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Abstract: Major Depression disorder (MDD) is a potentially life-threatening mental illness, however,
many patients have a poor response to current treatments. Recent studies have suggested that stress-
or trauma-induced oxidative stress and inflammation could be important factors involved in the
development of MDD, but the mechanisms remain unclear. We showed that the glymphatic system is
a recently discovered structure in the brain that may be involved in the clearance of large molecular
and cell debris in extracellular space. In addition, the glymphatic system can help with the removal of
reactive oxygen species (ROS) and cytokines such as IL-1β and HIF-1α. Glymphatic impairment can
lead to ROS accumulation in the microenvironment, inducing cellular injury signaling and activating
NLRP3 in microglia to induce inflammation and, thus, many brain diseases, including psychiatric
disorders. Therefore, trauma-induced glymphatic impairment could induce oxidative stress and
inflammation, and thus MDD. This paper will review recent advances with regard to stress-induced
glymphatic system impairment and ROS-mediated inflammation in MDD.

Keywords: glymphatic system; astrocyte; microglia; inflammation; major depressive disorder;
reactive oxygen species

1. Introduction

Major depressive disorder (MDD) is a prevalent emotional disorder characterized by
a loss of hedonic motivation, cognitive and behavioral retardation, and a susceptibility to
commit suicide; however, its etiology remains unclear [1]. Increasingly, further possible
mechanisms of MDD are emerging, such as neurotransmission alternation, neurotrophic
changes, neuroendocrine changes including the HPA axis, inflammation, nutrition, and
the brain-gut axis [2]. Recent studies have suggested that oxidative stress and inflamma-
tion may be the main causes of MDD [3,4]. Oxidative stress is caused by a homeostatic
impairment-induced imbalance between antioxidants and reactive oxygen species (ROS),
which can lead to DNA, proteins, or lipid damage. ROS can modulate neurotransmitter
(such as monoamine) release and monoamine oxidase activity, an enzyme that metabolizes
monoamine, such as dopamine (DA), serotonin (5-HT), norepinephrine (NE), which in turn
can enhance ROS production in mitochondria [5].

The brain utilizes approximately 20% of the total energy and oxygen supply of the
body but only weighs approximately 2% of the body, thus, energy supply is critically
important for the brain [6]. Due to its high energy requirement and high lipid content, the
brain is especially vulnerable to ROS. In addition, the neurons are well equipped with many
more mitochondria to produce ATP, which is the only source of energy for neurons. Evo-
lutionarily, ROS is a biological product of mitochondria that antagonizes microorganisms
and has evolved with cellular signaling abilities, such as pro-inflammatory signaling [7].
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Too much ROS in the extracellular space has been proven to be the main cause of neu-
rodegeneration, and is unequivocally established as being involved in the pathogenesis
of MDD [8]. Previously, we have shown that ROS overload impairs adult neurogenesis,
neuro-inflammation, and neurodegeneration, and targeting ROS may provide a novel way
to combat various brain diseases [9].

The glymphatic system is a recently discovered network that works to maintain
homeostasis in the microenvironment by enabling fluid exchange between cerebrospinal
fluid (CSF) and interstitial fluid (ISF). Before the glymphatic system theory was established
in 2012, it was assumed that the brain recycled most of its protein waste [10]. However, the
introduction of the glymphatic system has changed this concept, and the glymphatic system
is now regarded as a brain-wide perivascular pathway for waste clearance of metabolite
products from the brain [11,12]. The glymphatic system is currently known to play a
critical role in many brain disorders [13]. Stressed brains carry ROS, an inflammatory
component, which is likely to promote susceptibility to depression. Thus, controlling
ROS and inflammation could be a good way to treat MDD [14], or ROS and inflammatory
processes might be a major cause of MDD, and it is really the case that ROS and the immune
system regulate mood in MDD.

In this paper, we reviewed recent studies about the glymphatic system, and proposed
a new perspective for its function in MDD. Firstly, we introduced the definition of the
glymphatic system and its major functions in waste clearance in the brain, including ROS,
which might play a pivot role in MDD; secondly, we explored the roles of ROS in MDD,
and introduced two major ways of modulating ROS: generation of ROS in mitochondria
and antioxidant supplementation in the gut-brain axis. Then we compared these processes
with the traditional monoamine hypothesis. At the end, we reviewed the functions of two
major glial cells in modulating the glymphatic systems and inflammation process. We hope
this review will add new and impactful perspective for future studies of the glymphatic
system and MDD, which might shed light on the mechanisms and treatment for MDD.

2. The Glymphatic System

The lymphatic system plays a pivotal role in controlling inflammation; however, it has
been assumed that the brain has no similar lymphatic network. Recently, the glymphatic
system has been found to play a similar role in neuroinflammation in the brain, as well as
in the maintenance of brain homeostasis [11], similar to the lymphatic system in the pe-
ripheral tissue [15]. In addition, we have found that the glymphatic system works together
with the meningeal lymphatic vessel to accomplish this function [16]. Recently, Louveau
et al. defined meningeal lymphatic vessels with immunofluorescence staining [17]. The
glymphatic system is currently regarded as an important circulation supplementary system,
regulating homeostasis by removing the substances produced by cell death or metabolism,
and inducing immune reactions [18]. The discovery of the cerebral glymphatic system has
provided a revolutionary perspective elucidating the pathophysiological mechanisms of
many brain disorders.

The glymphatic system is different from the other lymphatic systems in that it is com-
posed of astrocytes, while the other lymphatic system consists of endothelial cells (Figure 1).
Astrocytes have long been regarded as “housekeeping cells” for maintaining cerebral home-
ostasis. However, the past three decades have witnessed an understanding of the active
function of astrocytes to actively regulate blood flow, provide an energy supply to neurons,
modulate the blood-brain barrier, remove metabolite waste and regulate homeostasis in
extracellular space in the brain, including in fluids, ions, and neurotransmitters [19]. An
increasing number of studies have further highlighted the contribution of astrocytes to ac-
tively removing metabolite waste by forming the unique glymphatic system structure [20].
So, unlike lymphatic vessels in other organs, the glymphatic system is composed only
of perivascular spaces and astrocytes (Figure 1), however, it has a similar structure for
effectively controlling the clearance of toxic materials from the microenvironment [21], and
its dysfunction may contribute to MDD [22].
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cumulation of extracellular amyloid-beta peptides [24]. It has been found that tauopathy 
in animals is caused by an impaired glymphatic system [25], and neuroinflammation, cy-
tokines, chemokines, and the complement system also play a major role in MDD [26]. 

The glymphatic system in K+ clearance: The glymphatic system is also involved in 
extracellular potassium (K+) buffering and in the regulation of extracellular space [27] (Fig-
ure 1). High extracellular K+ plays an important role in modulating extracellular space 
during pathological and physiological conditions, such as edema or seizures. Astrocytes 
have a key function in K+ clearance via two processes: K+ uptake and K+ spatial buffering, 
which depend on Kir channels and the Na+/K+-ATPase [28]. Recently, it was found that 
the glymphatic system is involved in controlling extracellular K+ [29,30]. 
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Figure 1. Schematic drawing showing the structure of the glymphatic system, which is composed
of the perivascular space (PVS) and astrocytic end feet. The fluid passes from interstitial fluid to
cerebrospinal fluid (CSF) in the PVS around the small blood vessels in the brain, which is important
for the clearance of ROS and cytokines, etc. The glymphatic system can actively transport the fluid
through ion channels, such as AQP4 (purple dots), K+ channels (such as NKCC1; orange dots), and
co-transporters (such as Glt1; yellow dots).

2.1. Clearance Function of the Glymphatic System

The glymphatic system is a unique drainage system that can drain fluid together
with many other substances, such as macromolecules, ROS, cytokines, and antigens, from
interstitial fluid to cerebrospinal fluid and finally to meningeal lymphatic vessels, to remove
these materials to the peripheral lymphatic system [23]. The typical clearance materials
include the following.

The glymphatic system in tau clearance: the glymphatic system helps the clearance of
macro-molecules such as amyloid-β and tau, which may be a major cause of many brain
disorders. There are numerous factors that are involved in many brain disorders such
as oxidative stress, neuroinflammation, and apoptosis, which could be the reason for the
accumulation of extracellular amyloid-beta peptides [24]. It has been found that tauopathy
in animals is caused by an impaired glymphatic system [25], and neuroinflammation,
cytokines, chemokines, and the complement system also play a major role in MDD [26].

The glymphatic system in K+ clearance: The glymphatic system is also involved in
extracellular potassium (K+) buffering and in the regulation of extracellular space [27]
(Figure 1). High extracellular K+ plays an important role in modulating extracellular space
during pathological and physiological conditions, such as edema or seizures. Astrocytes
have a key function in K+ clearance via two processes: K+ uptake and K+ spatial buffering,
which depend on Kir channels and the Na+/K+-ATPase [28]. Recently, it was found that
the glymphatic system is involved in controlling extracellular K+ [29,30].

The glymphatic system and ROS clearance: reactive oxygen species (ROS) can exert
detrimental effects at a high level or beneficial effects at lower levels [31]. For example, our
previous study found that ROS may exert neuro-generative effects via modulating growth
factors [9]. In contrast, oxidative stress due to enhanced ROS generation and/or reduced
levels of antioxidants can induce cell apoptosis and death [32]. The glymphatic system
is the major physiological clearance pathway for ROS and ROS-related inflammation in
neurodegenerative diseases [33].

The glymphatic system and cytokines: Recent studies have further highlighted the
part played by the glymphatic system in inflammation via the removal of pro-inflammatory
cytokines and chemokines, such as tumor necrosis factor-α (TNF-α) and interleukin-1β
(IL-1β) [34] or HIF-1α [35]. In addition, NLRP3 inflammasome activity can also be affected
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by the glymphatic system via the modulation of extracellular ATP released from astrocytes.
Our previous studies also suggested that biberine could affect astrocytic activity and
possibly the glymphatic system to help reduce cytokine production and release, and may
be a potential mechanism for the treatment of seizures [36].

2.2. Glymphatic System Depends on the Polarization of AQP4

The normal function of the glymphatic system depends on the polarized distribution
of AQP4 [15]. CNS is enriched in astrocyte end feet, where water exchange and extracellular
space are controlled [37]. Furthermore, it has been found that a decreased polarization of
AQP4 reduces CNS edema [38]. Defects in the glymphatic system altogether may lead to
chronic neurodegeneration and tauopathy in old age in IL33-deficient mice [39].

AQP4 is a kind of water channel that is involved in water movement across the
cell membrane. Many studies have proved that AQP4 is a major driver for the influx of
cerebrospinal fluid (CSF), depending upon the perivascular [40]. For example, several
experiments with AQP4 knockout (Snta1 KO) found that the CSF influx is lower in these
mice [38], and the brain edema formation is slower, suggesting that aquaporin-4 (AQP4) is
a primary influx route for water during edema formation [37]. In addition, Thrane et al.
found that AQP4 deletion can reverse hypo-osmotic stress (20% reduction in osmolality)–
induced astrocytic Ca2+ spikes [41]. These studies suggest that AQP4 not only acts as an
influx route for physiological water transportation, as well as downstream pathways, such
as inflammations, which may exacerbate the pathological conditions associated with brain
diseases such as MDD [41].

In addition, AQP4 was found to regulate monoamine neurotransmission; for example,
one study found that AQP4 knockout mice have high levels of monoamine, including
5-HT and NE in the medial prefrontal cortex [42]. Interestingly, the interaction is affected
by sex, as the DA and 5-HT levels were significantly increased in the prefrontal cortex in
the male AQP4 knockout mice, but not in the female mice. These results suggested that
AQP4-induced water influx affects monoamine metabolism in a region-specific way [42].

3. ROS and Inflammation

Dysfunction of the glymphatic system can induce ROS accumulation and pro-inflammatory
signaling, damage vital macromolecules, and induce cellular apoptosis during MDD [43].
Many recent studies have found that an increased generation of ROS and induced
inflammation-caused MDD [44]. The brain is vulnerable to oxidative stress, mostly due to
its high oxygen consumption, high lipid content, and weak anti-oxidative defenses [8]. ROS
can activate inflammasomes in microglia, and produce inflammation cytokines, including
TNF-α, IL-1β, and IFN-γ [45,46]. Inflammation can impair neuroendocrine-immune func-
tions and lead to many infectious diseases, such as MDD [47]. Pro-inflammatory cytokines
have emerged as pathological biomarkers of MDD, and an effective strategy for treating
MDD may be to use suitable antioxidants to antagonize ROS.

Even though monoamine deficiency is the most well-known pathophysiological mech-
anism of MDD, many studies have proved the critical role of inflammation in MDD. A
number of recent papers have suggested that pro-inflammatory cytokines, including tumor
necrosis factor-alpha (TNF-α), interferon-gamma (INF-γ), and interleukin-6 (IL-6) induced
by oxidase stress, may contribute to MDD [46–48]. However, inflammatory cytokines
work together with monoamine transmission in MDD; thus, we present an integrative hy-
pothesis that integrates monoamine transmission with immunological alterations in MDD
(Figure 2). Furthermore, it is hypothesized that chronic unpredictable mild stress (CUMS)-
induced glymphatic pathway dysfunction might act as a bridge between inflammation and
monoamine disturbance in MDD [23,49]. Monoamine is the major neurotransmitter for
waking and sleep, which also affects the glymphatic system by making it work more effi-
ciently during sleep, and blocking its function via NE release during arousal [50]. Recently,
it has been found that CUMS-induced NE release can decrease the polarization of AQP4
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expression in astrocytes, inhibiting the function of the glymphatic system and inducing
oxidative stress and inflammation, leading to depression-like symptoms [51].
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3.1. Reactive Oxygen Species

Reactive oxygen species (ROS) are free radicals that are composed of singlet oxygen,
superoxide, hydrogen peroxide, or hydroxyl radical molecules [52]. ROS is mostly pro-
duced in mitochondria as byproducts of cellular metabolism when creating energy from
food and oxygen. In mitochondria, the electron transport chain is not only the mechanism
of ATP, but it is also the mechanism for the production of ROS-like superoxide radicals.
ROS are enzymatically degraded by manganese superoxide dismutase (SOD) as well as
glutathione, and by glutathione peroxidase, catalase, and peroxiredoxin outside the mito-
chondria, which acts as an antioxidant mechanism. Nevertheless, oxidative stress can be
induced by ROS overproduction, particularly in the brain, where mitochondrial activity
is the most active. Oxidative stress can also be induced by a reduced antioxidant supply,
together with an increased generation of ROS in mitochondria. Thus, elaborate antioxidant
defense systems, such as superoxide dismutase (SOD), are needed to minimize the levels
of ROS, and a failure to maintain redox homeostasis will result in inflammation, leading to
cell necrosis [53].

3.2. Brain-Gut Axis and ROS

In addition to impaired ROS scavenging and excessive ROS generation, oxidative
stress can also be affected by reduced antioxidant supply in the gut. It is found that low
levels of antioxidant compounds such as vitamins C and E, and co-enzyme Q-10 [54]. Thus,
antioxidant dietary supplements may provide beneficial effects for MDD patients. In fact, a
lack of biological antioxidants has only recently been proposed as a reason for MDD [55–57].
Antioxidants are oxidizable substrates from fruit and vegetables that are absorbed in the
gut and are possibly affected by gut microbiota [57].

The role of diet in MDD has recently been explored in some studies, where it was
shown that antioxidant diets and anti-inflammatory may help in the treatment of MDD [58].
For example, a recent study showed that an omega-3 polyunsaturated fatty acid (PUFA)-
enhanced diet reduced the symptoms of MDD. However, the improper use of dietary
supplements may lead to anti-oxidative stress; for example, some recent studies showed
that antioxidant therapy had no effect and even increased mortality. This was hypothesized
as being due to the oxidative stress compensative model, which suggests that the supply of
only one antioxidant might increase oxidative stress [53].

Nevertheless, many studies suggested that the gut microbiota has a critical role in sup-
plementing bacteria-derived metabolites [59], such as polyunsaturated fatty acids [60], thus
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playing an important role in MDD by modulating homeostasis [61]. Indeed, the gut micro-
biota is suggested to be a potential tool in helping to protect against MDD by supplementing
unsaturated fatty acids, monoamine neurotransmission, neuroendocrine pathways, and
inflammation [62,63]. In contrast, the gut microbiome might supply cytokines, such as in-
flammation factor interferon-γ (IFNγ), affecting astrocyte function and inducing MDD [64].
Astrocytes exert important functions in homeostasis and in the pathogenic activities of
MDD, along with activating microglia to induce inflammatory reactions in MDD [64].

3.3. ROS, Glia, and Inflammation

Oxidative stress and an excessive accumulation of ROS can induce the activation of
inflammasomes in the microglia [65]. The overproduction of inflammatory cytokines has
been proven to play important roles in MDD [66,67]. Microglia are the endogenous immune
cells in the brain that detect CNS homeostasis disorder, and respond by secreting inflamma-
tory cytokines and chemokines [68]. Microglia activation induces NLRP3 inflammasome
overexpression and the release of many cytokines [69]. Over the last decade, accumulating
evidence has shown that microglia impairment can induce MDD [70].

Activated microglia release inflammatory factors such as TNF-α, IL-1α, and PGE2,
which can activate and thus affect clearance by glymphatic systems, which can, in turn,
modulate extracellular ROS and cytokines. The cross-signaling between microglia and
astrocytes is crucial in determining the intensity and timing of neuroinflammatory re-
actions [49]. In addition, ROS and inflammatory cytokines can work together to affect
monoamine neurotransmitters and activate microglial cells [71,72].

4. Monoamines and the Glymphatic System

Monoamine deficiency was previously suggested as the major cause of MDD, and
most antidepressants are used to increase the amount of monoamine neurotransmitters [73].
However, this might be an outdated explanation for the cause of MDD and needs to
be revised to reflect the more complex changes in the brain associated with the illness.
While we do not fully understand how antidepressants work, we know that increasing
monoamine neurotransmitter is an oversimplification. For example, monoaminergic an-
tidepressants are not effective in some difficult-to-treat patients, working too slowly to be
effective, especially the 5-HT—specific antidepressants. In addition, although many studies
have confirmed the critical roles of monoamine in MDD, their effects are still unclear; and
the difference between the three monoamines (NE, DA, and 5-HT) in MDD is not clear.
Previously, we originally proposed the “Three Primary Color Model of Basic Emotions”,
trying to differentiate the functions of these three monoamines. We hypothesized that
the three monoamines work differently to make three distinct emotions, as in the three
primary colors [74,75]. Here, we further propose that their effects in treating MDD are
also different in that catecholamine can directly induce emotional arousal, while 5-HT
can induce sedation and sleep. So, the effects of 5-HT are enhancing clearance via the
glymphatic system and benefiting MDD (Figure 3).

The effect of NE on the glymphatic system: The glymphatic system is regulated by
sleep and NE, with excessive NE inhibiting fluid movement [79]. Chronic stress is a risk
factor for depression in humans and animal models, and it is a typical model in the study of
the neurobehavioral alterations relevant to depression. NE is known as the neurotransmitter
for stress and emotional arousal [80,81], inducing “fear and anger” emotions [74] and “fight
or flight” behavior (Figure 3) [82]. NE plays a pivotal role in emotional arousal and in
antagonizing MDD, but too much NE and cortisol induced by chronic stress, such as
chronic neuropathic pain, can induce sleep disruption and depression [47]. In addition,
excessive NE-induced glial activation in both microglia and astrocytes, can negatively affect
the function of glymphatic system [83,84]; furthermore, excessive NE robustly inducing the
generation of ROS, and antioxidants, such as dexmedetomidine [85,86].
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two-dimensional model of emotions (valence and arousal). The major effects of 5-HT may be
sedation and the inhibition of suicide ideation. Excessive catecholamine (DA and NE) antagonize the
glymphatic system, while serotonin (5-HT) facilitates sleep and helps the glymphatic system with
its housekeeping function. Chronic stress and induced excessive catecholamine release impair the
glymphatic system, leading to ROS accumulation and MDD.

Monoamine neurotransmitters are perfectly suited to the regulation of mitochondria in
the brain, and enhancing the energy supply function, and mitochondria have recently been
found to play a pivotal role in emotional arousal. Emotion arousal can induce NE release
in the locus coeruleus and also in other monoamine neurotransmitters [75]. However, a
side-effect of monoamine release is enhancing neural activity through the parallel activation
of both neuronal mitochondria and astrocytic clearance to establish a synergistic mech-
anism of antagonizing ROS-induced oxidative stress and inflammation. It is found that
chronic stress can activate excessive monoamine oxidase activity, and induce mitochondrial
oxidative stress via excessive ROS generation in the mitochondria. Monoamine neuro-
transmitters can also directly affect the clearance function of the glymphatic system [76].
For example, previous studies in our laboratory suggested that monoamines may affect
active astrocytic spatial buffering ability via the enhanced activity of the Na+ pump [77].
The glymphatic system is involved in metabolic conversion of ROS and inflammation,
which could contribute to both ROS accumulation and inflammatory reaction, as well as
monoamine deficiency and glutamatergic hyper-function [78].

Effect of DA on the glymphatic system: MDD is characterized by the lack of positive
emotion (i.e., anhedonia), and the symptoms in rodent models of MDD include reduced
reward-seeking behavior and less stressed struggling behavior. Anhedonia is associated
with DA system dysfunction in both humans and rodents; while less stressed struggling
behavior is related to a lower NE function (Figure 3). Unlike traditional antidepressants,
the new drug ketamine, which is a type of stimulant, can rapidly alleviate depressive
symptoms in MDD via actions on the DA system. Thus, raising the level of brain DA
can induce emotional arousal, and change is a quick way to treat depressed mood [87].
The major mechanism by which ketamine exerts its antidepressant effect is related to DA
release [88]. Thus, astrocyte-targeted DA might be a therapy intervention designed for
MDD [89], and catecholamines can induce emotional arousal and activate the fundamental
functions of astrocytes [90].



Antioxidants 2022, 11, 2296 8 of 15

Effect of 5-HT on the glymphatic system: Monoamine neurotransmission alternation,
especially 5-HT, has proved to be the most significant pathophysiological etiology for
MDD in the last century [91], and the first-line treatment of MDD still targets the sero-
tonin system [92]. However, the effects of 5-HT on the brain are somewhat controversial
as it has 14 receptors with different functions. For example, both in vitro and in vivo
studies have demonstrated that the 5-HT receptor 4 (5-HT4 R) can inhibit glutamatergic
synaptic transmission [93].

Astrocytes can modulate neural networks via purinergic pathways, cortisol, and 5-HT,
which may work on cortical inhibition via the GABA and purinergic pathways [77]. Many
studies have suggested that astrocytes constitute effectors of the 5HT-mediated decrease in
frequency transmission via enhancing the cortical inhibitory tone [94]. This is consistent
with previous studies suggesting that the major function of 5-HT is sedation and inhibiting
suicidal ideation; consistently, the real function of central 5-HT in treating MDD may be
in inducing sleep and sedation, and in inhibiting compulsive thoughts [95,96]. Serotonin
(5-HT) is both a neurotransmitter in the CNS and a paracrine and endocrine signal in the
gut, where it can control the feeding behavior of animals. Thus, the function of 5-HT may
be as discussed (Figure 3); and 5-HT can induce the behavioral inhibition process, which
is similar to the prolonged helpless state in MDD [97]. In fact, many recent studies have
focused on the inhibitory effects of 5-HT [98]. In addition, 5-HT can also be converted into
melatonin by endocrine to induce anti-stress responses in the brain, and to affect sleep [99].

Effect of sleep on the glymphatic system: Sleep is evolutionarily conserved in the
mammal species, and impaired sleep is a common trait in many disorders. Sleep is modu-
lated by monoamine neurotransmitters, with 5-HT released from the raphe nuclei to induce
sleep, while NE in the locus cereus induces waking. Sleep can help with the housekeeping
recovery of the brain from stress or arousal, with energy supply, and with waste clearance.
The glymphatic system is mostly active during sleep, while excessive catecholamine can
diminish the glymphatic system [21]; really, CUMS (chronic unpredictable mild stress) can
impair the glymphatic system and induce MDD. However, acute stress and emotional
arousal are needed for MDD, as MDD patients require emotional arousal to treat depres-
sive states. Previously, we summarized the roles of monoamine in emotional arousal and
proposed their roles in MDD, originally presenting the different roles of monoamine in the
three core affects: reward (DA), punishment (5-HT), and stress (NE) (Figure 3) [80].

Monoamine, possibly together with induced emotional arousal, can activate astrocytic
activity. The integrative pathway might be that the glymphatic system and related glial
cells work as a housekeeping system that helps the normal brain function, while excessive
monoamine antagonizes the glymphatic system and those housekeeping effects. Indeed,
serotonin treatment has been found to significantly reduce ROS formation [100]. In other
words, long-term stress and excessive monoamine release impairs the glymphatic system
and leads to ROS accumulation, and sleep is needed to help the glymphatic system clear
up the brain and recover from CUMS (Figure 3).

5. Astrocytic Ion Channels and the Glymphatic System

Determining the neurobiological mechanisms of MDD is an active field, and many
studies have suggested that astrocytes play a central role in MDD, and MDD is characterized
by depressed astrocytic activity, reduced astrocyte numbers, and smaller size; unlike other
diseases. The reduced function of astrocytic activity can impair the glymphatic system,
which might be a major pathway for MDD [101]. The impairment of astrocytic function
includes many ion channels, such as Na+/Ca2+ exchanger, Na+/K+/2Cl-cotransporter 1,
as well as glial fibrillary acidic protein (GFAP), and aquaporin-4 (AQP4) [102,103].

NCX: Na+/Ca2+ exchanger (NCX) plays a pivot role in the potentiation of Ca2+ entry
in astrocytes [28], Ca2+ entry via activated NCX together with ROS-induced dysfunction
results in dysfunction of the glymphatic system [104], and the inhibition of Ca2+ overload
or closing NCX could reverse ROS increase and cause cell injury [104]. NCX-dependent
signaling can be activated by gliotransmitters 5-HT, ATP, and ADP, and thus decrease the
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accumulation of ROS and cytokines [105]; contrarily, the activation of dopaminergic or
adrenergic receptors enhances the Na+ pump, causing an increase in mitochondrial ROS
levels [106,107]. In contrast, ROS can also affect NCX-induced Ca2+ entry [108].

NKCC: Extracellular space, which is an important part of the glymphatic system,
is modulated by extracellular K+ via mechanisms that involve passive spatial buffering
mediated by Kir4.1 and Na+/K+/2Cl-cotransporter 1 (NKCC1) in astrocytes, and/or active
transporting via Na+/K+-ATPase activity. In addition, the excess K+ can also affect the
glymphatic system by changing the extracellular space. It has been found that NKCC1
works with a potential role in K+ clearance and the extracellular space’s associated shrink-
age [109]. Thus, NKCC1, Kir4.1, and Na+/K+-ATPase might work together to modulate
the clearance of extracellular K+ transients, as well as ROS [109]. The glia cell swelling
and extracellular space dynamics are associated with K+ uptake and/or water intake
through AQP4; recent studies have also suggested a relationship with K+-mediated glial
depolarization and metabolic demand [110].

In all, MDD is a common emotional disorder that seriously affects people’s quality
of life, however, the molecular mechanisms are complex due to its clinical and etiological
heterogeneity. Recent studies suggested that astrocytes play a central role in the etiology
of MDD.

6. Glymphatic System and Microglia

In addition to the astrocytes’ dysfunction, over-activated microglia can induce neuroin-
flammation in the hippocampus of stress model mice, inducing depressive-like behaviors.
Microglia are the only endogenous immune cells of the brain, and activated microglia can
activate the NLRP3 inflammasome, which is a major player in mediating neuroinflamma-
tion (Figure 4). The NLRP3 inflammasome, in turn, induces the transformation of microglia
from a resting state to a pro-inflammatory state to release pro-inflammatory cytokines.
In contrast, inhibiting microglia from reducing inflammation is possibly one of the main
pathogenic mechanisms of MDD [111].
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Figure 4. A model shows the contribution of microglial to the dysfunction of the glymphatic system,
inducing ROS accumulation and inflammation in MDD. ROS accumulation and neuro-inflammation
are the major reasons for MDD.

Our previous studies suggested that oxidative stress overload can lead to neuroinflam-
mation and many brain disorders [9]. Glymphatic system dysfunction has been proven to
be a major cause of neurodegenerative diseases (NDs) that result from a reduction in the
clearance of ROS and inflammation. The glymphatic system through aquaporin 4 (AQP4)
in astrocytes and perivascular space to promote the water flow between the interstitial
fluid (ISF) and CSF. An excessive accumulation of water can lead to edema. Changes in the
glymphatic system may be an important factor for MDD [112].
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MDD is a serious emotional disorder characterized by anhedonia and a loss of energy
as reported in the DSM-IV stipulation [113], which is typically shown as a “depressed
mood” and “loss of interest”, as well as symptoms of fatigue, sleep disturbance, and sexual
dysfunctions”. However, the main molecule pathological features of depression include
extensive neuroinflammation. Therefore, NLRP3 inflammasome-mediated microglia ac-
tivation, and the secretion and release of TNF-α, IL-1α, and PGE2, may be major causes
of depression-like behavior (Figure 4). The glymphatic system is a highly polarized cere-
brospinal fluid (CSF) transport system that facilitates the clearance of neurotoxic molecules
through a brain-wide network of perivascular pathways [114]. The schema in Figure 4
shows the relationships among the microglia, ROS, and cytokines in perivascular CSF
transport [115]. In all, the core symptoms of MDD involve a loss of interest or pleasure,
tiredness and lack of energy, reduced appetite, and weight loss, as well as a feeling of
worthlessness or self-blame [116]. The cause of MDD is due to inflammation which is
induced by the low antioxidant capacity and high oxidative damage.

7. Conclusions

This review summarized recent studies about astrocytes, microglia, and inflammasome
pathways that are activated during the occurrence and development of MDD, and provided
a novel perspective for the mechanism of MDD. The perivascular space surrounding small
blood vessels has recently been defined as the glymphatic system, providing a revolutionary
perspective on the many pathophysiological mechanisms of MDD. Research into the
function and pathogenesis of this system has proved that it carries out similar functions
to the lymphatic system in the body, playing an important role in removing metabolic
waste and maintaining homeostatic fluid circulation in the brain. In this article, we briefly
described the factors influencing the cerebral glymphatic system, their effects on ROS
accumulation and inflammation, and their roles in MDD. The aim of this research was to
provide a perspective for future studies of the glymphatic system and MDD, and is expected
to provide a new etiology and neural basis for the mechanisms and treatment for MDD.
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