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Abstract: SLC7A11 is a cell transmembrane protein composing the light chain of system xc−, trans-
porting extracellular cystine into cells for cysteine production and GSH biosynthesis. SLC7A11 is a
critical gateway for redox homeostasis by maintaining the cellular levels of GSH that counter cellular
oxidative stress and suppress ferroptosis. SLC7A11 is overexpressed in various human cancers and
regulates tumor development, proliferation, metastasis, microenvironment, and treatment resistance.
Upregulation of SLC7A11 in cancers is needed to adapt to high oxidative stress microenvironments
and maintain cellular redox homeostasis. High basal ROS levels and SLC7A11 dependences in cancer
cells render them vulnerable to further oxidative stress. Therefore, cyst(e)ine depletion may be an
effective new strategy for cancer treatment. However, the effectiveness of the SLC7A11 inhibitors or
cyst(e)inase has been established in many preclinical studies but has not reached the stage of clinical
trials for cancer patients. A better understanding of cysteine and SLC7A11 functions regulating and
interacting with redox-active proteins and their substrates could be a promising strategy for cancer
treatment. Therefore, this review intends to understand the role of cysteine in antioxidant and redox
signaling, the regulators of cysteine bioavailability in cancer, the role of SLC7A11 linking cysteine
redox signaling in cancer metabolism and targeting SLC7A11 for novel cancer therapeutics.
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1. Introduction

Glutathione is the most abundant intracellular antioxidant small molecule com-posed
of three amino acids glutamate, glycine, and cysteine. Glutathione can prevent damage to
vital components of cells by reactive oxygen species (ROS), such as free radicals, peroxides,
lipid peroxides, and metals [1]. Glutathione exists in reduced and oxidized states. The oxi-
dized glutathione disulfide (GSSG) is converted into two molecules of reduced glutathione
(GSH) through a nicotinamide adenine dinucleotide phosphate (NADPH)-dependent reac-
tion. In healthy cells and tissues, more than 90% of the total glutathione pool is in reduced
form, and a decrease in the GSH to GSSG ratio is indicative of oxidative stress [2]. As the
GSH metabolic system has been considered a potential anticancer target in many human
cancers, GSH depletion can induce cancer cell death [3,4]. Over the last decade, the GSH
antioxidant system has been spotlighted for its ability to reduce lipid peroxides. GSH
depletion is responsible for iron-catalyzed, lipid peroxidation-dependent, non-apoptotic
cell death, known as ferroptosis [5–7]. The induction of ferroptosis by GSH depletion has
been shown to selectively kill resilient cancer cells resistant to conventional treatments in
various types of human cancers [8,9].

Glutathione is produced through the two-step synthesis of a tripeptide L-glutamic
acid, cysteine, and glycine (Figure 1). Cysteine required for GSH synthesis is obtained
through cystine uptake through a cystine/glutamate exchange transporter, system xc−.
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Solute carrier family 7 member 11 (SLC7A11, also called xCT) is the primary transporter
for cystine uptake combined with glutamate export, and plays a pivotal role in intracellular
cysteine balance and GSH biosynthesis [10]. SLC7A11 inhibition blocks cysteine produc-
tion and GSH biosynthesis, which can induce ferroptosis by excessive accumulation of
lipid peroxidation [7]. Cysteine may be generated partly de novo via the transsulfuration
pathway or other non-specific amino acid transporters [11]. Cancer cells require large
amounts of cysteine and GSH to neutralize the increased intracellular ROS, and the nutrient
dependency generally needs to be the increased function of SLC7A11 [12,13]. SLC7A11
overexpression is found in many human cancers and is highly sensitive to selective inhi-
bition of SLC7A11 [14]. The distinct anticancer effect of SLC7A11–GSH axis blocking has
been established in various human cancers [15]. A better understanding of cysteine and
SLC7A11 functions regulating and interacting with redox-active proteins and their sub-
strates could be a promising strategy for cancer treatment. Therefore, this review intends
to understand the role of cysteine in antioxidant and redox signaling, the regulators of
cysteine bioavailability in cancer, the role of SLC7A11 linking cysteine redox signaling in
cancer metabolism and targeting SLC7A11 for novel cancer therapeutics.
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Figure 1. Role of SLC7A11-GSH-GPX4 axis in redox signaling and ferroptosis induction. SLC7A11
is the primary transporter for cystine import combined with glutamate export. GSH is the most
abundant intracellular antioxidant composed of three amino acids; glutamate, glycine, and cysteine.
Cystine uptake is essential for intracellular cysteine production and GSH biosynthesis. Cysteine
may also be generated partly de novo via the transsulfuration pathway through a reduction reaction
consuming NADPH or other non-specific amino acid transporters. GSH is a cofactor of GPX4,
contributing to the detoxification of lipid peroxides into lipid alcohols. Therefore, GSH depletion
is responsible for iron-catalyzed, lipid peroxidation-dependent, non-apoptotic cell death, known as
ferroptosis. The Fenton reaction is the reaction between ferrous iron and hydrogen peroxide to form
hydroxyl or peroxyl radicals that react with membrane lipids and rapidly propagate to neighboring
PUFA-PL. Excessively produced lipid peroxidation disrupts the integrity of cell membranes, resulting
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in cell death. α-KG, α-ketoglutarate; ASCT1/2, alanine-serine cysteine transporters 1 and 2; CoA,
coenzyme A; γ-GCS, γ-glutamylcysteine synthetase; GLS, glutaminase; GLUTs, glucose transporters;
GPX4, glutathione peroxidase 4; GR, glutathione reductase; GS, glutathione synthetase; GSH, glu-
tathione; GSSG, glutathione disulfide; HO·, hydroxyl radical; IKE, imidazole ketone erastin; ISC,
iron-sulfur cluster; LIP, labile iron pool; NADPH, nicotinamide adenine dinucleotide phosphate; OX-
PHOS, oxidative phosphorylation; PPP, pentose phosphate pathway; PUFAs, polyunsaturated fatty
acids; PUFA-PL, polyunsaturated fatty acid-containing phospholipid; PUFA-PL-OH, polyunsaturated
fatty acid-containing phospholipid alcohol; PUFAs, polyunsaturated fatty acids; SCD, stearoyl-CoA
desaturase; ROS, reactive oxygen species; SLC7A11 (xCT), solute carrier family 7 member 11; system
xc−, cystine/glutamate exchange transporter; TCA, tricarboxylic acid cycle; Tfr, transferrin receptor.

2. Role of Cysteine in Antioxidant and Redox Signaling

Cysteine (2-amino-3-mercaptopropionic acid) is a naturally occurring sulfur-containing
semi-essential or conditionally essential amino acid with the formula HOOC−CH(−NH2)
−CH2−SH. Cysteine was named after cystine, derived from the Greek word kustis, mean-
ing bladder because cystine was first isolated from kidney stones. Cysteine is the only one
of the 20 standard amino acids to contain a thiol group (-SH). The thiol group undergoes a
reversible redox reaction when cysteines are oxidized to form cystine through sulfur bonds
between the two cysteines. Conversely, the reduction of cystine forms two cysteines. The
sulfur bond of cystine is vital in the determination of many protein structures and aids
in the catalysis of enzymes [16]. The thiol group of cysteine is also nucleophilic and can
therefore be involved in nucleophilic addition and substitution reactions [17]. The cysteine
residues of proteins are close to neutral, but the thiol groups become more active when
ionized in cells. Cysteine is a major source of sulfur in human metabolism by creating a
sulfur bond with other thiol groups when oxidized in cells [18]. Cysteine has antioxidant
properties because of its ability to participate in redox molecular switching [19]. Cysteine is
indispensable for the biosynthesis of essential metabolites involved in various biological
processes, e.g., iron-sulfur clusters and coenzyme A (CoA).

Cysteine is an essential precursor to producing antioxidant GSH in the human body
and other tissues. The effect of GSH oral administration is minimal, and most GSH is
produced in cells [20]. As a major antioxidant tripeptide composed of glycine, glutamic acid,
and cysteine, glycine and glutamic acid are readily available in the diet, but the uptake rate
of cysteine is a limiting factor for intracellular GSH synthesis. The thiol group of cysteine
acts as a proton donor, which contributes to the biological activity of GSH [17]. Cysteine is
potentially toxic and unstable in a highly oxidizing extracellular environment [21]. Thus,
cysteine is absorbed in the form of cystine because it is more stable in the digestive tract
and plasma. Cystine safely travels through the gastrointestinal tract and plasma and is
broken down into two cysteines as it enters cells via the cystine/glutamate antiporter
system xc− [21]. Cystine imported in cells is converted into cysteine in the cytosol through
a reduction reaction consuming NADPH generated by the hexose monophosphate shunt,
an alternative pathway of glucose metabolism [22]. Intracellular cysteine can also be
synthesized de novo, from methionine and serine via the transsulfuration pathway [11].
Cysteine is a precursor or cofactor of other antioxidant biomolecules, such as taurine,
hydrogen sulfide, and aconitic acid [23].

Cysteine participates in the biosynthesis of GSH through two steps and is a rate-
limiting precursor of GSH synthesis. Cysteine and glutamate synthesize γ-glutamylcysteine
(GGC) by glutamate cysteine ligase (GCL), and glycine is added to its C-terminus by glu-
tathione synthetase (GS) to form GSH. GSH is a cofactor of glutathione peroxidase 4 (GPX4),
contributing to the detoxification of lipid peroxides into lipid alcohols [24]. Oxidized GSSG
is reduced to GSH by consuming H+ from NADPH by glutathione reductase (GR), enabling
GSH recycling. In general, the GSH-to-GSSG ratio determines the redox state of a cell [25].
The GSH/GSSG ratio is higher in a more reduced environment where cell proliferation
is active, and the ratio is lower in a more oxidized environment associated with differ-
entiation. The GSH/GSSG ratio also differs among intracellular organelles; higher in a
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reducing environment in the cytoplasm and lower in an oxidizing environment in the
endoplasmic reticulum. GSH is a pivotal regulator of ferroptosis, a newly discovered form
of iron-dependent regulated cell death induced by lipid peroxidation. GSH is a cofactor of
GPX4 that inhibits lipid peroxidation and limits ferroptosis [5–7]. Therefore, a deficiency of
intracellular cysteine and GSH can promote lipid peroxidation and induce ferroptosis.

3. Regulators of Cysteine Bioavailability in Cancer Cells

The bioavailability of cysteine in cancer cells can affect the fitness of cellular metabolism
and the development of treatment resistance. Cellular cysteine can be mainly acquired by
cystine uptake from extracellular sources. Cysteine can also be produced by extracellu-
lar GSH catabolism, protein catabolism, and de novo synthesis from methionine via the
transsulfuration pathway. However, their supply is insufficient to meet the high demand for
antioxidant defense in cancer cells and is more likely transient in cancer cells that encounter
intermittent cyst(e)ine deficiency [11]. Therefore, most cancer cells depend on the supply
of cysteine from the extracellular environment via nutrient transporters. The majority of
cellular cysteine is produced by dietary intake of cystine, the oxidized form of cysteine.
The oxidative environment of plasma promotes cystine formation by dimerizing cysteine
and allows uptake into cells from the surrounding milieu. Intracellular cystine uptake
is achieved through the system xc−, which imports extracellular cystine while exporting
intracellular glutamate at a ratio of 1:1 [17]. The system xc− consists of two subunits:
heavy chain (SLC3A2; also called CD98 or 4F2hc) and light chain (SLC7A11) solute carrier
family [26]. SLC7A11 comprises 12 highly hydrophobic channel transmembrane proteins
with both N- and C-termini located in the cytoplasm. SLC3A2, a single transmembrane
protein, is a chaperone that helps the stability and appropriate membrane location of the
SLC7A11 protein.

The mRNA expression of SLC7A11 differs in each tissue of the human body: it is
highest in the central nervous system (CNS) and some cells of the immune system, such
as antigen-presenting cells (APCs) and myeloid-derived suppressor cells (MDSCs), and
is relatively low in the kidney, heart, and liver [27]. Notably, SLC7A11 overexpression
is observed in various human cancers, including lymphoma, leukemia, squamous cell
carcinoma, breast cancer, glioblastoma, and pancreatic ductal adenocarcinoma (PDAC) [15].
In the CNS, extracellular glutamate moves into cells to form synaptic vesicles, and an im-
balance in cellular glutamate homeostasis can cause psychosis, neurodegenerative diseases,
and brain cancers [28]. In addition, as cancers grow, it is essential to maintain cellular
GSH levels by reducing cysteine to maintain the balance of redox systems in cancer cells.
Cysteine is necessary for cancer cell survival as it maintains the levels of GSH required
for cell growth and proliferation, redox cycling, antioxidant defense, detoxification, and
immune responses. Therefore, overexpression of SLC7A11 expression for activation of
cystine uptake is observed in various types of human cancers [14]. Cysteine can also
be imported from the extracellular milieu into cells by non-specific transporters, such as
excitatory amino acid transporter 3 (EAAT3) and the alanine-serine cysteine transporters 1
and 2 (ASCT1/2). These transporters are also associated with transporting other amino
acids, e.g., glutamine and glutamate. A limited number of studies have examined these
transporters in cancer: their overexpression has been observed in different cancer cells and
associated with increased chemoresistance in colorectal and prostate cancers [29].

The regulatory mechanism of SLC7A11 is mapped out at the DNA, transcription,
translation, and posttranslational levels. Activating transcription factor 4 (ATF4) and
nuclear erythroid 2-related factor 2 (Nrf2) are two major players in stress-induced SLC7A11
transcription (Figure 2).
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Figure 2. Regulators of the SLC7A11–cysteine–GSH axis in cancer cells. Cellular cysteine is mainly
acquired by cystine uptake from extracellular sources via SLC7A11. SLC7A11 expression can be
activated or repressed via various regulatory mechanisms at the transcription, translation, and
posttranslational levels. Cancer cells require large amounts of cysteine and GSH to neutralize the
increased intracellular ROS, and the nutrient dependency generally needs the increased function
of SLC7A11. These cancer cells may be rendered more susceptible to limiting glucose or glutamine
supply. SLC7A11 overexpression is found in many human cancers and is highly sensitive to selec-
tive inhibition of SLC7A11 or cyst(e)inase. AARE, amino acid response elements; AMPK, AMP-
activated protein kinase; ARE, antioxidant response element; ATF4, activating transcription factor 4;
BAP1, BRCA1-associated protein-1; BRD4, bromodomain-containing protein 4; CD44v, CD44 variant;
EAAT3, excitatory amino acid transporter 3; EGFR, epidermal growth factor receptor; GCN2-eIF2α,
general control non-derepressible-2-eukaryotic initiation factor 2α; IFN-γ, interferon-gamma; IGF-I,
insulin-like growth factor-I; Keap1, Kelch-like ECH-associated protein 1; MDM2, murine double
minute 2; mTORC2, mammalian target of rapamycin complex 2; Nrf2, nuclear erythroid 2-related
factor; OTUB1, ubiquitin hydrolase otubain-1; pBECN1, phospho-beclin-1.

ATF4 is involved in redox homeostasis, amino acid metabolism, and endoplasmic
reticulum stress to promote the transcription of SLC7A11. Amino acid starvation, endo-
plasmic reticulum stress, and hypoxia may increase ATF4 mRNA translation through the
general control non-derepressible-2 (GCN2)-eukaryotic initiation factor 2α (eIF2α) sig-
naling axis [30]. Consequently, ATF4 binds to the amino acid response elements (AARE)
and promotes the transcription of genes involved in stress response, including SLC7A11,
thereby enabling cells to cope with amino acid deficiency [30]. ATF4 promotes ferroptosis
resistance in cancer cells by upregulating SLC7A11 as an adaptive response to cystine
deficiency [31]. The Kelch-like ECH-associated protein 1 (Keap1)-Nrf2-activator protein-1
(AP-1)/antioxidant response element (ARE) signaling pathway increases the transcription
of genes responsible for resistance to oxidative stress, including SLC7A11 [32]. Nrf2 is
unstable under basal conditions and is ubiquitinated by an E3 ubiquitin ligase Keap1.
Oxidative stress impairs Nrf2 degradation by Keap1 and allows Nrf2 to bind to ARE, which
is involved in antioxidant defense and redox maintenance. In cancer cells, Keap1 inactiva-
tion promotes ferroptosis resistance following SLC7A11/cysteine/GSH axis activation by
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stabilizing Nrf2 and Nrf2 target genes [33]. Nrf2 may also mediate ferroptosis resistance
by regulating genes associated with GSH biosynthesis, iron metabolism, and antioxidant
responses [34]. SLC7A11 expression can also be repressed by transcription factors that
play a role in tumor suppression. p53 directly represses the transcription of SLC7A11 and
inhibits ferroptotic cell death by various ferroptosis inducers [35]. ATF3, a common stress
sensor, binds to the SLC7A11 promoter under basal conditions and represses its expression
independent of p53. Erastin treatment or cystine deficiency induces SLC7A11 expression,
but upregulating ATF3 suppresses SLC7A11 expression, depletes intracellular GSH, and
promotes ferroptosis in cancer cells [36].

Transcription of SLC7A11 can also be regulated by epigenetic modifications on DNA
and/or DNA-associated histones, such as acetylation, methylation, ubiquitination, and
phosphorylation [37]. BRCA1-associated protein-1 (BAP1) is a nuclear protein that re-
moves histone H2A monoubiquitylation (H2Aub) at the 119 position of lysine and inhibits
transcription of SLC7A11 [38]. Deubiquitinating H2Aub on the SLC7A11 gene promoter
represses its expression, inhibiting cystine uptake and GSH synthesis and promoting ferrop-
tosis in cancer cells. Methylation of histone H3 (H3K9me3 and H3K27me3) also contributes
to the transcriptional repression of SLC7A11. Bromodomain-containing protein 4 (BRD4)
recognizes acetylated histones and recruits transcription factors, which can inhibit the
transcription of SLC7A11 [39]. A recent study revealed that ARID1A, which encodes a
component of the switch/sucrose non-fermentable (SWI/SNF) chromatin-remodeling com-
plex, could promote Nrf2-mediated transcriptional activation of SLC7A11 [40]. SWI/SNF
deficiency inhibits SLC7A11 transcription, impairs cystine uptake and GSH biosynthesis,
and promotes lipid peroxidation-induced ferroptosis in cancer cells. In addition, the adhe-
sion molecule CD44 variant (CD44v) forms a complex that binds to SLC7A11, maintaining
the stability of SLC7A11 [41]. CD44 expression enhances the stability of SLC7A11 and
suppresses ferroptosis by promoting the direct interaction between the ubiquitin hydrolase
otubain-1 (OTUB1) and SLC7A11. CD44v depletion partially abrogates this interaction,
induces SLC7A11 inactivation, and promotes ferroptosis in cancer cells. Mammalian tar-
get of rapamycin complex 2 (mTORC2) also inhibits the activity of SLC7A11 by directly
phosphorylating SLC7A11 at serine 26 through the AKT signaling pathway [42]. A key
autophagy regulator, Beclin-1 (BECN1), represses system xc− activity through direct bind-
ing to SLC7A11 and thereby involves lipid peroxidation and ferroptosis induction [43].
The BECN1-induced ferroptosis requires AMP-activated protein kinase (AMPK)-mediated
phosphorylation of BECN1 at Ser90/93/96 when cancer cells are exposed to system xc−

inhibitors, e.g., erastin, sulfasalazine, and sorafenib. Inhibition of mTOR promotes gluta-
mate secretion, cystine uptake, and GSH biosynthesis, enabling cancer cells to adapt to
rapidly changing environments. The epidermal growth factor receptor (EGFR) may also
interact with SLC7A11 and maintain its proper localization on the plasma membrane [44].
EGFR-expressing glioma cells exhibit increased glutamate export, cystine uptake, and GSH
biosynthesis, while targeted inhibition of SLC7A11 suppresses the antioxidant capacity,
growth, and invasion of EGFR-overexpressing cancer cells. Insulin-like growth factor-I
(IGF-I) regulates cystine uptake and redox status in ER+ breast cancer cells by activating
SLC7A11 expression [45]. In summary, these emerging studies have shown that diverse
posttranslational mechanisms of SLC7A11 can modulate protein stability, localization, and
transporter activity.

4. Role of SLC7A11 Linking Cysteine Redox Signaling to Cancer Metabolism

Cysteine is mainly produced by cystine uptake into cells through the SLC7A11 subunit
of system xc−. Cancer cells critically depend on the intracellular uptake of amino acids from
their microenvironments, and extracellular cystine uptake is required for cancer growth and
progression [46]. Cancer cells are hallmarked by resistance from cell death, most notably
apoptosis [47]. The characteristics make precancerous cells or cancer cells exposed to
metabolic stress or nutritional deficiencies resistant to apoptosis or other types of cell death.
Recent studies have unraveled that ferroptosis, similar to apoptosis, is actively involved in
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the mechanisms of inhibiting tumorigenesis in changing microenvironments [12]. SLC7A11
is involved in antioxidant defense and cellular redox homeostasis through cysteine and
GSH production and has emerged as a central hub linking its ferroptosis suppression to
tumor initiation and progression.

4.1. SLC7A11 Promotes Tumorigenesis via Inhibiting Ferroptosis

Cellular redox balance plays a critical role in cellular transformation and tumorigene-
sis through redox homeostasis between mutagenic ROS production and tight control by
antioxidant programs responsive to cellular stressors [48,49]. Enhanced intracellular GSH
biosynthesis by SLC7A11 overexpression is essential for oncogenic RAS transformation by
protecting cells from oxidative stress and cell death [50]. Transcriptional upregulation of
SLC7A11 results from the ETS-1 transcription factor downstream of the RAS-RAF-MEK-
ERK signaling cascade, directly transactivating the SLC7A11 promoter in synergy with
ATF4. Notably, genetic depletion or pharmacological inhibition of SLC7A11 induces syn-
thetic lethality in KRAS-mutant lung adenocarcinoma, highlighting SLC7A11 as a potential
therapeutic target for RAS-driven tumors [51]. Interestingly, sulfasalazine and HG106
induce the selective inhibition of SLC7A11, but both drugs exhibit different types of cell
death by increasing cellular oxidative stress, namely ferroptosis and apoptosis, respectively.
This suggests that SLC7A11 may have different functions independent of ferroptosis in pro-
moting tumor development, such as apoptosis and other non-ferroptotic cell death. OTUB1
deubiquitinates and stabilizes the SLC7A11 protein by direct interaction [41]. OTUB1 over-
expression is frequently found in various human cancers, which maintains high expression
of SLC7A11 in cancer cells by posttranslational regulation of OTUB1.

De-repression of SLC7A11 also promotes tumor development partly via inhibiting
ferroptosis, e.g., genetic mutations or deletions of tumor suppressor p53 or BAP1. p53 is
the most frequently mutated tumor suppressor in human cancers, suggesting that the p53-
induced transcriptional repression of SLC7A11 plays an important role in p53-mediated
tumor suppression [52]. The p53 mutation at three acetylation sites (K117R+K161R+K162R,
3KR mutant) loses its ability to induce cell cycle arrest, senescence, and apoptosis, yet
still is capable of regulating ROS production and suppressing tumor formation [53]. The
preserved function of tumor suppression in the p53 3KR mutant has been later unrav-
eled, partly by repressing SLC7A11 expression [35]. However, the additional mutation
(K98R) in the p53 3KR mutant markedly abolishes the ability of p53 to suppress tumor
formation by repressing SLC7A11 expression and inducing ferroptosis in cancer cells [54].
Arachidonate 12-lipoxygenase (ALOX12) also plays a critical role in p53-mediated fer-
roptosis [55]. ALOX12 mediates polyunsaturated fatty acid (PUFA) peroxidation and
ferroptosis independently of the canonical ferroptosis pathway through the GPX4 and
acyl-CoA synthetase long-chain family member 4 (ACSL4) axis. Mechanistically, SLC7A11
interacts with ALOX12, which suppresses PUFA peroxidation and ferroptosis. ALOX12
mutations in human cancers promote tumorigenesis by abrogating its ability to oxygenate
PUFAs and induce ferroptosis. BAP1 is another tumor suppressor repressing SLC7A11
transcription through H2A histone ubiquitination, which inhibits cystine uptake and GSH
biosynthesis, and promotes ferroptosis [38]. As BAP1 is frequently mutated in human
cancers, BAP1 mutation contributes to tumor development by abrogating its ability to
suppress the SLC7A11 expression and induce ferroptosis [56].

4.2. SLC7A11 Promotes Immune Evasion, Invasion, and Metastasis in Human Cancers

In the tumor microenvironment, SLC7A11 is involved in tumor survival and prolifer-
ation through the interaction between immune cells and tumor cells. Interferon gamma
(IFN-γ) secreted by CD8+ cytotoxic T cells promotes lipid peroxidation and ferroptosis by
inhibiting the expression of SLC3A2 and SLC7A11, two subunits of system xc− in tumor
cells [57]. Cysteine is an essential amino acid for T-cell activation. T-cells lacking SLC7A11
or cystathionases rely on neutral amino acid transporters to release cysteine from APCs [58].
Cysteine export by APCs is reduced by the presence of MDSCs, limiting antitumor immu-
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nity by T-cell activation [59]. In glioma cells, an increase in extracellular glutamate caused
by overexpression of SLC7A11 impairs cytotoxic T-cell activation and promotes regula-
tory T (Treg)-cell proliferation, leading to intratumoral immunosuppression [60,61]. The
altered cancer metabolism through overexpression of SLC7A11 promotes immune evasion
of glioblastoma multiforme (GBM) through dysfunction of T cell activation. Antitumor
immunity caused by T cell activation is also diminished by CD36-mediated uptake of fatty
acids in tumor-infiltrating CD8+ T cells that induces lipid peroxidation and ferroptosis of
the cells [62]. Additionally, SLC7A11 has a potential role in cancer-associated fibroblasts
(CAFs) or vascular remodeling. SLC7A11 is highly expressed in CAFs, enabling tumor cells
to protect against exogenous oxidative stress [63]. In human cancer, ATF4 promotes the
transcription of genes involved in stress response, including SLC7A11, to increase tumor
angiogenesis and shape blood vessel architecture [31].

Increased expression of SLC7A11 and/or CD44 is found in various human cancers and
is closely associated with tumor invasion, lymph node metastasis, recurrence, and poor prog-
nosis [64,65]. SLC7A11-mediated glutamate release promotes glioma cell infiltration and
could be blocked by xCT inhibitors such as sulfasalazine and (S)-4-carboxyphenylglycine [66].
SLC7A11 expression is also involved in the invasion and metastasis of melanoma, and loss
of SLC7A11 can inhibit melanoma metastasis in vivo [67]. PDAC has a highly metastatic
potential with few effective therapeutic options. Mitochondrial calcium uniporter (MCU)
can promote tumor metastasis by activating the Keap1–Nrf2–SLC7A11 axis [68]. SLC7A11
inhibition in MCU-high PDAC effectively induces tumor regression and abolishes MCU-
driven metastasis. In addition, CAF highly depends on cystine uptake and GSH synthesis
via SLC7A11 expression in PDAC. Therefore, targeting SLC7A11 in both compartments of
PDAC stromal and tumor cells could be a more effective treatment approach [63].

SLC7A11-mediated extracellular glutamate secretion can also promote the intrinsic in-
vasiveness of cancer cells. Glutamate release by SLC7A11 promotes tumor invasion through
the upregulation of membrane type 1 metalloprotease and basement membrane disruption
in breast cancer cells [69]. Glutamate excretion by IL-1β-induced SLC7A11 overexpression
can also promote hepatoma metastasis through the upregulation of programmed death
ligand 1 (PD-L1) and colony-stimulating factor 1 (CSF1) [70]. Pharmacological interfer-
ence of glutamate release from tumor cells can limit host bone response and impairs bone
metastasis of cancer cells [71].

4.3. SLC7A11 Induces Nutrient Dependency and Metabolic Vulnerability in Cancer

Altered energy metabolism is a hallmark of cancer that can be an effective treatment
target [72]. Tumors are metabolically diverse by reprogramming pathways for nutrient
acquisition. A better understanding and detection of tumor metabolic reprogramming has
been increasingly supported as a new strategy to treat human cancer. Cancer cells promote
tumor growth and proliferation through amino acid metabolism reprogramming. Tumor
cells maintain the redox balance and cell survival by developing antioxidant systems to
control the increased cellular levels of ROS along with their proliferation [48,49].

As a major antioxidant, GSH biosynthesis requires cysteine. Cancer cells import a large
amount of cystine into the cell through high levels of SLC7A11 expression (SLC7A11high)
and quickly reduce highly insoluble cystine to more soluble cysteine. This reaction requires
a cellular NADPH pool mainly drained from the glycolysis–pentose phosphate path-
way [22]. Therefore, cancer cells with SLC7A11high are highly dependent on this pathway
and render such cells susceptible to limiting glucose supply [13,73]. Co-targeting glucose
transporter type 1 (GLUT1) and GSH biosynthesis can induce NADPH depletion, marked
accumulation of cystine and other disulfide molecules, and ROS accumulation, leading to
the synthetic lethality of SLC7A11high tumor cells [74,75]. However, SLC7A11 knockdown
or pharmacological inhibition by sulfasalazine in SLC7A11high cancer cells reduces cellular
ROS levels and cell death induced by glucose deprivation [76]. This suggests that cellular
ROS following glucose deprivation plays a critical role in SLC7A11-dependent cancer cell
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death. Additionally, high cell density in glioma cells promotes lysosomal degradation of
SLC7A11, which may enable metabolic adaptation and cell survival [77].

SLC7A11 simultaneously imports cystine and exports glutamate at a 1:1 ratio. SLC7A11-
mediated glutamate transport results in a deficiency of the intracellular glutamate-α-
KG pool, requiring more glutamine uptake. This affects the nutritional dependence of
cancer cells through glutamine anaplerosis and glutaminase (GLS) [78]. Cancer cells in
SLC7A11high or cystine-rich conditions respond sensitively to glutamine analogs or glu-
taminolysis inhibitors that inhibit glutamine anaplerosis to the TCA cycle [79]. However,
the upregulation of SLC7A11 antagonizes glutamine metabolism and restricts nutrient
flexibility despite the cellular need for antioxidant defense [80]. Therefore, cancer cells
reprogram their amino acid metabolism for adaptation to the changing microenvironment
of nutrition. mTORC2 is a critical regulator of amino acid metabolism in cancer and can
inhibit the activity of SLC7A11 by direct phosphorylation at serine 26 [42]. In an envi-
ronment lacking micronutrient levels, cancer cells can regulate the function of SLC7A11
by mTORC2-mediated phosphorylation to protect themselves from cellular stress that
facilitates increasing glutamate efflux and cystine uptake [42].

Cancer cells with SLC7A11high highly depend on specific amino acids, such as glucose
and glutamine, which may force the establishment of a novel therapeutic strategy to target
cancer-specific metabolic vulnerabilities. In SLC7A11high GBM cells, glucose restriction
decreases mismatch repair genes and increases double-strand breaks, making cancer cells
more susceptible to radiation therapy [81]. CD44v-expressing stem-like head and neck
squamous cell carcinoma (HNSCC) cells retain metabolic reprogramming toward increased
glutaminolysis, which renders the cells more sensitive to xCT inhibitors with the combina-
tion of glutamate dehydrogenase (GDH) inhibition [82]. However, cystine starvation could
rescue glucose starvation-induced cell death in SLC7A11high cancer cells and render such
cells less susceptible to ferroptosis induced by SLC7A11 inhibition [73]. In SLC7A11high

cancer cells, the additional supply of cysteine, such as N-acetyl cysteine (NAC), could res-
cue the cells from glucose starvation but not from glutamine deprivation [73,83]. Therefore,
it is necessary to further underpin the mechanistic understanding of nutrient dependence
in cancer cells with the SLC7A11high cellular phenotype.

4.4. SLC7A11 Has a Role in Cancer Therapeutic Resistance

SLC7A11 expression is closely related to treatment resistance through multiple path-
ways such as the antioxidant system, nutritional limitation, autophagy, and multidrug
resistance in cancer cells. A previous study screened the potency of 1400 candidates, in-
cluding amino acid analogs, L-alanosine, and geldanamycin, with anticancer effects in
60 human cancer cell lines [84]. SLC7A11 mediated cellular uptake of L-alanosine in cancer
cells and conferred chemoresistance to geldanamycin by supplying cystine for GSH biosyn-
thesis. Therefore, the SLC7A11 expression of cancer cells can be an important target for
predicting resistance to anticancer drugs and overcoming treatment resistance.

The cell adhesion molecule CD44v interacts with SLC7A11 and stabilizes the protein
in the plasma membrane, thus facilitating cystine uptake into cells [41]. CD44v-mediated
upregulation of SLC7A11 promotes cystine supply and GSH synthesis, thereby induc-
ing anticancer drug resistance in cancer cells [15]. CD44v expression is associated with
5-fluorouracil resistance in gastric cancer cells and may be abolished by SLC7A11 inhibi-
tion [85]. In addition, SLC7A11 inhibition induces selective cell death in CD44v-expressing
HNSCC that are intrinsically resistant to EGFR-targeted therapy [86]. High CD44v and
SLC7A11 expression are closely associated with the resistance to cisplatin in liver and
bladder cancers, and sulfasalazine can eradicate the chemoresistant cancer cells [87,88].

Even after chemotherapy or radiotherapy, some cancer cells upregulate the expression
of SLC7A11 to resist oxidative stress, inhibit cell death, and develop treatment resistance.
Nrf2 and SLC7A11 are overexpressed in esophageal cancers, contributing to resistance to
radiation and ferroptosis [89]. Enhanced expression of SLC7A11 is also found in GBM cells,
partly due to the activation of Nrf2 [90]. An increase in cellular ROS by gene knockdown or
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pharmacological inhibitors of SLC7A11 leads to a synergistic effect in antitumor therapies.
In CD133-positive hepatocellular carcinoma cells, the antioxidant defense systems against
ROS are enhanced and play a central role in treatment resistance [91]. Sulfasalazine may
improve the effectiveness of anticancer therapies by impairing the ROS defense system.

Conversely, a recent study showed that low expression of SLC7A11 was associated
with resistance to paclitaxel and a low survival rate in ovarian cancer patients. Low expres-
sion of SLC7A11 was found in 90 drug-resistant ovarian cancer cell tissues, resulting from
that, SLC7A11 strongly regulated cell autophagy as a competing endogenous RNA [92].
The multidrug-resistant protein P-glycoprotein (P-gp) is one of the most important defense
mechanisms for cancer cell survival against anticancer drugs. Low regulation of SLC7A11
or cystine deprivation induces ROS-induced overexpression of P-gp in breast cancer cells
and drug resistance [93]. SLC7A11 overexpression or cystine supplementation strongly
reduces the expression and activity of P-gp. Cystine supply or NAC treatment renders
drug-resistant lung cancer cells more sensitive to anticancer drugs [94]. This suggests that
ROS and SLC7A11 are major factors affecting P-gp expression and function, and SLC7A11
is a potential target for regulating P-gp-related drug resistance.

5. Targeting SLC7A11 for Novel Cancer Therapeutics

Ferroptosis is a recent advance in oxidative-regulated cell death induced by the accu-
mulation of iron-mediated lipid peroxidation [6]. Iron-loaded ROS production promotes
PUFA peroxidation in ferroptosis (Figure 1). The Fenton reaction is the reaction between fer-
rous iron and hydrogen peroxide to form hydroxyl or peroxyl radicals that react with mem-
brane lipids and rapidly propagate to neighboring PUFA-phospholipids [95]. Excessive
lipid peroxidation disrupts the integrity of cell membranes, resulting in cell death [6]. Lipid
peroxidation is driven by multiple iron-containing enzymes such as arachidonate lipoxy-
genases, e.g., 12/15-lipoxygenase, P450 oxidoreductase, and prostaglandin-endoperoxide
synthase 2 [96]. The radical-trapping antioxidant systems protect cells from the excessive
accumulation of cellular ROS by reducing ROS to H2O. GPX4 and SLC7A11 are the es-
sential modulators of ferroptosis [5]. GPX4 is a major cellular antioxidant that reduces
lipid hydroperoxides to lipid alcohols, resulting from the oxidation of GSH. SLC7A11 is a
membrane protein that contributes to detoxifying lipid peroxidation by participating in the
intracellular uptake of cystine for GSH production. GPX4 requires GSH as a cofactor that
inhibits lipid peroxidation, and thereby the depletion of cysteine and GSH could inactivate
the protective effect of GPX4 [45].

Ferroptosis was first coined by professor Stockwell and colleagues and is attracting
attention as a novel treatment method for various human diseases [5,7]. In 2012, Dixon
et al., screened lethal compounds triggering specific elimination of RAS-mutated cancer
cells, which led to finding a novel form of non-apoptotic cell death, ferroptosis, that was
morphologically, biochemically, and genetically distinct from other types of regulatory cell
death [7]. Since then, the molecular regulation of ferroptosis has been elucidated through
various model studies, and the biochemical characteristics of ferroptosis could be inhibited
by iron chelators or lipophilic antioxidants [5,7]. The constitutive activity of SLC7A11
inhibits ferroptosis in various cells, while gene knockdown or pharmacological inhibition
of SLC7A11 could induce ferroptosis. Notably, ferroptosis by SLC7A11 inhibition can be
suppressed by β-mercaptoethanol, which reduces extracellular cystine to cysteine and
promotes bypass of the system xc− [5]. Although SLC7A11 is overexpressed in various
cancers, cancer cells maintain redox homeostasis by developing different antioxidant
defenses to survive high levels of oxidative stress. Normal cells can replace SLC7A11
function by cystine uptake via additional transporters other than SLC7A11, or obtaining
intracellular cysteine through de novo cysteine synthesis [97]. Cancer cells further develop
the antioxidant systems necessary for oncogene adaption to induce overexpression of
SLC7A11, which selectively targets cancer cells while minimizing adverse effects on normal
cells [98]. SLC7A11 knockout, unlike GPX4 knockout, does not result in embryonic lethality
and does not affect the development or phenotypes of the pancreas and other major
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organs [99,100]. Therefore, targeting SLC7A11 may be a promising therapeutic strategy to
selectively treat cancer with minimal effects on normal tissues.

Several compounds have been identified as SLC7A11 inhibitors, including erastin,
imidazole ketone erastin (IKE), sulfasalazine, and sorafenib [6,51]. These agents were
characterized as class 1 ferroptosis inducers (FINs) capable of inducing ferroptosis by
blocking cystine uptake of SLC7A11. Erastin is the most widely used class 1 FIN, which
has been discovered to selectively eliminate cancer cells harboring the oncogenic mutant
RAS [101]. However, erastin cannot be used in animal experiments or humans due to poor
metabolic stability and low solubility in vivo [6]. IKE, an erastin analog with high metabolic
stability and solubility, has nanomolar potency and suitability for testing ferroptosis in
preclinical studies [102]. IKE treatment mimics the effects of cystine depletion, such as
cystine starvation or system xc− inhibition, which is reversed by co-treatment with iron
chelators, ferrostatin-1, or NAC in cancer cells. IKE could effectively suppress the growth
of pancreatic cancers vulnerable to the cystine-deprived, hypoxic microenvironment in a
genetically engineered mouse model of PDAC [98]. However, IKE was developed relatively
recently and has not yet moved to the clinical trial stage in cancer patients. Sulfasalazine
and sorafenib are currently being actively used in clinical patients for the treatment of
arthritis and human cancers, respectively, under the approval of the U.S. Food and Drug
Administration. Both drugs can suppress tumor growth by inhibiting the SLC7A11 trans-
porter activity of SLC7A11 and ferroptosis in vivo [6,103,104]. HG106, recently known
as a potent SLC7A11 inhibitor, also showed marked tumor suppression and prolonged
survival in the preclinical mouse models of KRAS-mutated lung adenocarcinoma [51].
Recently, an engineered and pharmacologically optimized human cyst(e)inase enzyme
could suppress tumor growth in PDAC, prostate, and breast cancer xenografts [98,105].
Systemic administration of cyst(e)inase depleted serum L-cysteine and L-cystine pools and
doubled the median survival time of TCL1-Tg:p53-/- mice resembling chronic lymphocytic
leukemia [105]. In summary, although the class 1 FIN agents have proven their effectiveness
in numerous preclinical studies, the proof of concept has rarely been established in clinical
trials in cancer patients. Therefore, it is urgent to develop more therapeutically effective
and minimal side-effect SLC7A11 inhibitors and test them in rigorous preclinical models
and clinical trials.

6. Conclusions and Perspectives

Cysteine is an amino acid that plays versatile roles in protein synthesis, posttransla-
tional modification, and cystine import. Moreover, cysteine is a redox-active amino acid
retaining critical antioxidant capacity by participating in redox homeostasis through GSH
biosynthesis and acting as a proton donor for the biological activity of GSH. Cysteine is
an essential precursor for the production of antioxidant GSH, of which the majority is
synthesized in cells and is critically dependent on the uptake rate of cystine. Cysteine is
mainly produced through cystine import through SLC7A11, constituting system xc– and
contributes to GSH biosynthesis. GSH acts as a cofactor of GPX4 that contributes to the
detoxification of lipid peroxides into lipid alcohols, and the SLC7A11–GSH–GPX4 axis
is known as the canonical pathway of ferroptosis. Therefore, the cysteine–GSH axis is
a pivotal regulator of ferroptosis, a new form of iron-catalyzed regulatory cell death by
excessively accumulating lipid peroxidation.

SLC7A11 plays a vital role in regulating cellular redox status by countering cellular
oxidative stress and suppressing ferroptosis through cystine import and GSH synthesis.
SLC7A11 is overexpressed in various types of human cancers and is deeply involved in
regulating tumor development, proliferation, metastasis, microenvironment, and treatment
resistance. Many cancer cells depend more on the GSH antioxidant system to maintain
cellular redox balance from high intrinsic oxidative stress. SLC7A11 is a critical gateway for
cellular redox homeostasis through its regulation of the pathway leading to cystine import,
cysteine production, and GSH biosynthesis, SLC7A11 overexpression in many cancer cells
renders them susceptible to abrogation of SLC7A11, and thereby cyst(e)ine depletion may
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be an effective new strategy for cancer treatment. Some cancer cells, such as lymphocytic
leukemia cells, cannot synthesize cysteine by other pathways and are highly dependent on
the uptake of extracellular cystine to maintain intracellular GSH levels in large amounts at
millimolar concentrations. High basal ROS levels and SLC7A11 dependence in cancer cells
render them vulnerable to further oxidative stress, thereby making them highly sensitive to
SLC7A11 inhibition. SLC7A11 inhibitors or cyst(e)inase that deplete extracellular cyst(e)ine
could be a promising strategy to overcome cancer treatment resistance. However, although
the effectiveness of the SLC7A11 inhibitors or cyst(e)inase has been established in many
preclinical studies, these have not reached the stage of clinical trials for cancer patients.
Therefore, it is highly anticipated that more effective new SLC7A11 inhibitors and targeting
methods will be developed and confirmed not only in preclinical models of various cancers
but also in the clinical trials of cancer patients shortly.
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