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Abstract: Organisms are continually exposed to exogenous and endogenous sources of reactive
oxygen species (ROS) and other oxidants that have both beneficial and deleterious effects on the cell.
ROS have important roles in a wide range of physiological processes; however, high ROS levels are
associated with oxidative stress and disease progression. Oxidative stress has been implicated in
nearly all major human diseases, from neurogenerative diseases and neuropsychiatric disorders to
cardiovascular disease, diabetes, and cancer. Antioxidant defence systems have evolved as a means
of protection against oxidative stress, with the transcription factor Nrf2 as the key regulator. Nrf2 is
responsible for regulating an extensive panel of antioxidant enzymes involved in the detoxification
and elimination of oxidative stress and has been extensively studied in the disease contexts. This
review aims to provide the reader with a general overview of oxidative stress and Nrf2, including basic
mechanisms of Nrf2 activation and regulation, and implications in various major human diseases.
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1. Oxidative Stress
1.1. Reactive Oxygen Species

Free radicals are unstable atoms, ions, or molecules containing one or more unpaired
electrons in the outermost electron shell. An unpaired valence electron is unstable and
highly reactive. To attain stability, free radicals attack and acquire electrons from other
compounds or molecules within their proximity. The attacked entity loses an electron to
become oxidized and becomes a free radical itself, thereby initiating a chain reaction that
can result in cellular damage [1]. ROS and reactive nitrogen species (RNS) are unstable
molecules containing oxygen and/or nitrogen and include both free radical and non-radical
species. The oxygen molecule (O2••) is a weak free radical itself due to the presence of two
unpaired electrons in its valence shell; however, it is less reactive than other oxygen species
due to the parallel spin of its electrons [2]. Major ROS and RNS are listed in Table 1.

RNS is a family of nitrogen moieties associated with oxygen. They are produced when
nitric oxide (•NO) reacts with oxygen species. For example, nitric oxide can react with
superoxide (O2•−) to form peroxynitrite (ONOO−):

•NO + O2•−→ONOO− (1)

Peroxynitrite is very reactive and readily attacks lipid molecules, resulting in lipid
peroxidation and lipoprotein oxidation [3]. However, like ROS, low levels of RNS have
important roles in physiological processes. For example, nitric oxide produced by nitric
oxide synthase (NOS) regulates blood vessel dilation and is involved in synaptic transmis-
sion in the brain [4,5]. On the other hand, high levels of RNS result in nitrosative stress,
macromolecule damage, and activation of transcription factors NF-KB and activator protein
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1 (AP-1) involved in inflammation and other pathological pathways [6,7]. RNS and ROS
often act together to cause cellular damage [8].

Table 1. Major Reactive Oxygen and Reactive Nitrogen Species.

Molecule Type Radical Status Name Symbol

ROS Radical Molecular oxygen O2••
Superoxide O2•−
Hydroxyl •OH
Alkoxyl RO•
Peroxyl ROO•
Hydroperoxyl HO2•

Non-radical Hydrogen peroxide H2O2
Peroxide ROOR
Singlet oxygen O2
Ozone O3
Hydroxyl ion OH−

Peroxynitrite ONOO−

RNS Radical Nitric oxide •NO
Nitrogen dioxide •NO2

Non-radical Peroxynitrite ONOO−

Alkyl peroxynitrite ROONO
Nitronium cation NO2+

Nitroxyl cation NO+

Nitroxyl anion NO−

Nitrogen oxides NxOx

ROS are oxidants (i.e., a molecule that removes electrons from other molecules) pre-
dominantly produced as byproducts of cellular metabolism and biochemical processes
within the cell. Mitochondria are a primary source of ROS produced by aerobic respira-
tion [9–12], where the reduction of molecular oxygen in the electron transport chain results
in the leaking of superoxide radicals which are readily detoxified to hydrogen peroxide
(H2O2) by antioxidant enzymes such as catalase and glutathione peroxidase. Hydrogen
peroxide may react with transition metals such as iron (Fe2+) to produce hydroxyl radicals
via the Fenton reaction to further produce hydroxyl radicals (•OH) which are highly re-
active toward all components of DNA molecules as well as lipids [13]. Peroxisomes also
generate ROS from aerobic metabolism [14], and phagocytic neutrophils and macrophages
produce ROS to eliminate invading pathogens [15]. At low to moderate levels, ROS plays
an important role in normal cellular processes, serving as secondary messengers in in-
tracellular signalling cascades that mediate cell growth, autophagy, inflammatory and
immune function, and contribute to overall redox regulation [16,17]. However, both radical
and non-radical ROS can be powerful oxidants that are detrimental to the cell upon high
or chronic exposure. Toxic exogenous sources of ROS include pollution, tobacco smoke,
alcohol, ozone, environmental and industrial toxins, and radiation [1]. Due to their reactive
nature, ROS production and elimination must be strictly regulated by the cell. Figure 1
summarizes the major sources of exogenous and endogenous ROS and their outcomes in
the cell.
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Figure 1. Sources of exogenous and endogenous ROS. ROS can come from toxic exogenous sources 
in the environment, or be produced as by-products of normal cell metabolism, inflammation, and 
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cess that damages lipids, proteins, and nucleic acids in the cell, thereby inhibiting their 
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many human diseases including cardiovascular disease, neurodegenerative diseases, di-
abetes, cancer, and the aging process [18–22]. 

The consequence of ROS or oxidants and the extent of oxidative stress depends on 
the strength, duration, and context of exposure. In response to oxidative stress, cells typi-
cally undergo cell cycle arrest and enter the G0 phase (i.e., a quiescent, non-dividing stage) 
due to activation of the p53-regulated cyclin-dependent kinase inhibitor p21, which halts 
cell cycle progression and inhibits DNA synthesis [23,24]. ROS can also trigger the p53 
and p21-mediated dephosphorylation and activation of the tumour-suppressor reti-
noblastoma protein (Rb) resulting in further inhibition of cell cycle progression [25]. It is 
interesting to note that p21 is also involved in the regulation of the antioxidant response 
through its binding to the antioxidant transcription factor, Nrf2 [26] (to be discussed in 
Section 2.6). Depending on the nature of the exposure, cells can activate adaptive cell sur-
vival pathways; however, chronic exposure or excessively high levels of ROS may result 
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To preserve the delicate balance between the beneficial and harmful effects of ROS, 
living organisms have evolved cellular defence mechanisms against oxidative stress to 
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in the environment, or be produced as by-products of normal cell metabolism, inflammation, and
immunity. ROS may also function as secondary messengers within cell signalling pathways.

1.2. Oxidative Stress

Extensive or prolonged exposure to ROS results in oxidative stress, a deleterious
process that damages lipids, proteins, and nucleic acids in the cell, thereby inhibiting their
normal function [2]. In this scenario, there is an imbalance between the production of ROS
and cellular defence mechanisms against oxidative stress, i.e., the antioxidant response.
Chronic oxidative stress and the resultant oxidative damage have been implicated in many
human diseases including cardiovascular disease, neurodegenerative diseases, diabetes,
cancer, and the aging process [18–22].

The consequence of ROS or oxidants and the extent of oxidative stress depends on the
strength, duration, and context of exposure. In response to oxidative stress, cells typically
undergo cell cycle arrest and enter the G0 phase (i.e., a quiescent, non-dividing stage) due
to activation of the p53-regulated cyclin-dependent kinase inhibitor p21, which halts cell
cycle progression and inhibits DNA synthesis [23,24]. ROS can also trigger the p53 and
p21-mediated dephosphorylation and activation of the tumour-suppressor retinoblastoma
protein (Rb) resulting in further inhibition of cell cycle progression [25]. It is interesting
to note that p21 is also involved in the regulation of the antioxidant response through its
binding to the antioxidant transcription factor, Nrf2 [26] (to be discussed in Section 2.6).
Depending on the nature of the exposure, cells can activate adaptive cell survival pathways;
however, chronic exposure or excessively high levels of ROS may result in the induction of
maladaptive autophagic or apoptotic pathways [27,28].

To preserve the delicate balance between the beneficial and harmful effects of ROS,
living organisms have evolved cellular defence mechanisms against oxidative stress to
maintain redox homeostasis. Alterations in redox status can lead to the transcriptional acti-
vation of pathways and enzymes involved in the detoxification, transport, and elimination
of ROS. For further reading on oxidative stress, the reader is encouraged to refer to the
comprehensive review by Sies et al., (2017) [29].

1.3. Antioxidant Response Enzymes

Complex antioxidant defense systems have evolved to protect cells and tissue against
oxidative stress. Halliwell and Gutteridge have defined antioxidants as “any substance
that, when present in low concentrations compared to that of an oxidizable substrate,
significantly delays or inhibits the oxidation of that substrate” [30]. Key antioxidant
defenses include (1) antioxidants that directly scavenge ROS, such as glutathione, vitamin
C, and vitamin E, and (2) antioxidant enzymes including superoxide dismutase, catalase,
and glutathione peroxidase.
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Superoxide dismutases (SOD) are a class of enzymes found within the cytosol and
mitochondria of nearly all aerobic cells and contain metal ion cofactors such as copper, zinc,
manganese, or iron. SOD isoenzymes include Cu/Zn-SOD (SOD1), Mn-SOD (SOD2), and
extracellular (EC) SOD (SOD3) [31,32]. SODs are responsible for the dismutation (simul-
taneous oxidation and reduction) and breakdown of superoxide radicals into molecular
oxygen and hydrogen peroxide

SOD
2O2•− + 2H+→O2 + H2O2

(2)

Molecular oxygen and hydrogen peroxide are weak oxidants that are relatively stable;
however, hydrogen peroxide can be converted into extremely reactive hydroxyl radicals
and must therefore be targeted for further breakdown. Two enzymes responsible for the
decomposition of hydrogen peroxide are catalase and glutathione peroxidase.

Catalase is found in nearly all living eukaryotic organisms and exists primarily within
peroxisomes as well as in the mitochondria and nucleus [33]. Catalases catalyze the
breakdown of hydrogen peroxide into molecular oxygen and water:

catalase
2H2O2→O2 + 2H2O

(3)

Glutathione peroxidases (GPx) are a class of enzymes that also break down hydrogen
peroxide but do so specifically through the oxidation of a glutathione (GSH) cofactor:

GPx
2GSH + H2O2→GSSG + 2H2O

(4)

Paraoxonase 2 (PON2) is a ubiquitously expressed member of the paraoxonase family
of enzymes with dual functions as a lactonase and as an antioxidant enzyme. PON2 has
been shown to prevent oxidation and modification of low-density lipoproteins and also
counteract lipid peroxidation in the plasma membrane [34]. Additionally, PON2 interacts
with the electron transport chain in the inner mitochondrial membrane to significantly
reduce the production of superoxide ions [35]. The importance of PON2 as an antioxidant
is demonstrated by work showing that the downregulation of PON2 significantly sensitizes
cells to oxidative stress [36].

Glutathione (GSH) is a tripeptide comprised of three amino acids (cysteine, glutamic
acid, and glycine) and is the most abundant and important low molecular weight antiox-
idant synthesized in both eukaryotic and prokaryotic cells. GSH plays a critical role in
protecting cells from oxidative damage through direct antioxidant activity or coupled to
GPx enzymatic activity [37,38]. Enzymes in the GPx family include GPx1 through 8, each
with different expression patterns within the body [39]. GPx1 is the most abundant iso-
form and is ubiquitously expressed in the cytosol and mitochondria. GPx2 is an intestinal
extracellular enzyme, while GPx3 is extracellular, and GPx4 prefers lipid peroxides. Four
additional isoforms of GPx (GPx5–8) have been identified in humans but are not well stud-
ied. GPx enzymes are part of a family of critical proteins known as the phase II enzymes
responsible for the conjugation of xenobiotics with peptides and sugars for detoxification.

Xenobiotic metabolism consists of phase I, phase II, and phase III enzymes involved
in oxidation, conjugation/detoxification, and elimination, respectively [40,41]. Phase II en-
zymes are particularly important in cellular responses to oxidative stress and include GPx,
glutathione S-transferase (GST), and UDP-glucuronosyltransferase (UGT). Other important
antioxidant enzymes include sulfiredoxin (Srx), thioredoxin (Trx), thioredoxin reductase
(TrxR), heme oxygenase 1 (HO-1), and NAD(P)H:quinone oxidoreductase 1 (NQO1). Acti-
vation of these enzymes leads to robust xenobiotic detoxification and/or antioxidant effects.
Early mechanistic studies on the induction of the rat glutathione S-transferase subunit
genes, GSTA1 and GSTA2, led to the discovery of a specific enhancer sequence within their
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promoter region termed the antioxidant response element (ARE) [42]. Since then, AREs
have been found in many other antioxidant genes including, among others, NQO1 and
HMOX1 [42,43].

1.4. Antioxidant Response Element

The antioxidant response element (ARE) [42], also referred to as the electrophile
response element (EpRE), is a cis-acting enhancer sequence found within the promoter
region of many cytoprotective antioxidant and phase II enzyme genes. It has a core sequence
of 5′-TGACnnnGC-3′ and participates in inducible gene expression in response to oxidative
stress [42]. The ARE is also responsible for low-level basal gene expression to mitigate the
ROS produced by cellular respiration. Thus, the ARE is important for redox regulation
under both stressed and non-stressed conditions. Using in vivo studies in mice, Itoh et al.
discovered that the induction of phase II enzymes through the ARE is mediated by a
protein transcription factor called Nrf2 [44] (Figure 2). Nrf2-deficient mice showed marked
reductions in the expression of the phase II enzyme GST α1 subunit and the antioxidant
enzyme NQO1 [44], and ensuing studies demonstrated increased sensitivity to carcinogens
and impaired detoxification of acetaminophen in Nrf2−/− mice [45–47]. This illustrates the
key role of Nrf2 in the activation of ARE-regulated antioxidant and phase II enzyme genes.
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Figure 2. Transcriptional regulation of antioxidant genes by the ARE and Nrf2. Nrf2 heterodimer-
izes with sMaf proteins and binds to the ARE found within the promoter regions of antioxidant and
phase II enzyme genes to activate their transcription.

2. Keap1-Nrf2 Antioxidant Pathway
2.1. Keap1-Nrf2 Signalling

Nuclear factor erythroid 2-related factor 2 (Nrf2) [48] is the transcriptional master
regulator of cellular responses against oxidative stress. Nrf2 regulates the expression of
a multitude of antioxidant and phase II enzyme genes and is negatively regulated by
Kelch-like ECH-associated protein (Keap1) [49], a substrate adaptor protein that binds to
Nrf2 in the cytosol to facilitate its polyubiquitination by the Cullin 3 (Cul3) E3 ubiquitin
ligase for proteasomal degradation [50–52]. Constitutive Nrf2 degradation allows low basal
expression under non-stressed conditions. Upon oxidative stress, specific stress-sensing
cysteine residues in Keap1 are modified [53–55], leading to a conformational change that
prevents Keap1 from mediating the ubiquitination of Nrf2 by Cul3 [56]. This results in Nrf2
stabilization, accumulation, and nuclear translocation where Nrf2 heterodimerizes with
sMaf proteins and binds to the ARE for the robust induction of cytoprotective genes for
enzymes involved in the detoxication of ROS and other oxidants [44] (Figure 3).
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Figure 3. The Keap1-Nrf2 pathway. Under basal conditions, Keap1 is bound to Nrf2, and Nrf2 is
ubiquitinated by the Cul3 E3 ubiquitin ligase for degradation by the proteasome. Upon oxidative
stress, sensor cysteines in Keap1 are modified by ROS, leading to Nrf2 stabilization, accumulation,
and translocation to the nucleus where Nrf2 heterodimerizes with sMaf and binds to the ARE to
activate the transcription of antioxidant genes.

2.2. Nuclear Factor Erythroid 2-Related Factor 2 (Nrf2)

Nrf2 [48] belongs to the cap ‘n’ collar (CNC) subfamily of basic leucine zipper (bZIP)
transcription factors together with NF-E2 p45-related factors 1 and 3 (Nrf1 and Nrf3), NF-E2
p45, and transcriptional repressors BTB Domain and CNC homolog 1 and 2 (Bach1 and
Bach2) [57]. Nrf2 contains seven conserved domains that are referred to as the Nrf2-ECH
homology (Neh) domains, designated Neh1 through 7 (Figure 4). The key function of each
domain is summarized in Table 2.
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Figure 4. Domain structure of human Nrf2. Nrf2 contains seven conserved Neh domains. The Neh2
domain contains two motifs (29DLG31 and 79ETGE82) wherein Keap1 binds as a substrate adaptor
for the Cul3-mediated ubiquitination and degradation of Nrf2.

Table 2. Summary of functional domains of Nrf2 and their key binding proteins.

Domain Key Associated Function Binds to Ref.

Neh1 DNA-binding via the ARE; dimerization with sMaf proteins sMaf, ARE [44,48]
Neh2 Keap1-binding for negative regulation Keap1 [49,58]
Neh3 Transactivation CHD6 [59]
Neh4, Neh5 Transactivation CBP [60,61]
Neh6 βTrCP-binding for negative regulation βTrCP [62,63]
Neh7 RXRα-binding for suppressed transactivation RXRα [64]
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Neh1 is the DNA-binding domain that contains the CNC-bZIP region important
for the association of Nrf2 with sMafs, binding to the ARE, and transcription factor ac-
tivity [44,48]. The N-terminal Neh2 domain is a redox-sensitive degron that negatively
regulates Nrf2 activity and contains two highly conserved 29DLG31 and 79ETGE82 motifs
to which Keap1 binds, as well as seven lysine residues that are targets for ubiquitination
by the Cul3 E3 ubiquitin ligase [49,65]. The C-terminal Neh3 domain is a transactiva-
tion domain responsible for the transcriptional activation (transactivation) of Nrf2 and
has been shown to interact with chromodomain helicase DNA-binding protein 6 (CHD6)
which plays a role in chromatin remodelling [59]. Neh4 and Neh5 are also transactiva-
tion domains where the binding of the CREB-binding protein (CBP) [60] or the nuclear
cofactor RAC3/AIB1/SRC-3 [61] increases the rate of Nrf2 transcriptional activity. The
Neh6 domain is a redox-insensitive degron that provides Keap1-independent negative
Nrf2 regulation. Similar to Neh2, Neh6 contains two highly conserved 334DSGIS338 and
373DSAPGS378 motifs to which the β-transducin repeat-containing protein (βTrCP) binds,
and within the DSGIS motif, a phosphorylation site for glycogen synthase kinase-3 (GSK3)
that enhances βTrCP activity upon GSK3-mediated phosphorylation of Nrf2 [62,63]. Neh7
is the binding domain for retinoid X receptor α (RXRα), which upon binding impairs the re-
cruitment of cofactors to Neh4 and Neh5 necessary for transactivation, thereby suppressing
transcriptional activation [64].

2.3. Kelch-Like ECH-Associated Protein (Keap1)

Keap1 [49] belongs to the BTB-Kelch family of proteins which includes about 50 mem-
bers, all of which assemble with the Cul3 E3 ubiquitin ligase and RING box protein-1
(Rbx1) to form the Cullin-RING E3 ubiquitin ligases (CRLs) involved in the ubiquitination
of BTB-Kelch proteins, such as Keap1 [51,66]. Cul3 assembly requires a “3-box” motif that
is characteristic of BTB-Kelch proteins [67]. Accordingly, Keap1 contains three functional
domains (Figure 5). The N-terminal BTB (broad complex, tramtrack, and bric à brac) do-
main mediates Keap1 homodimerization and contributes to its interaction with Cul3 [68].
Additional Cul3 interaction is provided by a 3-box motif found within the proximal part of
the intervening region (IVR) [67]. The IVR contains key reactive cysteine residues through
which Nrf2 activity is regulated, including Cys226, Cys257, Cys273, and Cys288 [53–55,69].
The C-terminal Kelch domain, also known as the double glycine repeat (DGR) domain, is
important for Nrf2 binding [58,70].
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Dissociation of Nrf2 from Keap1 occurs through the oxidative modification of specific
stress-sensing cysteine residues of Keap1 (Figure 6) [55]. Intriguingly, Keap1 contains a
very high content of cysteines, with the 27 cysteine residues in human Keap1 accounting
for approximately 4% of its total amino acid content, which is notably greater than the
2% average for the human proteome [71]. Cys273 and Cys288 are required for sensing
oxidative stress under both basal and stress conditions, whereas Cys151 may be required
only during oxidative stress conditions [53,54]. These three key cysteines may function
independently or collaboratively depending on the class of Nrf2-inducing compounds,
characterized by Yamamoto et al. [72], who also found some inducers to function indepen-
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dently of these three specific cysteines. Correspondingly, Cys226, Cys613, Cys622, and
Cys624 are specifically involved in sensing hydrogen peroxide through a mechanism that
is distinct from that used for sensing electrophilic Nrf2 inducers such that combinations
of these four cysteine residues can form a disulfide bond to sense hydrogen peroxide [73].
Additional cysteine residues that respond to redox-active agents include the Cys288 alkenal
sensor, the zinc sensor comprised of His225, Cys226, and Cys613, and the nitric oxide
sensor comprised of a cluster of basic amino acids (His129, Lys131, Arg135, Lys150, and
His154) that facilitate the S-nitrosylation of Cys151 within Keap1 [69].
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2.4. Keap1-Dependent Nrf2 Regulation

As previously mentioned, Nrf2-regulated genes contain an ARE in their regulatory
region and encode numerous antioxidant and phase II enzymes [44]. Transcriptional
activation of the ARE is primarily dependent on Nrf2 stabilization, accumulation, and
nuclear translocation through its dissociation from the cytoskeleton-associated Keap1 [49].
Thus, Nrf2 activity is tightly regulated by its interaction with Keap1.

Nrf2 association requires the homodimerization of Keap1 [74]. Keap1 recruits Nrf2
first through the binding of one Keap1 molecule to the high-affinity ETGE motif within the
Nrf2’s Neh2 domain. Subsequent binding of the other Keap1 molecule at the low-affinity
DLG motif locks Nrf2 in place by orienting the lysine residues within Neh2 in the correct
position for ubiquitination by Cul3 and degradation by the 26S proteasome [58,65]. This is
known as the two-site substrate recognition model and has been accepted as the primary
mechanism of Nrf2 regulation (Figure 7).

Notably, the ETGE motif has a binding affinity that is two orders of magnitude higher
than that of the DLG motif due to the presence of additional electrostatic interactions [75].
The DLG motif utilizes hydrogen bonding whereas the ETGE motif utilizes both hydropho-
bic interactions and hydrogen bonding [76]. Accordingly, stress-induced cysteine modifi-
cations that alter the structural conformation of Keap1 result in the prompt dissociation
of Keap1 from the weak-binding DLG motif, thereby impairing Nrf2 ubiquitination. On
the other hand, the Keap1-Nrf2 association may remain intact via the tight-binding ETGE
motif even though ubiquitination is impaired without DLG binding [56,58]. Taken together,
the DLG motif is particularly important in the Keap1-dependent degradation of Nrf2 by
functioning as an “on/off switch” for Nrf2 ubiquitination. Under basal conditions, Nrf2
has a short half-life of only 10–30 min [50,77].

When Keap1-Nrf2 binding is impaired, Nrf2 may be stabilized, accumulates, and
translocates to the nucleus. Within the nucleus, Nrf2 cannot bind to the ARE as a monomer
and must heterodimerize with the small Maf protein (sMaf) family (MafF, MafG, MafK)
for transcriptional activation of antioxidant genes [44]. Table 3 lists key examples of Nrf2-
regulated genes and their associated protein function.
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Table 3. Examples of cytoprotective genes regulated by Nrf2.

Primary Role Gene Protein Function

Redox
homeostasis

GPX2 Glutathione peroxidase 2 (GPx2) Reduces hydrogen peroxide and lipid
hydroperoxides at the expense of glutathione

PRDX1 Peroxiredoxin 1 (Prdx1) Reduces hydrogen peroxide and alkyl
hydroperoxides

TXN1 Thioredoxin 1 (Trx1) Reduces oxidized protein thiols

SRXN1 Sulfiredoxin 1 (Srx1) Contributes to the thioredoxin system by
reducing sulfinic acid to thiols

Glutathione
biosynthesis GCLC Glutamate-cysteine ligase catalytic subunit

(GCLC)
The first rate-limiting enzyme of glutathione
synthesis (heavy subunit)

GCLM Glutamate-cysteine ligase modifier subunit
(GCLM)

The first rate-limiting enzyme of glutathione
synthesis (light subunit)

Detoxification

GST Glutathione S-transferase (GST) Catalyzes the conjugation of glutathione to
electrophilic compounds

NQO1 NAD(P)H:quinone oxidoreductase-1 (NQO1) Reduces quinone to hydroquinone

CYP2A6 Cytochrome P450 2A6 (CYP2A6) Involved in the hydroxylation of some
anti-cancer drugs

Drug Excretion ABCC2 Multidrug resistance protein 2 (MRP2) Mediates hepatobiliary excretion; implicated
in multidrug resistance

Heme metabolism HMOX1 Heme oxygenase 1 (HO-1) Cleaves heme to form biliverdin during
heme catabolism

For further details on the mechanisms regulating the Keap1-Nrf2 pathway, the reader
is encouraged to refer to the following comprehensive reviews: [78–80]

2.5. Non-Canonical Nrf2 Regulation

Apart from its regulation by Keap1, Nrf2 is subject to further non-canonical regula-
tion by other proteins, summarized in Table 4. Direct interaction of these proteins with
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either Nrf2 or Keap1 results in competitive inhibition that disrupts the Keap1-Nrf2 com-
plex, decreases Nrf2 ubiquitination and increases Nrf2 stabilization and stress-induced
ARE activation. Some of these non-canonical forms of Nrf2 regulation are discussed in
further detail.

Table 4. Non-canonical Nrf2 regulation by direct protein interaction.

Interacting
Protein Known Interaction Motif(s) Nrf2 Domain + or −Nrf2 Regulation Ref.

Nrf2

βTrCP
334DSGIS338 (Nrf2)
373DSAPGS378 (Nrf2)

Neh6 −; Nrf2 degradation [62,63]

RXRα 209ETT . . . NGP316 (Nrf2) Neh7 −; ↓ transactivation [64]

p21

29DLG31 (Nrf2)
79ETGE82 (Nrf2)
154KRR156 (p21)

Neh2 +; Nrf2 stabilization [26]

DJ-1 Currently unknown — +; Nrf2 stabilization [81]

BRCA1
79ETGE82 (Nrf2)
BRCT domain (1591–1784) (BRCA1)

Neh2 +; Nrf2 stabilization [82,83]

Interacting Protein Interaction Motif(s) Keap1 Domain + or −Nrf2 Regulation Ref.

Keap1

p62/SQSTM1 349DPSTGE354 (p62) Kelch +; Keap1 inhibition [84–88]
ProTα/PTMA 38NANEENGE45 (ProTα) Kelch +; Keap1 inhibition [89]
DPP3 480ETGE483 (DPP3) Kelch +; Keap1 inhibition [90]
WTX 286SPETGE291 (WTX) Kelch +; Keap1 inhibition [91]
PALB2/FANCN 91ETGE94 (PALB2) BTB +; Keap1 inhibition [92]
KPNA6/Importin α7 ARM domain (108–563) (KPNA6) Kelch −; Nrf2 degradation [93]

2.6. Nrf2-Interacting Proteins

β-transducin repeat-containing protein (βTrCP) participates in the negative regula-
tion of Nrf2 via its Neh6 domain in a comparable manner to Keap1 via its Neh2 domain.
βTrCP interacts with Neh6 at two conserved sites, 334DSGIS338 and 373DSAPGS378, and acts
as a substrate receptor for degradation by the Skp1-Cul1-Rbx1/Roc1 E3 ubiquitin ligase
complex [62,63]. Deletion of either motif results in the loss of βTrCP-mediated ubiquiti-
nation [62]. Additionally, the DSGIS motif in Neh6 overlaps with a phosphorylation site
for GSK3, wherein phosphorylation of Nrf2 at this motif by GSK3 enhances βTrCP activ-
ity [62,63]. Accordingly, when Keap1 activity is impaired in Keap1−/− mouse embryonic
fibroblasts or in an Nrf2 ETGE deletion mutant that cannot bind to Keap1, treatment with
GSK3 inhibitors leads to impaired βTrCP-regulation and results in Nrf2 stabilization and
accumulation [62]. On the other hand, activation of GSK3 in Keap1−/− mouse embryonic
fibroblasts or human lung A549 cells reduces Nrf2 protein levels and mRNA levels for
Nrf2-regulated enzymes [63].

Retinoid X receptor alpha (RXRα) is involved in numerous developmental and phys-
iological pathways and in mediating the biological effects of retinoids [94]. RXRα directly
interacts with the Neh7 domain of Nrf2, which impairs the recruitment of cofactors to
Neh4 and Neh5 required for transactivation [64]. Accordingly, RNAi-mediated knockout
of RXRα increases the induction of Nrf2-regulated antioxidant gene expression, and over-
expression of RXRα in non-small cell lung cancer A549 cells leads to Nrf2 downregulation
and increases sensitivity to therapeutic drugs [64].

p21 (or p21CIP1/WAF1) is a p53-regulated cyclin-dependent kinase inhibitor involved in
inhibiting the activity of cyclin/cyclin-dependent kinase (Cdk) complexes for the negative
regulation of cell cycle progression [24]. The 154KRR156 motif within p21 directly binds to
the DLG and ETGE motifs in Nrf2, thereby competing with Keap1 for Nrf2 binding [26];
but instead of Nrf2 degradation, p21-Nrf2 binding leads to Nrf2 stabilization and increased
response to oxidative stress [26]. Accordingly, p21−/− mice show reduced levels of Nrf2
protein and Nrf2 target genes [26]. Importantly, p21-dependent protection from oxidative
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stress requires Nrf2, as colorectal cancer HCT116 cells overexpressing p21 demonstrate
enhanced survival in response to hydrogen peroxide in Nrf2+/+ but not Nrf2−/− cells [26].

Protein deglycase DJ-1 (DJ-1) (also known as Park7) is a redox-dependent molecular
chaperone that mediates protein folding and prevents the misfolding and inclusion for-
mation of neuronal proteins such as α-Synuclein [95]. DJ-1 inhibits Keap1-mediated Nrf2
degradation by competitively binding to Nrf2 [81]. In both primary human cells and mice,
loss of DJ-1 leads to deficits in the expression of Nrf2-mediated stress response enzymes,
particularly the detoxification enzyme NQO1, suggesting that DJ-1 is required for Nrf2
stability and Nrf2-mediated transcription [81]. Notably, mutations in the DJ-1 gene are
associated with early-onset Parkinson’s disease (PD) [96], suggesting the role of impaired
oxidative stress regulation in neurodegenerative diseases, such as PD.

Breast cancer type 1 susceptibility protein (BRCA1) is a tumour suppressor pro-
tein primarily responsible for DNA damage repair in cells of the breast and other tis-
sue [97]. The BRCT domain of BRCA1 interacts with the ETGE motif in the Neh2 do-
main of Nrf2, which inhibits Keap1-mediated ubiquitination and increases the response
to oxidative stress [82,83]. Expression of BRCA1 in neurons confers protection from is-
chemia/reperfusion injury through activation of the Nrf2-mediated antioxidant path-
way [83], and BRCA1−/− mouse primary mammary epithelial cells demonstrate low
expression of Nrf2 target genes and increased ROS levels associated with decreased sur-
vival [82]. Intriguingly, BRCA1 contains an ARE sequence in its promoter region and is
thereby regulated by Nrf2, creating a positive feedback loop [98].

2.7. Keap1-Interacting Proteins

p62 (also known as sequestosome-1, SQSTM1) is a stress-inducible scaffold protein
involved in numerous signalling pathways, including the targeting of proteins for selective
autophagy [92,93]. In 2010, five independent groups discovered the interaction between
p62 and Keap1 [77–81]. This interaction is mediated by a 349DPSTGE354 motif in p62’s
Keap1-interacting region (KIR) that resembles the ETGE motif in the Keap1-binding domain
of Nrf2 [79–81]. p62 sequesters Keap1 into inclusion bodies for autophagy-mediated degra-
dation, thereby disrupting the Keap1-Nrf2 interaction and inhibiting Nrf2 ubiquitination.
Additionally, the binding affinity between p62 and Keap1 is significantly increased when
Ser351 in p62 is phosphorylated, leading to increased Nrf2 transcriptional activity [94].
Notably, p62 contains ARE sequences in its promoter and is thereby regulated by Nrf2,
indicating a positive feedback loop [79].

Prothymosin α (ProTα/PTMA) is a small, highly charged protein involved in cell pro-
liferation and survival through chromatin remodelling and anti-apoptotic activity [95,96]).
ProTα interacts with the Kelch domain of Keap1 and shuttles it into the nucleus, thereby
preventing its association with Nrf2 [82]. The 38NANEENGE45 motif in ProTα is required
for its interaction with the Kelch domain [97]. HeLa cells overexpressing ProTα show
increased Nrf2-mediated HMOX1 gene expression; however, overexpression of a mutant
variant of ProTα that impairs Keap1-binding fails to upregulate HMOX1 [82], thereby
demonstrating the role of ProTα in the expression of certain antioxidant genes.

Dipeptidyl-peptidase 3 (DPP3) participates in the cleavage and degradation of bioac-
tive peptides generated by the proteasome during protein degradation [98,99]. DPP3,
which contains a 480ETGE483 motif, interacts with Keap1 by binding to its Kelch domain,
thereby inhibiting the Keap1-Nrf2 interaction [83]. Estrogen receptor-positive MCF7 breast
cancer cells demonstrate overexpression of DPP3 which is associated with increased Nrf2
gene expression and poor prognosis [100].

WTX is a tumour suppressor and regulator in the canonical Wnt signalling pathway,
which mediates critical aspects of embryonic development by promoting the ubiquitination
and degradation of β-catenin [101,102]. WTX is also involved in oxidative stress regulation
through its competitive binding to the Keap1, which inhibits Nrf2 ubiquitination [84].
siRNA knockdown of WTX in HEK293T cells reduces the activation of Nrf2 target genes in
response to tBHQ, a potent Nrf2-activating compound [84]. WTX contains a 286SPETGE291
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motif that is similar to the ETGE motif in Nrf2, which allows for interaction with the Kelch
domain in Keap1; however, this interaction requires the phosphorylation of Ser286 to attain
a sufficient binding affinity between the two proteins [84].

Partner and localizer of BRCA2 (PALB2) (also known as Fanconi anemia comple-
mentation group N, FANCN), is a protein that co-localizes with the breast cancer 2 early
onset protein (BRCA2) to regulate its stabilization, nuclear localization, and involvement
in DNA repair [103]. siRNA knockdown of PALB2 in bone-derived U2OS cells results
in reduced Nrf2 activity and increased ROS levels [103]. Like the WTX protein, PALB2
contains a 91ETGE94 motif that permits its interaction with Keap1 through binding to the
Kelch domain [85].

KPNA6 (also known as importin α7) is a nucleocytoplasmic transport adaptor in-
volved in the nuclear import of proteins. Keap1 has been shown to shuttle between the
nucleus and cytoplasm via KPNA6 which interacts with the Kelch domain of Keap1. Within
the nucleus, Keap1 binds to Nrf2 to facilitate its nuclear export and subsequent ubiquitina-
tion in the cytosol, thus allowing for attenuation of Nrf2 activity during the postinduction
phase [86]. Knockdown of KPNA6 impairs Keap1 nuclear shuttling and attenuates the
Keap1-mediated ubiquitination of Nrf2, whereas overexpression of KPNA6 facilitates
Keap1 nuclear import and inhibits Nrf2 signalling [86].

2.8. Other Mechanisms of Nrf2 Regulation

The transcriptional activity of Nrf2 may also be inhibited by Bach1, a protein in the
same CNC-bZIP family as Nrf2 that functions as a transcriptional repressor. Bach1 competes
with Nrf2 in the nucleus for heterodimerization with the sMaf proteins which are required
for Nrf2/ARE binding [99]. Other forms of Nrf2 regulation include phosphorylation
of Nrf2 at Ser40 by protein kinase C (PKC), which impairs Keap1 binding [100], and
phosphorylation of Nrf2 by the MAPK/ERK pathway, which increases Nrf2 stability [50].

Finally, phosphoglycerate mutase family member 5 (PGAM5) is a protein phosphatase
with functions in mitochondrial homeostasis and mitophagy [101]. Interestingly, PGAM5
can recruit both Keap1 and Nrf2 to the outer mitochondrial membrane by binding to
one molecule of a Keap1 dimer while simultaneously binding Nrf2 to form a ternary
Keap1-PGAM5-Nrf2 complex [102,103]. Interestingly, this results in the stress-induced
Keap1-mediated ubiquitination and degradation of not Nrf2, but of mitochondrial Rho
GTPase 2 (Miro2), a mitochondrial GTPase involved in mitochondrial motility [104]. This
demonstrates that Nrf2 function is not limited to stress-induced gene transcription but
highlights its involvement in other cellular processes.

3. Nrf2 in Human Disease

Due to its crucial role in oxidative stress regulation and additional roles in many other
cellular processes, aberrant Nrf2 expression has been associated with numerous pathologies.
Some major human diseases, including cardiovascular disease, diabetes, neurodegenerative
disease, psychiatric disorders, and cancer are briefly discussed in the following section.

3.1. Neurodegenerative Disease

The link between oxidative stress and the pathogenesis of neurodegenerative diseases
is well-established [22,105]. The brain consumes 20% of the body’s oxygen relative to its
small mass (~2% of total body mass) and is particularly susceptible to oxidative damage due
to its high rate of metabolic activity, high rate of oxygen metabolite production, relatively
low levels of antioxidants, low capacity for repair, and high composition of lipids which are
prone to peroxidation and oxidative modification by ROS [106,107]. Damaged mitochondria
and activated microglia are major sources of ROS in the brain [105]. Oxidative damage has
been implicated in all major neurodegenerative diseases including Alzheimer’s disease
(AD) [108,109], Parkinson’s disease (PD) [110,111], Huntington’s disease (HD) [112,113],
amyotrophic lateral sclerosis (ALS) [114], and multiple sclerosis (MS) [115]. Except for
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MS, all of these diseases are characterized by the loss and/or deterioration of neurons in a
specific brain region due to hallmark protein misfolding and inclusion formation [116].

High levels of oxidative damage exceeding that found in healthy, aging brains, have
been observed in the post-mortem brain tissues of patients with neurodegenerative dis-
eases [105], suggesting that oxidative stress plays a role in the formation and/or aggravation
of these hallmark protein inclusions. Nrf2 is activated in response to oxidative stress but
may be impaired or insufficient in neurodegenerative diseases. Significantly reduced levels
of nuclear Nrf2 have been observed in the brain regions of AD patients [117]. Conversely,
while Nrf2 nuclear localization is observed in PD patient samples, the response may be
insufficient to prevent neuronal cell death [118]. Additionally, studies have reported the
protective role of Nrf2 in neurodegenerative diseases [119,120]. For example, Nrf2 acti-
vation in astrocytes confers protection against neurodegeneration in mouse models of
ALS [121], and Nrf2 deficiency results in increased sensitivity to MPTP-induced PD-like
lesions in mice which is improved by Nrf2 overexpression in astrocytes [122]. Nrf2 inducers
have been shown to have protective effects in the development of neurogenerative disease-
associated brain lesions [120]. The current status of Nrf2 in neurodegenerative disease
is comprehensively reviewed by Zgorzynska et al. (2021) [123], Cuadrado (2022) [124],
George et al. (2022) [125].

3.2. Neuropsychiatric Disorders

Oxidative stress has been implicated as a pathogenic mechanism underlying psy-
chiatric disorders and their associated neurodegenerative changes. This includes, but is
not limited to, schizophrenia, bipolar disorder, depression, anxiety, autism, and attention
deficit hyperactivity disorder (ADHD) [126,127]. The pathophysiological mechanisms vary
between each disorder and remain largely underexplored; however, increasing preclini-
cal and clinical evidence suggests that higher levels of oxidative stress, alterations in the
Keap1-Nrf2 pathway, and Nrf2-associated inflammation are involved in the pathogenesis
of these psychiatric disorders [128–132].

Evidence of oxidative disturbances in the aforementioned disorders has been demon-
strated in both human and animal studies examining oxidative markers, the antioxidant
properties of antidepressants, and antioxidant therapies, summarized in comprehensive
reviews by Ng et al. [126] and Smaga et al. [127]. Oxidative stress in psychiatric disorders
could result from the overproduction of ROS, impairments in Keap1-Nrf2 signalling, or
both due to causes related to psychological stress, physiological impairments, inflamma-
tion, and genetic polymorphisms of antioxidant enzymes that are beyond the scope of
this review [126,127]. Notably, however, changes in Keap1-Nrf2 signalling have been
observed in postmortem brain tissue from patients with major depressive disorder and
bipolar disorder which showed marked reductions in protein levels of Keap1 and Nrf2
in the parietal cortex compared to the control group [133]. Alterations in Keap1 and Nrf2
have also been observed in rodent models of depression. Mice subjected to chronic social
defeat stress (CSDS) develop depression-like symptoms [134,135] and express lower protein
levels of Keap1 and Nrf2 in area CA3 in the hippocampus, dentate gyrus, and prefrontal
cortex compared to healthy controls [133], indicating that reduced levels of Keap1 and Nrf2
in these brain areas may contribute to the depression-like phenotypes following CSDS.
Moreover, CSDS mice demonstrate higher levels of inflammatory cytokines compared to
controls [136]. Growing evidence suggests that pro-inflammatory cytokines contribute to
the pathogenesis of psychiatric diseases such as depression [137,138], and given the pivotal
role of Nrf2 in inflammatory processes (discussed in Section 3.6), Nrf2 could also play a
role in depressive disorders through its anti-inflammatory mechanisms [139]. Importantly,
antioxidants have shown promising therapeutic benefits in the treatment of psychiatric
disorders and are subject to further investigation [126,127,140]. For additional information
of Nrf2 in neuropsychiatric disorders, refer to the reviews by Hashimoto (2018) [132] and
Morris et al. (2021) [141].
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3.3. Cardiovascular Disease

Cardiovascular disease is a multifaceted disease with a variety of risk factors including
hypercholesterolemia, hypertension, and atherosclerosis [142]. Oxidative stress may play a
role in the development of vascular complications that promote cardiovascular disease by
contributing to the pathogenesis of hypertension [143,144] and atherosclerosis [145]. The
endothelial isoform of nitric oxide synthase (eNOS) is responsible for the biosynthesis of
NO in endothelial cells which mediates vascular relaxation [146]. The uncoupling of eNOS
under pathogenic conditions (e.g., hypertension, atherosclerosis, or diabetes) results in
both impaired NO production and increased superoxide production, which leads to hy-
pertension and blood vessel damage, respectively [147]. Additionally, increased oxidative
stress has been found to promote the conversion of harmful low-density lipoprotein (LDL)
cholesterol to the more atherogenic oxidized LDL form (oxLDL) [148,149]. Nrf2 has been
shown to protect cardiomyocytes from ROS-induced damage through the expression of
antioxidant enzymes [150,151] while lack of Nrf2 promotes aggravation of vessel lesions
towards atherosclerosis [145]. Nrf2 is thus a critical regulator of cardiovascular homeostasis
with implications for the development of cardiovascular disease. For additional readings
on this topic, refer to da Costa et al. (2019) [152], Gutiérrez [153]-Cuevas et al. (2022), and
Wu et al. (2022) [154].

3.4. Diabetes and Diabetic Complications

Diabetes mellitus is characterized by hyperglycemia, which induces the excess genera-
tion of ROS, leading to oxidative stress (Inoguchi et al., 2000). Chronic oxidative stress is a
major contributor to various diabetes-specific complications, particularly diabetic nephropa-
thy, and cardiomyopathy, as well as neuropathy, retinopathy, and accelerated atherosclerotic
disease (Cai & Kang, 2001; Vincent et al., 2004; Madamanchi et al., 2005; Kowluru & Chan,
2007; Giacco & Brownlee, 2010; Negi et al., 2011; Liu et al., 2014; Calderon et al., 2017).
As a transcription factor, Nrf2 plays a crucial role in protecting cells and tissues against
diabetes-induced oxidative damage (He et al., 2009; Jiang et al., 2010b). Accordingly,
upregulated levels of Nrf2 have been observed in the kidneys and hearts of diabetic pa-
tients. In diabetic nephropathy patients, Jiang et al. found a significant increase in Nrf2
expression levels upon immunohistochemical analysis of the glomeruli of diabetic patients
compared to nondiabetic controls. Using human mesangial cells (HRMCs), the authors
also demonstrated that high glucose levels increase the nuclear translocation of Nrf2 which
is associated with increases in the Nrf2 target genes NQO1, HO-1, and GST (Jiang et al.,
2010b). The importance of Nrf2 in preventing high glucose-induced oxidative damage is
further demonstrated in several studies comparing diabetic Nrf2-KO mice with wild-type
mice. Following treatment with streptozotocin (STZ) to induce diabetes, diabetic Nrf2-KO
mice demonstrated greater deterioration of renal function and higher renal ROS production
compared to their wild-type counterparts (Yoh et al., 2008; Jiang et al., 2010b). Similarly,
in primary cardiomyocytes, high glucose concentrations induce ROS production that is
associated with increased mRNA and protein expression levels of Nrf2 and several of
its target genes; however, in Nrf2 KO cells, ROS levels are significantly higher at base-
line and markedly higher under high glucose conditions and associated with significant
levels of apoptosis (He et al., 2009). High glucose-induced Nrf2 activation has also been
demonstrated in endothelial cells (Ungvari et al., 2011a) and vascular smooth muscle cells
(Hur et al., 2010). Consequently, Nrf2 activators have been investigated as a therapy and
in the prevention of diabetic complications by combating oxidant-induced damage. For
example, Nrf2 activation by the phytochemical sulforaphane is found to reverse and pre-
vent the biochemical dysfunction in endothelial cells induced by hyperglycemia (Xue et al.,
2008), among others [155]. Taken together, Nrf2 is important in mitigating the ROS-induced
damage caused by diabetic hyperglycemia, and induction of the Nrf2 pathway could be
a promising therapeutic strategy for preventing diabetes-associated complications. Refer
to Uruno et al. (2015) [156] and Tanase et al. (2022) [157] for additional details on Nrf2
in diabetes.
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3.5. Cancer

Most cancers show elevated levels of ROS and oxidative stress, which can cause DNA
damage, impair protein function, and alter mechanisms of cellular proliferation to promote
tumorigenesis [154]. This is particularly true for cancers of the skin and lung, as both organs
are directly exposed to additional sources of environmental ROS which contribute to cancer
initiation and aggravation [158,159]. Traditionally, Nrf2 has been considered a tumour
suppressor that confers protection against ROS and cancer progression. For instance, mice
deficient in Nrf2 are prone to chemical-induced toxicity and tumorigenesis [160]. However,
despite its beneficial role in cellular protection and cancer prevention, Nrf2 also has a
harmful “dark side” in cancer [156]. Some somatic mutations give rise to hyperactive Nrf2,
which causes enhanced antioxidant capacity and confers protection of cancer cells from
ROS and cancer therapy, thereby leading to cancer cell growth and proliferation, cancer
progression, and cancer therapy resistance (e.g., chemoresistance) (Figure 8) [161–171].
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Constitutive Nrf2 hyperactivation is common in cancer [172], and numerous studies
have revealed aberrant Nrf2 expression and poor prognosis in a wide range of cancers,
including, among others, lung, esophageal, breast, bladder, liver, prostate, and colorec-
tal carcinomas [161,162,169–171,173,174], most of which have been attributed to loss-of-
function mutations in the KEAP1 gene and/or gain-of-function mutations in the NFE2L2
gene encoding Nrf2 [162–164,166,167]. Mutations in KEAP1 were first discovered in hu-
man lung adenocarcinoma cell lines, wherein a glycine-to-cysteine substitution within the
Nrf2-binding domain of Keap1 reduces its affinity for Nrf2, resulting in loss of canonical
Nrf2 regulation and constitutive Nrf2 hyperactivation [163]. Similarly, mutations within
the Keap1-binding domain of Nrf2 impair Keap1 recognition, allowing Nrf2 to escape
Keap1-mediated degradation and accumulate at high levels in cancer cells [162]. Genomic
characterization of squamous cell lung cancers showed significant alterations in the Nrf2
pathway in 34% of all tumour specimens examined [175]. Mutation frequencies vary
greatly across different cancer types, but interestingly, some cancers show high rates of
Nrf2 pathway alterations but low rates of KEAP1 or NFE2L2 mutations. This suggests
that aberrant Nrf2 regulation in cancer may be due to Keap1-independent Nrf2 regulatory
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pathways, or impaired Keap1-Nrf2 interactions at the protein level. While it is unlikely that
these mutations cause cancer, Nrf2 mutations may enhance the growth and development
of existing cancer cells by conferring enhanced antioxidant abilities to compensate for
the hostile microenvironment of a rapidly dividing cancer cell where ROS is abundant
and oxidative stress is high [176,177]. Nrf2 hyperactivation creates an environment that
protects normal but also malignant cells from oxidative stress and cancer therapy. The
resultant upregulation of Nrf2-mediated antioxidant proteins renders cancer cells resistant
to chemotherapeutic drugs (e.g., cisplatin, 5-fluorouracil, docetaxel, and bortezomib) and
radiotherapy [47,161,165,178–184]. Thus, cancer cells appear to hijack the Nrf2 antioxidant
pathway to evolve protection against chemotherapeutics to promote chemoresistance and
tumorigenesis (Figure 9). With this information, researchers can target the Keap1-Nrf2 path-
way as an anticancer strategy against cells that develop chemoresistance (further discussed
in Section 3.8).
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Many great reviews have been written on the topic of oxidative stress and Nrf2 in
cancer. The reader is encouraged to refer to the following reviews for additional details. For
oxidative stress in cancer, refer to Hayes et al. (2020) [185]. For further reading on the role
of Nrf2 in cancer, refer to Taguchi et al. (2017) [177], Rojo de la Vega et al. (2018) [176], and
Panda et al. (2022) [186]. For additional details on Nrf2 as a therapeutic target in cancer,
refer to Taguchi et al. (2020) [187] and Sivinski et al. (2021) [188].

3.6. Inflammation

Inflammation is a biological defence mechanism that is triggered in response to harm-
ful insults such as pathogens, toxins, injury, and damaged cells. Through cytokine pro-
duction and the recruitment of inflammatory cells, inflammation aims to eliminate the
insult, limit its spread, and clear the area for healing and repair [189,190]. Nrf2 plays a
role in regulating the anti-inflammatory response through redox control and activation of
ARE-mediated anti-inflammatory genes, including the expression of the antioxidant genes
NQO1, HO-1, and PRX1, all of which exhibit anti-inflammatory effects [191–194]. The anti-
inflammatory role of Nrf2 also includes Nrf2-mediated inhibition of the pro-inflammatory
NF-KB pathway and inhibition of expression of pro-inflammatory cytokines [195–197]. Of
note, the expression of pro-inflammatory cytokine genes in M1 macrophages is inhibited
by Nrf2-ARE binding [198]; however, Nrf2 has also been found to block the transcrip-
tional upregulation of pro-inflammatory cytokine genes including interleukin 6 (IL-6) and
interleukin 1 beta (IL-1β) in an ARE-independent manner through direct binding to the
proximity of pro-inflammatory genes to inhibit RNA polymerase II recruitment, suggesting
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that Nrf2’s role in inflammation is not limited to just oxidative stress control [198]. Nrf2
plays numerous additional roles in inflammation that are summarized in review articles
published by Ahmed et al. (2017) [199] and Saha et al. (2020) [200].

3.7. Aging

Aging is not a disease per se, but a predominant risk factor for the development
of disease. Progressive and irreversible oxidative damage accumulates with age and
diminishes critical aspects of cell physiology [57,201,202]. For example, aging is associated
with impaired activity of the proteasome and mitochondrial Lon proteases [203–205] and
reduced capacity for macromolecule repair [201,202]. The “oxidative damage theory of
aging” [206] thus postulates that: (1) age-related functional losses are caused by the gradual
accumulation of ROS and general oxidative damage to macromolecules, and that (2) ROS
reduction and oxidative damage repair attenuate the rate of aging and increases lifespan.
In line with this hypothesis, Nrf2 signaling has been found to decrease with age [207] in a
variety of model organisms including flies [208], mice [209], non-human primates [210,211],
and humans [207,212–214].

Notably, experimental amplification of Nrf2-regulated antioxidant genes has been
found to increase resistance to oxidative stress in some aged model systems but not oth-
ers [207], indicating that increased steady-state levels of ROS and oxidized macromolecules
may not be the only contributor to age-related functional losses. The alternative “redox
stress hypothesis” [215] instead proposes that impairments in physiologic function are due
to an age-related “pro-oxidizing shift” in the redox state of cells that results in the over-
oxidation of redox-sensitive thiol groups within the cysteine residues of proteins, resulting
in the impairment of cellular signaling pathways. Much evidence suggests that oxidative
damage to proteins is associated with aging and is linked to protein misfolding [216,217].
For additional details on oxidative stress in aging and disease, refer to and Liguori et al.
(2018) [21] and Tan et al. (2018) [218]. Additionally, Schmidlin et al. (2019) provide a
comprehensive review on the role of Nrf2 in aging and disease [219].

3.8. Nrf2 as a Therapeutic Target

The importance of Nrf2 in the protection against human diseases is well estab-
lished and much research has explored the use of Nrf2 activators in the treatment of
disease [220–223]. Examples include dimethyl fumarate, which has been approved for the
treatment of multiple sclerosis [224], sulforaphane [225], and numerous others currently in
clinical trials [226,227]. While some Nrf2 activators have shown promise, elevated levels of
Nrf2 can have negative effects, as observed in chemotherapy-resistant cancer cells. Research
has thus also explored the use of Nrf2 inhibitors as adjuvants to cancer therapy [226,228].
For example, brusatol has been shown to enhance the efficacy of chemotherapy by inhibit-
ing Nrf2 [229,230]. Among these Nrf2 modulators, there are natural compounds that target
and significantly inhibit the Keap1-Nrf2 pathway, most of which are safe (including dietary
phytochemicals) and have shown promise against chemoresistant cancer cells [223,231].
It should be mentioned that Nrf2 upregulation has also been observed for non-cancerous
treatment applications when the drug is revealed to be toxic, such as treatment with bar-
doxolone methyl in patients with type 2 diabetes mellitus and stage 4 chronic kidney
disease [232]. This suggests that upregulation of the antioxidant pathway is an adaptive
mechanism against drug toxicity for both cancerous and non-cancerous treatment scenar-
ios. Thus, targeting Nrf2 for the treatment of human disease has shown promise, and an
increased understanding of the delicate balance between Nrf2’s protective and deleterious
effects will contribute to its value as a therapeutic target.

4. Conclusions

Given its multi-faceted roles in normal cell physiology and disease, Nrf2 has been ex-
tensively studied since its discovery in 1994 [48]. Nrf2 regulates a wide array of antioxidant
genes, and in turn, Nrf2 activity is highly regulated by its numerous protein interaction
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partners, some of which are briefly discussed in this review. This multi-faceted nature
of Nrf2 also results in its implication in a wide range of human diseases, which are also
briefly discussed. Taken together, this review provides a general overview of oxidative
stress and Nrf2, including basic mechanisms and implications in human disease. For more
detailed discussions, the reader is encouraged to peruse the rich body of Nrf2 literature
that is available.
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