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Abstract: The production of olive oil generates olive mill wastewater (OMW) which essentially
derives from the processing, treatment and pressing of olives in mills. Traditional milling processes
require a quantity of water varying between 40 and 120 L per quintal of pressed olives, generating a
considerable amount of wastewater. It is thus necessary to reduce process water and enhance its use
to implement the concept of a circular economy. To this end, our preliminary work was dedicated to
water purification by means of suitable and efficient filtration systems. The microfiltered OMW was
firstly concentrated through reverse osmosis. Then, an additional concentration step was carried out
via vacuum membrane distillation using hydrophobic hollow fiber membranes. The application of
the membrane-based processes allowed the recovery of a purified water and the concentration of
valuable polyphenols in a smaller volume. The different fractions obtained from the purification have
been tested for the determination of the antioxidant power (DPPH assay) and dosage of polyphenols
(Folin–Ciocalteu assay) and were characterized using IR spectroscopy. All samples showed relevant
antioxidant activity (percentage range: 10–80%) and total phenolic content in the 1.5–15 g GAE/L
range. The obtained fractions were tested for their antimicrobial effect on numerous clinical isolates
of Gram-positive and Gram-negative species, resistant and multi-resistant to current antibiotic drugs.
OMW samples showed widespread activity against the considered (phyto)pathogens (MIC range
8–16 mg/mL) thus supporting the value of this waste material in the (phyto)pharmaceutical field.

Keywords: olive mill wastewater; antioxidant activity; polyphenols; membrane processes; antibacte-
rial activity; circular economy

1. Introduction

Olive oil is the primary source of fat in the Mediterranean diet, the nutritional benefits
of which are recognized globally [1]. Triglycerides represent the major components of olive
oil (98–99%) [2]. Moreover, it contains more than 200 minor components including sterols,
waxes, tocopherols, carotenes and chlorophylls, phenolic and volatile compounds [3]. Olive
oil production is a multistep procedure that includes defoliation and washing of the olive
fruits; crushing of the olives by mills, hammers or blades and, after malaxation, a final
solid–liquid extraction (Figure 1). The modern method of olive oil extraction involves the
use of a horizontal centrifuge (the so-called decanter) that separates the materials (namely
pomace, olive oil and vegetation water) on the basis of their different density. Pomace is a
solid part deriving from the pulp of the olives and represents a source of income for millers
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as it can be used for the production of pomace oil or fuel. Olive mill wastewater (OMW)
essentially consists of washing and process waters, as well as the aqueous fraction of drupe
juices. Depending on the extraction system used (i.e., three-, two- or two-and-half-phase
decanter), the volumes of OMW can vary from 40 to 120 L per quintal of pressed olives,
generating a considerable amount of wastewater [4]. A conventional milling procedure
yields 20% olive oil, 30% solid residues and about 50% OMW [5].
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Figure 1. Olive oil production process.

OMW has a dark-brown color that can turn black and is characterized by a typical,
rather intense smell, reminiscent of that of olives. It consists of an aqueous phase in
which organic substances (e.g., reducing sugars, organic acids, polyalcohol) and inorganic
elements (e.g., potassium, phosphorus, calcium) are dissolved and a suspended part
containing the solid vegetable material not filtered during the oil separation phase. The
phenolic content of OMW includes (hydroxy)tyrosol, phenolic acids (e.g., caffeic acid),
secoiridoids (e.g., oleuropein, p-DHPA-EA), flavonoids (e.g., apigenin, quercetin) and
lignans; see [6] and references therein. OMW composition depends on different factors
including the extraction system, olive cultivar and biometric values of the olive fruit [7–9].

OMW has significant environmental impact and represents one of the major industrial
effluents [10]. OMW bears a high organic load with a high quantity of (phyto)toxic com-
pounds (e.g., phenols). Moreover, chemical oxygen demand (COD) [11] and biochemical
oxygen demand (BOD) values of OMW can be as high as 220 and 100 g/L, respectively [12].
The high levels of COD and BOD reflect the concentration of organic pollutants in wastew-
ater and are associated with the environmental impact of OMW. The direct discharge
of OMW into soil or rivers could cause damage to the flora or depletion of clean water
reservoirs [13]. From a legislative point of view, liquid wastes from olive oil production
fall under the Urban Waste Water Treatment Directive [14], which also regulates treatment
and discharge of wastewater from the olive oil industry sector [15]. However, a specific
EU legislation on OMW management does not exist, and each EU production country
has implemented its own national guidelines [16]. According to the Italian legislative
regulations [17–19], OMW must be disposed of by spreading on the agricultural ground or
by agronomic use only after the reduction in the COD and BOD content (emission limits
for urban wastewater plants: COD 125 mg/L, BOD 25 mg/L).

To reduce its environmental impact, a number of physicochemical, biological and
combined processes have been investigated for the treatment of OMW. One of the possible
ways to treat OMW and concentrate its phenolic compounds is membrane filtration. Most
of the investigations on the applications of membrane processes to the treatment of olive
oil vegetation waters focused on pressure-driven membrane processes (e.g., microfiltration,
ultrafiltration, reverse osmosis and nanofiltration), but in recent years emerging membrane
processes such as membrane distillation are under investigation [20,21]. Recently, some of
us reported an innovative pressure-driven membrane process for the treatment of OMW
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that consists firstly of microfiltration (MF) followed by a reverse osmosis (RO) stage [22].
To further concentrate the RO fraction (and the polyphenol content therein), vacuum
membrane distillation (VMD) using hydrophobic hollow fiber membranes was carried
out. Notably, in recent decades, particular attention has been devoted to the possibility of
fractionating or recovering polyphenolic compounds as a strategy for the valorization of
byproducts from a circular economy perspective [23–26]. Polyphenolic compounds recov-
ered from waste products showed pharmaceutically relevant properties such as antioxidant,
anti-allergic, anti-inflammatory, anti-tumor and anti-hypertensive effects. Moreover, these
compounds have an antimicrobial activity that could be exploited both in agriculture for
the fight against phytopathogens and in the identification of new therapeutic agents active
against human antibiotic-resistant pathogens [27,28]. In this regard, Enterococcus faecium,
Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa
and Enterobacter cloacae (ESKAPE) bacteria are a group of antibiotic-resistant pathogens
that globally represent the major cause of life-threatening nosocomial infections.

Herein, we report the physicochemical characterization (conductivity and infrared
spectroscopy), the total polyphenols (Folin–Ciocalteu test) and the antioxidant activity
(DPPH assay) of different MF, RO and VMD fractions derived from OMW (Figure 2).
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Figure 2. Schematic representation of OMW purification process. Analyzed samples: MF1: sample
collected after the MF. ROp1: permeate sample collected in the middle of RO purification. ROp2: final
permeate sample of RO purification. MD1: initial concentrate sample of VMD. MD2: final concentrate
sample of VMD. MDd1: initial distillate sample of VMD. MDd2: final distillate sample of VMD.

Additionally, the antibacterial properties of OMW fractions were studied against
39 bacterial strains, including multi-resistant pathogens belonging to the “ESKAPE” group.
The acquired results provide the basis for a re-evaluation of OMW that, within the concept of
a circular economy, should not be considered as waste material of the olive pressing process
but instead an important source of (phyto)pharmaceutic compounds. The modernization
and restructuring of the oil mills with the installation of appropriate OMW filtering units
would increase the economic performance of factories in both reducing water consumption
and producing valuable material with antioxidant and/or antibacterial potential.

2. Materials and Methods
2.1. Chemicals

All solvents, DPPH (2,2-diphenyl-1-picrylhydrazyl), Trolox (6-hydroxy-2,5,7,8-
tetramethylchroman-2-carboxylic acid), Folin–Ciocalteu phenol reagent and gallic acid
used as a reference standard were purchased from Sigma-Aldrich (Milan, Italy). The
Milli-Q-system (Millipore SA, Molsheim, France) was used to produce deionized water.
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2.2. Plant Material and OMW Used

The olives belong to the Taggiasca cultivar. The trees were grown in the province of
Imperia (Liguria, North Italy), aged > 100 years, with an approximated olive production
of 20 kg each. The soil is calcareous and alkaline with fine sand on the surface and friable
rock in the subsoil. The plants were not irrigated and received common organic-mineral
fertilizer every year (35 kg/tree; N, P and K in the ratio 20:10:10). The temperature range in
the area was 0–35 ◦C. According to Regione Liguria data, mean rain values in the province
of Imperia were 783 and 792 mm in 2018 and 2019, respectively. The olives were harvested
in 2019 (autumn olive campaign) 180 days after blossom. Olives were characterized by
the following biometric values: mean weight, 3 g; pulp/stone ratio, 25%; oil content, 27%;
water content, 50%. Sample MF2 was derived from the 2018 olive campaign. The olives
were processed (300 tons/year) by a semi-automatic three-phase olive processing plant
located in Dolcedo (Imperia, Italy). In the malaxation phase water was added (10–20% by
weight of olive paste). A total of 0.5 m3 of fresh olive mill wastewater was collected on site
from immediately processed olives and stored at 4 ◦C before analysis [29]. The analyses
were carried out a week after the olive processing.

2.3. Filtration Procedure

An overall volume concentration factor of 14.5 was achieved by combining different
membrane processes. The volume concentration factor is defined as the ratio between
the initial volume of the feed and the final volume of the concentrate after the filtration.
Microfiltration (MF) was used as a pretreatment step before reverse osmosis to clarify the
wastewater and to remove the suspended solids. Reverse osmosis (RO) and subsequently
membrane distillation (MD) were applied to concentrate the OMW. The detailed procedure
of filtration and concentration by ultrafiltration (UF) and RO is reported in a previous
work [22]. The OMW was previously filtered onto a non-woven filter (about 200 µm) to
remove the coarser particulate matter. The OMW was then microfiltered in a pilot plant
using ceramic membranes (M-3P1940 module with 3 Membralox EP19-40 membranes, Pall
Corp., Port Washington, NY, USA). The microfiltered OMW was concentrated through
reverse osmosis of a factor of about 7.3 (380 L of permeate over 440 L of feed). The reverse
osmosis membrane used was the SEA1-4040 supplied by Oltremare S.p.A (Fano, Italy), and
the filtration conditions were 24 ◦C +/− 4 ◦C, 40 bar in concentration mode. As a further
concentration step, a vacuum membrane distillation (VMD) was applied. The details of
the laboratory plant for testing are reported in previously published papers [30,31]. A
total of 15 hollow fiber membranes made of polypropylene (Accurel PP S6/2, Membrana,
Germany) with a length of 30 cm were arranged in a module where the fiber extremities
were potted with an epoxy resin in a PVC tube. The main membrane characteristics have
been reported in another work [32]. The liquid flowed on the outer side of the hollow fiber
membranes, and a vacuum (30 mbar) was applied from the membrane lumen. The contact
area of the membrane module was 0.0382 m2. The distillation was performed at about
30 ◦C until a feed volume reduction of a factor 2 was obtained. The following samples
were obtained: MF1 (sample collected after the MF); ROp1 (permeate sample collected in
the middle of RO purification); ROp2 (final permeate sample of RO purification); MD1
(initial concentrate sample of VMD); MD2 (final concentrate sample of VMD); MDd1 (initial
distillate sample of VMD); MDd2 (final distillate sample of VMD).

2.4. Determination of Electric Conductivity and Elemental Composition of Isolated Fractions

Electrical conductivity was measured through a Hanna EC215TM conductivity meter
equipped with a Hanna HI76303TM probe.

The liquid samples poured in a ceramic crucible were dried at 105 ◦C in a ventilated
oven and successively at 600 ◦C in a furnace. The inorganic residue after calcination
was collected and immobilized on a microscope stub to be sputtered with carbon to
impart the necessary electrical conductivity for the electron microscopy analysis. A field
emission scanning electron microscope (Zeiss Supra 40VP, Carl Zeiss, Germany) equipped
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with an energy dispersive X-ray microanalysis detector (EDX) was used to analyze some
samples areas.

2.5. Fourier Transform Infrared Spectroscopy

The infrared spectra were acquired on an FTIR-ATR Jasco spectrophotometer (JASCO
4700, JASCO Corporation) at 4 cm−1 resolution, 50 scans, in the 4000–400 cm−1 spectral
range using the liquid thin layer method at a temperature of 20 ◦C (in the dark). Each
sample had 15 spectra recorded, and each measurement was repeated three times from
each OMW sample.

2.6. DPPH Radical-Scavenging Activity

The antioxidant activity of the OMW was measured using the DPPH antioxidant
assay. The DPPH assay is based on the bleaching rate of the stable radical 2,2-diphenyl-1-
picrylhydrazyl (DPPH) [33]. A total of 0.1 mL of OMW was mixed with 3.9 mL of DPPH
methanol solution (65 µM). Absorbance was measured at 517 nm after reacting for 30 min
in the dark. The linear calibration curve was obtained using Trolox standards (ranging
between 20 and 200 mg/L, R2 = 0.9955). The result was calculated as Trolox equivalent in
mg/L, and the percentage of antioxidant activity (AA%) was calculated from the ratio of
decreasing absorbance of sample solution (A0 – As) to absorbance of blank DPPH solution
(A0), as expressed in Equation (1) [34].

AA% =
A0 − As

A0
·100 (1)

All analyses were performed in triplicate (n = 3), and values are given ± standard
deviation (SD).

2.7. Folin–Ciocalteu Spectrophotometric Determination

The total polyphenol (TP) contents in OMW were determined using the Folin–Ciocalteu
(FC) spectrophotometric method [35]. Absorbance was measured at 750 nm. TPs were
quantified from a calibration curve prepared with gallic acid standard solutions in con-
centrations ranging from 20 to 80 mg/L (R2 = 0.9988) and expressed as g of gallic acid
equivalent for OMW liter (g GAE/L) [36]. All analyses were performed in triplicate (n = 3),
and values are given ± standard deviation (SD).

2.8. Antibacterial Activity of OMW
2.8.1. Bacterial Strains

A total of 39 isolates, belonging to the Gram-positive and Gram-negative species,
were used in this study. All with the exception of the strain of Pseudomonas syringae
pv. tomato, kindly donated by Dr. Giovanni Minuto of the Centro di Sperimentazione
e Assistenza Agricola (CERSAA) of Albenga (SV), Italy, were clinical strains isolates,
belonging to a collection obtained from the School of Medicine and Pharmacy of University
of Genoa (Italy), and identified by VITEK® 2 (Biomerieux, Firenze, Italy) or matrix-assisted
laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometric technique
(Biomerieux, Firenze, Italy). Of the tested 16 Gram-positive organisms, eight strains
belonged to the Enterococcus genus, (four Enterococcus faecalis, three of which were resistant
to vancomycin (VRE); four E. faecium, two of which were VRE; eight strains pertained to
the Staphylococcus genus, including four methicillin-resistant S. aureus (MRSA) and four
methicillin-resistant S. epidermidis (MRSE) all of which were also resistant to linezolid).
Regarding the 23 Gram-negative isolates, 9 strains were Enterobacteriaceae: 3 Escherichia coli
(one was a fully susceptible strain to all antibiotics tested, 1 was a Klebsiella pneumoniae
Carbapenemase (KPC)-producing strain, 1 was a New Delhi metallo-beta-lactamase (NDM)
producer), 1 Morganella morganii, 1 Providencia stuartii, 1 Serratia marcescens and 3 KPC-
producing Klebsiella pneumoniae isolates. Fourteen strains belonged to the non-fermenting
group: nine Pseudomonas aeruginosa strains including strain 265 (MDR and resistant also to
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colistin) and strains 1, 2v, 19v, 16b, 12b and 8g (isolated from cystic fibrosis patients and
MDR), one P. syringae, two Stenotrophomonas maltophylia (all resistant to sulfamethoxazole-
trimethoprim) and two MDR Acinetobacter baumannii. According to the literature [37], our
definition of MDR organism includes those isolates with diminished susceptibility to at
least one antimicrobial drug in three or more antimicrobial categories.

2.8.2. Determination of Minimum Inhibitory Concentration (MIC) and Minimum
Bactericidal Concentration (MBC) of OMW

To investigate the antimicrobial activity of OMW samples, their minimum inhibitory
concentrations (MICs) were determined by following the microdilution procedures detailed
by the European Committee on Antimicrobial Susceptibility Testing EUCAST [38]. Briefly,
after overnight incubation, cultures of bacteria were diluted to yield a standardized inocu-
lum of 1.5 × 108 CFU/mL. Appropriate aliquots of each suspension were added to 96-well
microplates containing the same volumes of serial 2-fold dilutions (ranging from 125 to
2 mg/mL) of each OMW sample to yield a final concentration of about 5 × 105 cells/mL.
After 24 h of incubation at 37 ◦C, the lowest concentration of sample that prevented visi-
ble growth was recorded as the MIC. All MICs were obtained in triplicate, the degree of
concordance in all the experiments was 3/3 and the standard deviation (±SD) was less
than 10%.

The minimum bactericidal concentration (MBC), defined as the lowest concentration
of a drug that results in killing 99.9% of the bacteria being tested, was determined for each
OMW sample by subculturing the broths used for MIC determination. A total of 10 µL of
the culture broths of the wells corresponding to the MIC and to higher MIC concentrations
was plated onto fresh MH agar plates and further incubated at 37 ◦C overnight. The highest
dilution that yielded no bacterial growth on the agar plates was taken as the MBC. All tests
were performed in triplicate, and the results were expressed as the mode.

2.9. Statistical Analysis

Each sample was analyzed in triplicate, and Folin–Ciocalteu and DPPH data were
subjected to analysis of variance (ANOVA) using JMP® software Trial 16.2.0 for Windows
10 (JMP Italy, Via Darwin 20/22 20143 Milano). Wherever F values were significant, Tukey’s
test was used for means comparison. Significance was defined at p < 0.001.

3. Results and Discussion
3.1. OMW Concentration from Membrane Processes

To assess their inorganic fraction, untreated OMW and the different samples obtained
by the application of membrane purification processes were analyzed for their conductivity.
The conductivity of the different samples vs. the concentration level expressed as the
volume concentration ratio is reported in Figure 3. The conductivity of untreated OMW
was 7 mS/cm which corresponds to a concentration of total dissolved salt (TDS) of about
4 g/L expressed as NaCl equivalent. The sample collected after microfiltration (MF1
sample, Figure 2) showed a similar value, thus confirming that this purification step did not
alter the salt content of the sample. RO selectively retains almost all solutes, allowing the
exclusive passage of water. In our experiments the volume concentration factor was 7.3, and
the conductivity of the concentrate (RO1 sample, Figure 2) increased to 30 mS/cm which
corresponds to a TDS of about 19 g/L of NaCl equivalent. Vacuum membrane distillation
(VMD) further concentrated the OMW reverse osmosis fraction achieving an overall volume
concentration ratio of about 15 with a final conductivity of about 41.8 mS/cm (TDS = 27 g/L
NaCl equivalent) for MD1 and MD2 fractions (Figure 2).
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Figure 3. OMW conductivity against the volume concentration ratio achieved at each treatment step.

To assess the efficacy of RO and VMD processes to retain the dissolved inorganic
electrolytes, two samples of permeate water were collected at the middle (ROp1 sample,
Figure 2) and at the end (ROp2 sample, Figure 2) of the RO concentration process. Similarly,
the initial and final distillate samples (MDd1 and MDd2, Figure 2) from the VMD concen-
tration step were considered. The conductivity values of these samples (Table 1) confirmed
that both methods reduced the electrolyte content in the fraction by about 98.5%.

Table 1. Conductivity of ROp and MDd samples.

Sample Conductivity (mS/cm)

ROp1 0.14
ROp2 1.00
MDd1 0.42
MDd2 0.63

The inorganic species composition of MF1, RO and MD samples was investigated
through drying and calcination at 600 ◦C and semiquantitative analysis. All the analyzed
samples showed the same inorganic average composition of the inorganic residue (Figure 4).
A relevant mass concentration of potassium (ca 67%) was found, followed by chlorine (ca
15%). Other elements (i.e., Na, Mg, P, S, Ca and Fe) were observed in comparable amounts
with a weight percentage below 7%.
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3.2. OMW Characterization
3.2.1. FTIR Analysis

FTIR spectroscopy is considered an effective and advantageous analytical method to
study the functional groups of the organic compounds in OMW [39,40]. To assess whether
the purification process affected OMW composition, untreated OMW and RO1 sample
(Figure 2) were analyzed with IR spectroscopy (Figure 5). The IR spectra were analyzed
according to the literature data [41–44].

Antioxidants 2022, 11, x FOR PEER REVIEW 8 of 17 
 

 

Figure 4. EDX semiquantitative analysis of representative sample. 

3.2. OMW Characterization 

3.2.1. FTIR Analysis 

FTIR spectroscopy is considered an effective and advantageous analytical method to 

study the functional groups of the organic compounds in OMW [39,40]. To assess whether 

the purification process affected OMW composition, untreated OMW and RO1 sample 

(Figure 2) were analyzed with IR spectroscopy (Figure 5). The IR spectra were analyzed 

according to the literature data [41–44]. 

 

Figure 5. OMW IR spectra before and after purification. 

The IR spectral examination of unprocessed OMW (Figure 5) revealed a large band 

in the range of 3500 to 3000 cm−1 which was attributed to OH hydroxyl group stretching 

vibrations (alcohols, phenols and carboxylic acids, 3670–2450 cm−1) [44,45]. The bands at 

2980 and 2890 cm−1 are due to stretching vibrations of aliphatic C–H of CH2 and CH3 

groups. The small absorption band at 2340 cm−1 is due to atmospheric CO2 present in the 

sample chamber during the collection of data. An intense band was found in spectral 

0

10

20

30

40

50

60

70

80

90

100

Na Mg P S Cl K Ca Fe

El
e

m
en

t 
w

ei
gh

t 
p

er
ce

n
ta

ge
 (

%
)

Figure 5. OMW IR spectra before and after purification.

The IR spectral examination of unprocessed OMW (Figure 5) revealed a large band
in the range of 3500 to 3000 cm−1 which was attributed to OH hydroxyl group stretching
vibrations (alcohols, phenols and carboxylic acids, 3670–2450 cm−1) [44,45]. The bands
at 2980 and 2890 cm−1 are due to stretching vibrations of aliphatic C-H of CH2 and CH3
groups. The small absorption band at 2340 cm−1 is due to atmospheric CO2 present in
the sample chamber during the collection of data. An intense band was found in spectral
region III, centered at 1740 cm −1. This band could correspond to valance vibrations C=O
of carboxyl, ketone groups and esters [46]. In the fingerprint region 1500–400 cm−1, the
bands at 1363 cm−1 are probably related to C–H bending of CH3 groups or to COO−
antisymmetric stretching and vibration of C=O or deformation of C-H [47]. The signal at
1216 cm−1 indicates C-O stretching of aryl ethers and phenols and the stretching vibration
of aromatic Car-O and/or in-plane deformation of CO2H in carboxylic acids or unsaturated
esters [48], and the band at 1052 cm−1 can be related to vibration in carbohydrates, aromatic
ethers and polysaccharides [49].

The comparison of IR spectra between treated and untreated OMW highlighted that
the intensity and the number of bands are reduced in purified OMW (Figure 5). A band
can be observed at 1516 cm−1 in the spectrum of purified OMW, which is due to stretching
vibration of Car=Car in polar aromatic group type phenols and to flavonoids and aromatic
rings (stretching of aromatic C=C) [39].
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3.2.2. TPs and DPPH Radical-Scavenging Activity in OMW

The total polyphenol (TP) content, expressed as mg equivalent of gallic acid (GAE)
per L of sample [50,51], was determined for MF, RO, ROp, MD and MDd fractions (Table 2).
As OMW composition is affected by numerous factors such as the extraction method, the
type and maturity of the olives, the region of origin and climatic conditions, the TP content
of a microfiltration fraction obtained from different olive oil campaigns was determined
(MF2 fraction). A linear gallic acid regression is shown in Figure 6.

Table 2. Total phenolic content analyzed in OMW using the Folin–Ciocalteu assay (mean
value ± standard deviation (SD) of three independent experiments (n = 3), A = absorbance val-
ues). Numbers followed by different letters are statistically different at p < 0.001 (Tukey’s test).

Sample Name A (λ = 750 nm) g GAE/L

MF1 0.188 1.304 ± 0.150 d

MF2 0.333 0.251 ± 0.056 e

ROP1 0.042 0.001 ± 0.001 e

ROP2 0.097 0.055 ± 0.006 e

RO1 0.131 8.292 ± 0.251 b

MD1 0.110 6.542 ± 0.227 c

MD2 0.216 15.375 ± 0.015 a

MDd1 0.180 0.012 ± 0.001 e

MDd2 0.150 0.010 ± 0.001 e

1 

 

 

Figure 6. Gallic acid calibration curve (concentrations ranging from 20 to 80 mg/L).

The TP contents were found to be related to the concentration level of the fraction, and
the MD2 sample displayed the highest quantity of polyphenols (15.38 g GAE/L, p < 0.001).
A similar trend emerged for the antioxidant activity (AA%, p < 0.001, Table 3, Figure 7), and
the two MD fractions, obtained from the final VMD purification step, showed the highest
AA percentage values.

Interestingly, the microfiltration fractions collected in two different olive oil campaigns
(i.e., MF1 and MF2) showed significant difference (p < 0.001) in their TP contents while still
maintaining similar antioxidant activity.
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Table 3. Evaluation of antioxidant activity percent (AA%) using DPPH assay (mean value ± standard
deviation (SD) of three independent experiments (n = 3)). Numbers followed by different letters are
statistically different at p < 0.001 (Tukey’s test).

Sample Name A (517 nm) DPPH% AA%

MF1 0.861 88.95 ± 0.3 11.05 ± 0.3 e

MF2 0.893 92.25 ± 0.2 7.75 ± 0.2 f

ROP1 0.898 92.77 ± 0.4 7.23 ± 0.4 f

ROP2 0.708 73.14 ± 0.1 26.86 ± 0.1 d

RO1 0.633 65.39 ± 0.2 34.61 ± 0.2 c

MD1 0.514 53.10 ± 0.2 46.90 ± 0.2 b

MD2 0.17 17.56 ± 0.3 82.44 ± 0.3 a

MDd1 0.858 88.64 ± 0.5 11.36 ± 0.5 e

MDd2 0.864 89.26 ± 0.1 10.74 ± 0.1 e
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3.3. Antibacterial Activity

The antibacterial activity of all OMW purified fractions (namely MF1, RO1, ROP1,
ROP2, MD1, MD2, MDd1 and MDd2 samples, Figure 2) was preliminary evaluated against
a panel of 12 bacterial strains, representative of the most clinically relevant Gram-positive
and Gram-negative species. The considered pathogens include Gram-positive S. aureus
(two strains, one methicillin-sensitive and one methicillin-resistant), S. epidermidis (two
strains, one methicillin-sensitive and one methicillin-resistant) and Gram-negative E. faecalis
(two strains, one vancomycin-sensitive and one vancomycin-resistant), E. faecium (two
strains, one vancomycin-sensitive and one vancomycin-resistant isolate), E. coli (two strains,
one was a New Delhi metallo-β-lactamase (NDM)-producing isolate) and two P. aeruginosa
MDR isolates. Out of this preliminary screening, only the ROp1 fraction emerged as
ineffective (MIC value > 128 mg/mL) against all the considered bacterial strains whereas
MF1, RO1, ROP2, MD1, MD2, MDd1 and MDd2 samples showed significant antibacterial
activity (MIC value range: 8–125 mg/mL, data not shown) on selected strains.

Therefore, the ROp1 fraction was not further investigated, and the seven active OMW
samples were tested against 39 Gram-positive and Gram-negative isolates that included
clinically relevant, multi-drug-resistant (MDR) strains. Additionally, a strain of the phy-
topathogen Pseudomonas syringae pv. tomato was included in the panel (Tables 4 and 5).
All analyzed fractions showed a widespread antibacterial activity against both antibiotic-
susceptible and antibiotic-resistant Gram-positive and Gram-negative strains. This aspect is
particularly relevant, given the considerable structural differences between Gram-negative
and Gram-positive bacteria that account for distinct antibiotic susceptibility and resis-
tance mechanisms [52–54]. The MD2 sample proved to be active against Gram-positive
pathogens and showed the lowest MIC values (8–16 mg/mL) against Gram-negative bac-
teria including colistin-resistant P. aeruginosa 265, M. morganii 372, P. stuarti 374 and S.
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marcescens 400 strains, causative agents of difficult-to-treat, clinically relevant infections.
All OMW samples were also active against P. syringae pv. tomato, an important seedborne
pathogen known to causes bacterial speck disease in tomato [55]. The bacterium can also
infect crucifers, and some strains are pathogens of the model plant Arabidopsis thaliana.
Tomato bacterial speck is one of the most serious and feared plant diseases in the world
and is characterized by the presence of fatty and dark spots, initially small, that quickly
become brown to black in color on the leaflets, stems and fruit and reduce the quantity and
quality of fruit yield [56]. Even against this phytopathogen, the MD2 sample was found to
be the most active fraction with a MIC value of 8 mg/mL and an MBC value of 31 mg/mL.

Interestingly, the different antibacterial properties of the OMW purified fractions can-
not be solely attributed to the different antioxidant activity of the samples. Thus, the highly
active antibacterial MD2 sample (MIC range 8–16 mg/mL) was characterized by the highest
AA% value (82.44%, Table 3), and MD1 (AA% = 46.9%) and RO1 fractions (AA% = 34.61%)
showed similar anti-bacterial properties with MIC values in the 16–31 mg/mL range. How-
ever, despite the different AA% values, ROP2 (AA% = 26.9%) and MDd1 (AA% = 11.36%)
showed similar MIC values in the 62–125 mg/mL range but proved to be less effective
than the MDd2 fraction characterized by a reduced antioxidant activity (AA% = 10.74%).
This observation is in accordance with published results that correlate the differences in
antioxidant activities of OMV samples to the distinct phenolic profiles [39]. Similarly, the
concentration of polyphenols cannot be clearly linked to the MIC values of the fractions.
Thus, RO1 and MD1 samples contain a different quantity of polyphenols (TP values 8.9
and 6.5 g GAE/L, respectively) still showing similar MIC values (16–31 mg/mL). The
MDd2 sample (TP = 0.01 gGAE/L, MIC range: 31–62 mg/mL) proved to be as effective
as RO1 and MD1 against bacteria growth even though it contained a smaller quantity of
total polyphenols. Furthermore, the MDd2 fraction was more active than the ROP2 sample
(MIC 125–62 mg/mL), characterized by a higher polyphenol content (TP = 0.05 gGAE/L,
Table 2).

Table 4. MIC and MBC values expressed as mg/mL of the seven OMW samples on the selected Gram-
positive strains. Experiments were carried out in triplicate. The degree of concordance in all the exper-
iments was 3/3. Variation among triplicate samples was less than 10%. MRSA: methicillin-resistant S.
aureus strains; MRSE: methicillin-resistant S. epidermidis strains VRE: vancomycin-resistant isolates.

MF1 RO1 ROP2 MD1 MD2 MDd1 MDd2

MIC MBC MIC MBC MIC MBC MIC MBC MIC MBC MIC MBC MIC MBC

S. aureus
17 MRSA 125 >125 16 31 125 >125 16 31 8 16 125 >125 62 >125
18 MRSA 125 >125 16 31 125 >125 16 16 8 16 125 >125 62 >125

187 MRSA 125 >125 31 31 125 >125 16 31 8 16 125 >125 62 >125
188 MRSA 125 >125 16 31 125 >125 16 16 8 16 125 >125 62 >125

S. epidermidis
22 MRSE 125 >125 16 31 125 >125 16 16 8 16 125 >125 62 125
180 MRSE 62 >125 16 16 125 >125 16 16 8 16 62 125 62 62
181 MRSE 62 >125 16 16 125 >125 16 16 8 8 125 >125 62 125
222 MRSE 125 >125 16 16 125 >125 16 16 16 16 125 >125 62 125
E. faecalis

1 VRE 125 >125 16 62 125 >125 16 62 16 31 62 >125 62 >125
4 125 >125 16 62 125 >125 16 62 16 31 62 >125 31 >125

50 VRE 125 >125 16 62 125 >125 16 62 16 31 62 >125 62 >125
365 VRE 125 >125 16 125 125 >125 16 125 16 31 62 >125 31 >125
E. faecium

21 125 >125 16 62 125 >125 16 62 16 16 62 >125 62 >125
40 125 >125 16 62 125 >125 16 62 16 16 62 >125 62 >125

300 VRE 125 >125 16 62 125 >125 16 62 16 16 62 >125 62 >125
362 VRE 125 >125 16 62 125 >125 16 62 16 16 62 >125 31 >125
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Table 5. MIC and MBC values expressed as mg/mL of the seven OMW samples on the selected
Gram-negative strains. Experiments were carried out in triplicate. The degree of concordance in all
the experiments was 3/3. Variation among triplicate samples was less than 10%. C denotes resistance
to colistin; * denotes a class A carbapenemase (KPC)-producing bacterium.

MF1 RO1 ROP2 MD1 MD2 MDd1 MDd2

MIC MBC MIC MBC MIC MBC MIC MBC MIC MBC MIC MBC MIC MBC

P. aeruginosa
403 62 >125 16 31 62 >125 16 31 8 16 62 >125 31 125
432 62 >125 16 31 62 >125 16 31 8 16 62 >125 31 125
265c 125 >125 16 31 125 >125 16 31 16 16 62 >125 31 125

1 125 >125 16 31 125 >125 16 31 16 16 62 >125 31 125
2v 62 >125 16 31 62 >125 16 31 8 16 62 >125 31 125

19v 125 >125 16 31 125 >125 16 31 8 16 62 >125 31 125
16b 125 >125 16 31 125 >125 16 31 16 16 62 >125 31 125
12b 62 >125 16 31 125 >125 16 31 8 16 62 >125 31 125
8g 125 >125 16 31 62 >125 16 31 8 16 62 >125 31 125

A. baumannii
245 125 >125 16 31 125 >125 16 31 16 16 62 125 31 125

M. morganii
372 125 >125 16 31 125 >125 16 31 16 31 62 >125 31 125

P. stuarti
374 125 >125 16 31 125 >125 16 31 16 16 62 >125 62 125

K. pneumoniae
375 * 125 >125 31 62 125 >125 31 62 16 31 62 >125 62 125
376 * 62 >125 16 62 62 >125 16 62 8 31 62 >125 62 >125
377 * 125 >125 31 31 125 >125 31 62 16 31 62 >125 62 >125

S. marcescens
400 125 >125 31 31 125 >125 16 31 16 31 62 >125 31 125

S. maltophilia
391 62 >125 16 31 62 >125 16 31 8 16 62 >125 31 125
392 62 >125 16 31 62 >125 16 31 16 16 62 >125 31 125

E. coli
224 125 >125 31 62 125 >125 31 62 16 31 62 >125 62 >125

238 * 125 >125 31 62 125 >125 31 62 16 31 62 >125 62 >125
4 125 >125 31 62 125 >125 31 62 16 31 62 >125 62 >125

P. syringae
266 62 >125 16 31 62 >125 16 31 8 31 62 >125 31 125

To verify the potential effect of KCl concentration on the antibacterial activity of
OMW samples (Figures 3 and 4), a 40 g/L (0.5 M) KCl solution was tested against all the
bacteria strains. The MIC values obtained (data not shown) clarified that the growth of all
considered Gram-positive and Gram-negative species was not inhibited by the inorganic
residue, particularly K+, even at such a high concentration of KCl.

The favorable and powerful synergistic combination of the different components of
the OMV samples was also evident from the minimum bactericidal concentration (MBC)
values (Tables 4 and 5). The MD2 sample emerged as the most active fractions with an
excellent bactericidal capacity for Gram-positive and Gram-negative species.

Finally, the adopted testing approach represents an innovative strategy in the field
of OMW. The available literature usually focuses on the antibacterial activity of phenolic
extracts or phenolic enriched extracts obtained from OMW rather than on OMW as ob-
tained from the purification procedure [57–59]. Additionally, the available microbiological
investigations usually lack a quantitative determination of the MIC values and report only
qualitative information. A rare quantitative study was reported by Roila et al. [60]. The
authors evaluated the antibacterial activity of OMW polyphenol extracts against 65 strains
of P. fluorescens (including also the ATCC 13525 strains) isolated from mozzarella cheese.
The determined MIC values were in accordance with those assessed for the MD2 sample.

4. Conclusions

Through an innovative process that sequentially combines three membrane-based
strategies (MF, RO and VMD), different OMW fractions were isolated and character-
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ized. The eight analyzed fractions showed distinct antioxidant activities and various total
polyphenol contents that correlate with a different qualitative composition, as highlighted
by IR analyses.

The antibacterial potency of the different OMW samples (considered as whole mix-
tures) was evaluated in a quantitative assay. With the sole exception of the ROp1 fraction,
all analyzed samples showed significant antibacterial activity against clinically relevant
Gram-positive and Gram-negative pathogens, with MD2 being the most active sample.
Furthermore, the analyzed portions proved to be effective against the growth of P. syringae
pv. tomato, an important seedborne pathogen known to causes bacterial speck disease
in tomato.

Overall, the collected data indicate OMW as a valuable byproduct of olive oil produc-
tion process that can be valorized through a suitable purification process. The antibacterial
effects of OMW extracts represent a promising area for therapeutic purposes in the human
environment, particularly since the individual phenolic compounds appear to offer greater
activity when administered as an extract than when used in purified form.
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