.64 IU, respectively, for natural and synthetic forms). The tolerable upper intake level
was fixed at 300 mg/d by the European Food Safety Authority [167]. However, high
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doses of vitamin E may increase the risk of bleeding, particularly for adults who are
also taking an anticoagulant (especially warfarin), which makes blood less likely to clot.
Occasionally, adults who take very high doses develop muscle weakness, fatigue, nausea,
and diarrhea [167].

As shown in Figure 4, vitamin E (Vit E) as α-tocopherol functions as a chain-breaking
antioxidant inhibiting the free radical-chain peroxidation of polyunsaturated lipids in
membranes and lipoproteins. Free fatty acids (RH), more specifically, the polyunsaturated
ones (ω3 andω6), are extremely sensitive to oxidative damage induced by ROS, such as
hydroxyl radical (OH•) In an initiation step, RH becomes a free radical species (R•) that
interacts with oxygen (O2), leading to the formation of a new free radical species ROO•

(peroxyl radical). This then interacts with a neighboring free fatty acid (RH) to finally
generate a toxic lipid peroxide (ROOH) and another lipid radical R•, thereby initiating an
auto-oxidation cycle. Vitamin E (consisting of various forms of tocopherols and tocotrienols)
acts as an important fat-soluble vitamin in strong synergy with vitamin C and reduced
glutathione (GSH) to break the chain. Indeed, Vit E can directly interact with ROO•,
resulting in the formation of a stable and nontoxic lipid (ROH). However, Vit E becomes a
free radical species (vit E• or tocopheryl radical) which becomes neutralized by vitamin C
(vit C). This last antioxidant itself becomes a free radical (vit C• or ascorbyl radical). Finally,
glutathione (GSH), which regenerates the ascorbyl radical in its initial form, is converted
into oxidized glutathione (GSSG), thereby ending the peroxidation cycle [168–170]. These
mechanisms demonstrate that the low molecular weight antioxidants do not act in isolation
but form an intricate network. This therefore requires a good equilibrium between them to
break the lipid peroxidation process. Interestingly, vitamin E is also able to increase the
human seleno-GPx activity, which is involved in lipid peroxide destruction [171–173].
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6.2. Vitamin E, Skin Aging and Disorders

Vitamin E is the major naturally occurring lipid-soluble non-enzymatic antioxidant
protecting skin from the adverse effects of oxidative stress [174]. In animal models, vitamin
E deficiency resulted in skin ulcerations and changes in skin collagen cross-linking [175].
In humans, deficiency in vitamin E from the diet has been shown to also cause skin anoma-
lies [176,177]. With respect to photoaging, Thiele et al. [96] showed that exposure to a single
dose (0.75 MED) of solar simulated ultraviolet light dose dependently depleted the SC con-
centrations of α-tocopherol in mice by 85%. Such depletion was later confirmed by Lester
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and Valacchi [178], Fryer et al. [179], Nachbar and Korting [180] and Pandel et al. [111]. In
agreement with Rhie et al. [113], Tiele et al. [181] also reported a significant depletion of
tocopherols (α-tocopherol by 45%, and γ-tocopherol by 35%) in human SC exposed to a
single suberythemogenic dose of solar simulated UVR as compared to the controls.

Using a topical application, the antioxidant properties of vitamin E have been well
evidenced [182–184]. Besides antioxidant activity, vitamin E in topical application may also
exert skin protective effects through anti-inflammatory properties [185–187] and its ability
to inhibit the action of metalloproteinases [188]. Vitamin E may also interfere with global
DNA methylation [189]. Mackpol et al. [190] also described the ability of tocotrienol-rich
fraction in preventing cellular senescence human diploid fibroblasts (HDFs) by restoring
telomere length and telomerase activity, reducing the damaged DNA, and reversing cell
cycle arrest associated with senescence. Vitamin E is also able to modulate the protein
kinase C (PKC) and phosphatidylinositol 3-kinase (PI3-K) signaling pathways and to
reduce the increase in collagenase expression in skin [191]. The photo protective effects
of vitamin E in topical application against skin damage induced by UV exposure results
in reducing skin roughness, skin dehydration, elastosis, wrinkling, facial lines and senile
lentigines [192].

In contrast, Table S1 (Supplementary) listed the major but limited studies having
investigated the photo protective effect of vitamin E taken by an oral route. The study
performed by La Ruche and Cesarini [193] evidenced that a daily nutritional dose of
14 mg vitamin E (31 IU) but associated with retinol and selenium for three weeks was
able to reduce the number of skin sunburn cells after UV exposure. Due to a very small
subject number (n = 16), these results have, however, to be taken with caution. In other
studies [194–196], except one [197], supra nutritional doses from 50 to 2000 mg/d (110 to
4428 UI vitamin E) taken over a period of 50 days to eight weeks were able to improve the
minimal erythema dose (MED). Supra nutritional doses were also necessary to observe a
clinical improvement in skin ageing and disorders such as atopic dermatitis, acne, psoriaris
or vitiligo [198–206], see also the work by Berardesca et al. [207]. Table S2 (Supplementary)
displays human studies using a combination of vitamin E with other antioxidants and/or Se
in skin photoprotection and diseases [166,194,208–215]. Some studies [194,195,208,209,212]
showed the photoprotection of vitamin E was amplified in the presence of vitamin C taken
at supra-nutritional doses (2 to 3 g). This is in agreement with their synergistic action, as
described in Figure 1 [216].

6.3. Vitamin E Plasma Concentration, Skin Disorders and Supplementation

The reference values for plasma vitamin E (α-tocopherol) are 8.60–19.2 µg/mL and
4.40–7.00 µg/g after standardization to cholesterol [217]. Roberts et al. [218] examined the
relationship between dose of vitamin E (supplementation in a range of 45 mg (100 IU) to
1454 mg (3200 IU)/d) taken for 16 weeks and suppression of oxidative stress, as measured
by plasma isoprostanes. After 16 weeks, initial plasma vitamin E increased by 25% at a dose
of 45 mg/d up to 140% at a dose of 727 mg/d. Moreover, there was a linear trend between
the dosage of vitamin E and percent reduction in plasma F2-isoprostane concentrations,
which only reached significance at doses of 727 mg/d (35%± 2%, p < 0.035) and 1454 mg/d
(49% ± 10%, p < 0.005) in vitamin E. Biesalski et al. [115] reported that plasma α-tocopherol
in humans was significantly decreased after exposure to sunlight for 12 days (total UV dose
of about 10.000 J/cm2). In a systematic review and a meta-analysis screening of 892 studies,
Liu et al. [176] reported lower serum vitamin E levels in vitiligo, psoriasis, atopic dermatitis,
and acne patients when compared to the controls. As an example, Ozuguz et al. [219]
found a significant decrease in the serum vitamin E concentration of patients with acne
vulgaris when compared to controls (7.88 ± 3.00 µg/mL vs. 11.06 ± 3.0 µg/mL, p < 0.001).
In Seborrheic dermatitis (SD), a common form of skin disorder, Jahan et al. [104] recently
reported lower plasma levels in vitamin E 5.54 ± 0.79 µM vs. 7.07 ± 0.37 µM, p = 0.009)
when compared to the controls. In contrast, increased concentration in malonaldehyde
(MDA), as a marker of lipid peroxidation, (0.21 ± 0.18 µM vs. 0.18 ± 0.28, p = 0.011) was
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detected in parallel with higher levels in copper (2.13 ± 0.10 mg/L vs. 0.95 ± 0.05 mg/L,
p < 0.001) known to catalyze the free radical reaction.

7. Oxidative Stress, Antioxidants, and Aging Hair

Similar to the skin, the scalp is also subject to ageing, which manifests as a decrease
in the mel-anocyte function or graying, and a decrease in hair production or alopecia.
As reported by Trüeb [220–222], the gradual loss of pigmentation includes exhaustion of
the enzymes involved in melanogenesis, impaired DNA repair, loss of telomerase, and
antiapoptotic signals, but also increased oxidative stress as a pivotal role. Androgenetic
alopecia (AGA) is a genetically predetermined disorder due to an excessive response to
androgens and environmental factors. In males, hair loss is the most prominent in the
vertex and frontotemporal regions, while in women, the frontal hairline is typically spared
with diffuse hair loss at the crown and top of head, with loss often marked by a wider
center part [223]. The presence of inflammation and of oxidative stress in both dermal
papilla cells and plasma of AGA patients have been evidenced [224,225].

Alopecia areata (AA) is an inflammatory and autoimmune disease presenting with
non-scarring hair loss. Prie at al [226] reported that many factors, such as autoimmunity,
genetic predisposition, emotional and environmental stress, all processes having in common
increased OS, were thought to play important roles in AA development. In a recent meta-
analysis of 18 studies, Acharya and Mathur [227] evidenced elevated markers of lipid
peroxidation and a decrease in antioxidants in the plasma of AA patients. With respect
to plasma depletion in vitamin E, the results were contrasting [228]. One study on 15
AA patients reported a depletion [229], and another on 37 patients showed different
results. [230]. Thompson et al. [231] reviewed the role of trace elements in AA. Zinc was
found to be depleted in AA patients whereas results seem to more conflicting for Se.
Nevertheless, El-Tahlavi et al. [232] reported that plasma Se concentration was found to be
significantly decreased in AA patients when compared to the controls (60.2 ± 8.8 µg/L vs.
77.4 ± 9.6 µg/L).

In the context of SARS-CoV-2 infection, it has been recently reported AGA may be a
risk factor for severe COVID-19, whereas telogen effluvium (TE) presents as a sequela of
COVID-19 [233–235]. In our recent studies [236,237], we have shown that 55.5% COVID-19
patients hospitalized in intensive care unit, 87.5% in ward units or 58.3% seen two months
after their hospital discharge exhibited Se plasma concentration below normal range (73–
110 µg/L). Other papers further confirmed the presence of an important Se depletion in
COVID-19 patients [238,239]. In their paper, Guo et al. [240] concluded that there is limited
research on Se deficiency and AA in humans. However, the association between low plasma
Se levels, AA and SARS-CoV-19 infection may suggest that a Se supplementation would be
useful in COVID-19 patients, not only to reduce the severity of the pathology [241], but
also to reduce sequela, such hair loss associated with the disease. It is important to keep
in mind that Se taken in excess causes hair loss [135]. In the biology of hair follicle, we
must highlight the importance of preserving the telomere length against OS, as shown in
experiments on epidermal stem cells [242,243]. It has been explained below how Se and
vitamin E might slow down the telomere attrition.

Topical application with vitamin E oil, acting as an antioxidant, has been reported to
prevent premature aging, expand the capillaries, resulting in an increased blood flow in the
scalp, and moisturize the hair [244]. There are however very limited data about the effect of
vitamin E supplementation. Only one study [245] has shown that a mixture of tocotrienols
taken every day for 4–8 weeks was able to increase the hair number in AA patients. By
contrast, another study has reported the adverse effects on hair growth in volunteers taking
every day excessive vitamin E (270 mg or 600 IU) during only 28 days [246].

8. Synergic Antioxidant Action of Vitamin E/Se

Using Cyclic Voltammetry (CV) and Osteryoung Square Wave Voltammetry (OSWV),
Bertolino et al. [247] have shown, in a very good in vitro study, the existence of an important
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synergism between Se and some other natural and synthetic antioxidants such as vitamin
E. Alone, vitamin E had the highest antioxidant efficacy (AE) to scavenge DPPH (2,2-
Diphenyl-1-picrylhydrazyl) radical. In the presence of Se, AE increased from 84.5 10−3 up
to 315.2 10−3.

In the scientific literature, there is a broad consensus regarding the important role of
vitamin E and Se alone in human health and diseases [248,249]. Other papers also highlight
the potential protective effect of both compounds in skin aging [136,187]. As lipids are
involved in the epidermal barrier and regulate its permeability, physical properties and an-
timicrobial defense, oxidative damages due to intrinsic and extrinsic sources will contribute
to skin aging and disorders [250]. From a mechanistic point of view, vitamin E sustains Se
and vice versa since they contribute to the elimination of lipid peroxides resulting from the
interaction of excessive ROS with polyunsaturated fatty acids (Figure 5). The first one acts
as a direct scavenger of the lipid radical, the second one as a co-factor of GPx enzyme de-
stroying lipid peroxides. Interestingly, many animal studies more particularly in veterinary
medicine have reported a beneficial effect with the Se/vitamin E combination [251–256]. In
mice, Burke et al. [140] evidenced that a topical L-selenomethionine with topical or oral
vitamin E significantly reduced acute and chronic UV-induced skin damage. In diabetic
rats, a combination of vitamin C (250 mg/kg), vitamin E (250 mg/kg) and Se (0.2 mg/kg)
taken by gavage for 30 days reduced skin lipid peroxidation and glycation [256]. However,
this corresponds to very high supra nutritional doses in human (2 g vitamin E and 1.8 mg
Se). In humans, the association of both selenium/vitamin E taken orally has been poorly
investigated. A major study on a large scale was the Selenium and Vitamin E Cancer
Prevention Trial (SELECT) who showed that a daily intake of selenium (200 µg)/vitamin E
(400 mg) did not prevent prostate cancer [257].
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orders. Adapted with permission from Alehagen et al. [141]. Red: pro-oxidant sources; green:
antioxidant defenses.

Besides the strong synergistic antioxidant activity, vitamin E and Se also have common
properties of glycation, telomere attrition and epigenetic regulation in the skin. Despite
these properties, the protective effect of Se/vitamin E combination has been poorly investi-
gated in human studies, as shown in Table S2. Fairris et al. [166] failed to observe clinical
improvement in psoriasis patients supplemented daily with 600 µg selenium-enriched yeast
and 270 mg (600 IU) vitamin E for 12 weeks. In contrast, oral intake in Se and vitamin E at
nutritional doses, but associated with other antioxidants, has been reported to reduce skin
damage induced by UV exposure [210,211,216] or to improve the skin quality [202,213,215].
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9. Discussion

Increased OS from intrinsic or extrinsic sources is well recognized to play a key role in
the development of skin disorders and aging. To minimize these deleterious effects, recent
papers highlight the link between nutrition and healthy skin. Thus, there is increased
evidence that a balanced diet rich in fruits and vegetables containing antioxidants (vita-
mins C and E, carotenoids, polyphenols) is of great importance for maintaining good skin
health [258]. In Europe, the average consumption of fruits and vegetables is 386 g per day
(France 342 g) (https://www.eufic.org accessed on 20 September 2020), while the WHO
recommendation is to consume ≥400 g of the fruits and vegetables corresponding to five
portions per day [259]. However, a recent report showed that 33% of the European popula-
tion (17.4% in Belgium, 25.2% in France) have a poor consumption (less than 1 portion) of
fruits and vegetables [260].

Clearly, we found in the literature different studies showing that low plasma levels
in vitamin E and selenium can trigger skin and hair disorders [161,163,176,177]. In this
context, it is suggested that oral antioxidants can be good adjuvants to obtain healthier
skin and more particularly to protect this organ from short- and long-term UV-induced
oxidative damage [261–263]. Of all the antioxidants, vitamin E is certainly the one that has
been most studied for its skin protective effects. The direct topical application of vitamin E
seems to be the classical and safety route for skin protection via its capacity to eliminate
lipid peroxides [185,191,264]. Oral use of vitamin E exhibits photo protection at supra
nutritional doses (Table S2). When associated with vitamin C at high doses, its effect was
amplified [195,196,208,209].

In the present paper, we showed that both vitamin E and Se exhibit, from a mechanistic
point of view, a wide range of common effects beyond their antioxidant action to protect skin
against oxidative stress (Figure 5). In most human studies reported in Table S1, oral vitamin
E intake is given daily at doses (180–2000 mg) that are largely higher than the NVR (12 mg)
commonly used in the majority of supplements. Interestingly, Oh et al. [203] reported that
vitamin E intake from the diet may reduce the risk of developing atopic dermatitis. In
the case of high doses in vitamin E, this therefore requires some caution since it must be
kept in mind that ROS at the physiological level exerts important physiological effects in
cells [24–26]. Taking vitamin E at a high dose, even if considered safe, could induce, over a
long period, an adverse effect by scavenging physiological ROS in cells, leading therefore to
inhibition of the protective mechanisms for the body. Long term supplementation at supra-
nutritional doses (>180 mg or 400 IU) leads to increased mortality [265]. Same observations
have been made with Se at 300 µg/d (two over five years [266]. More specifically, Se
supplementation at a high dose is not recommended in diabetic patients, since it has been
shown that such pathology by itself induces a high plasma Se concentration [125]. In a
general way, to take antioxidant supplements at a supra nutritional dose, it is therefore
strongly recommended to do so on medical advice with the support of a blood test to check
the basal antioxidant level.

Notably, oral intake of the combination vitamin E/Se at nutritional doses can ex-
hibit photoprotective effects, but only when combined with other antioxidants, such as
carotenoids [211,213] and polyphenols [214,215]. The polyphenols family includes pheno-
lic acids and flavonoids (anthocyanins, flavanones, flavonols, and flavones). Their role
in skin health, aging and photoprotection has been recently reviewed in an extensive
way [15,267–270]. Among their mechanistic effects, polyphenols have, in contrast to other
antioxidants, this unique capacity to stimulate the Keap1/Nrf2/ARE pathway [31,271,272],
and more particularly, in the skin leading to the expression of genes coding for the impor-
tant antioxidant enzymes [273,274] (Figure 1). These enzymes react a thousand to a million
times more rapidly with ROS than small antioxidant molecules do. This results in a signifi-
cant resistance at cellular levels to a subsequent highly lethal dose of oxidants. Recently,
Ogawa and Ishitsuka [275] reviewed the role of Keap1-Nrf2 system in the pathophysiology
of atopic dermatitis and psoriasis and the therapeutic approaches that utilize this system.

https://www.eufic.org
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In a recent review, Bocheva et al. [276] reported that active metabolites of vitamin D3
can protect skin against pollution, UVB and microbial infections, notably through their
antioxidant properties, even if controversial [277]. Consequently, as subjects suffering from
photosensitive disorders must avoid sun exposure, they are at risk of vitamin D deficiency.
Maintaining a vitamin D serum concentration within normal levels using supplements
could therefore be of interest in atopic dermatitis, psoriasis, vitiligo, polymorphous light
eruption, mycosis fungoides, alopecia areata, systemic lupus erythematosus, and melanoma
patients [278,279]. To the best of our knowledge, no study to date has examined the effects
of the combination of vitamin E/Se in skin aging and disorders.

10. Conclusions

The combination of vitamin E/Se taken by an an oral route represents an important
piece in the puzzle of antioxidants allowing for the protection of skin against diseases and
aging. They act in synergy to eliminate the lipid peroxides involved in skin disorders. More-
over, both molecules also down regulate other important mechanisms, such glucooxidation,
metalloproteinase expression, telomere attrition and DNA methylation. However, a main
question is to determine at which doses they could exert, in vivo, skin protection, namely
nutritional or supra-nutritional ones. In the photo-aging process, Granger et al. [215]
suggest that oral supplementation at nutritional doses could potentially be an adjuvant for
sunscreens. Clinical trials on a larger scale are needed to explore in detail the real beneficial
effect of this combination alone or associated with other antioxidant compounds. It is
important to always keep in mind that the intake of high doses of antioxidants must be
done under strict medical control.

Oxidative stress is thought to be involved in hair aging. However, there is little data
about a potential protective effect by oral supplementation of vitamin E and Se. Almohanna
et al. [228] concluded, in a recent broad literature search, that large double-blind placebo-
controlled trials are required to determine the potential effect of supplementation of specific
micronutrients, such as vitamin E and selenium on hair growth in people with both
micronutrient deficiency and non-scarring alopecia in order to establish any association
between hair loss and such micronutrient deficiency. Studies demonstrating hair loss
as middle- and long-term sequela in COVID-19 patients characterized by depletion in
plasma antioxidants and trace elements could provide some information about the potential
beneficial effect of oral antioxidant supplementation.

Supplementary Materials: The following supporting information can be downloaded at: https:
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in vitamin E combined with Se and other antioxidants in skin aging and disorders.
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Abbreviations

AA alopecia aerata
AE antioxidant efficacy
AGA androgenetic alopecia
AGEs advanced glycation end products
AMK N1-acetyl-5-methoxykynuramine
AFMK N1-acetyl-N2-formyl-5-methoxykynuramine
AP-1 activator protein
ARE Antioxidant Response Element
CV cyclic voltametry
Dis 3-deiodinases
DNA deoxyribonucleic acid
DNAm deoxyribonucleic acid methylation
DNDMT DNA demethyltransferase
DNMT DNA methyltransferase
GPx glutathione peroxidase
GSH glutathione
GSSG oxidized glutathione
HAT histone acetyltransferase
HDAC Histone deacetylase
HDMT histone demethyltransferase
HMT histone methyltransferase
H2O2 hydrogen peroxide
hTERT telomerase reverse transcriptase
Keap 1 Kelch-like ECH-associated protein 1
MDA malonaldehyde
MED minimal erythrema dose
MFRTA Mitochondrial Free Radical Theory of Aging
MMP matrix metalloproteinase
NF-κB nuclear factor kappa B
Nrf2 Nuclear factor (erythroid-derived 2)-like 2
O2 oxygen
8-OHdG 8-hydroxy-2′-deoxyguanosine
8-oxoGua 8-oxo-7,8-dihydroguanine
OS oxidative stress
OSWV osteryoung square wave voltammetry
PI3-K phosphatidylinositol 3-kinase
PKC protein kinace C
R• lipidic radical
RH polyunsaturated free fatty acid
ROO• peroxyl radical
ROOH lipid peroxide
ROS reactive oxygen species
SC striatum corneum
-SH thiol group
SIRT1-7 silencing information regulator 1-7
SM sodium selenomethionine
Se selenium
SeCyS selenocysteine
SELECT Selenium and Vitamin E Cancer Prevention Trial
SePP1 or SELENOP selenoprotein P
SOD superoxide dismutase
SS sodium selenite
TE telogen effluvium
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TRxR1, TRxR2, TRxR3 Thioredoxin reductases 1, 2, 3
UVA and UVB ultraviolet A and B
Vit C vitamin C
Vit C• ascorbyl radical
Vit E vitamin E
Vit E• tocopheryl radical
WHO World Health Organization
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