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Abstract: Type 2 diabetes mellitus (T2DM) is associated with an oxidative milieu that often leads
to adverse health problems. Bioactive peptides of zein possess outstanding antioxidant activity;
however, their effects on hyperglycemia-related oxidative stress remain elusive. In the present
study, the dipeptide Tyr-Ala (YA), a functional peptide with typical health benefits, was applied to
alleviate oxidative stress in pancreatic islets under hyperglycemic conditions. By detecting viability,
antioxidant ability, and insulin secretion in INS-1 cells, YA showed excellent protection of INS-1 cells
from H2O2 oxidative stress, erasing reactive oxygen species (ROS) and promoting insulin secretion.
Moreover, by Western blotting, we found that YA can regulate the PI3K/Akt signaling pathway
associated with glycometabolism. After establishing a T2DM mice model, we treated mice with YA
and measured glucose, insulin, hemoglobin A1C (HbA1c), total cholesterol (TC), triglyceride (TG),
and malonaldehyde (MDA) levels and activities of superoxide dismutase (SOD) and glutathione
(GSH) from blood samples. We observed that YA could reduce the production of glucose, insulin,
HbA1c, TC, TG, and MDA, in addition to enhancing the activities of SOD and GSH. YA could also
repair the function of the kidneys and pancreas of T2DM mice. Along with the decline in fasting
blood glucose, the oxidative stress in islets was alleviated in T2DM mice after YA administration.
This may improve the health situation of diabetic patients in the future.

Keywords: type 2 diabetes; tyr-ala; INS-1 cells; peptide; reactive oxygen species

1. Introduction

Diabetes mellitus (DM) is a complex glucolipid metabolism disorder closely related
to the environment and genetics [1]. Ninety to ninety-five percent of DM patients have
type II diabetes mellitus (T2DM), which is characterized by chronically elevated levels of
glucose in the blood [2]. The increasing prevalence of T2DM, with a high mortality rate
worldwide, is a crucial health problem [3]. As many factors cause T2DM, its pathogenesis
remains unclear [4]. Insulin resistance (IR) and islet β-cell failure are the key pathogenic
factors of T2DM [5].

IR is always accompanied by the occurrence and development of T2DM, while islet
β-cell failure is a necessary component of T2DM. With the development of IR, insulin
signaling is altered, leading to reduced glucose uptake by muscle, liver, and adipose
cells, elevating blood glucose and resulting in T2DM [6]. Islet β-cell failure is caused
by mitochondrial oxidative elevated glucose metabolism and increased free fatty acids
(FFAs), which increase the mitochondrial membrane potential (MMP) and the production
of peroxides [7]. The generation of reactive oxygen species (ROS) by changing the redox
state of cells plays an important role in regulating metabolism. ROS play an important
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role in β-cell failure when blood glucose levels are high [8,9]. Under in vitro conditions,
however, it is difficult to simulate the long-term excessive energy situation, excessive
burden on β-cells, and mitochondrial function defects. Therefore, the production of ROS
in β-cells, which leads to oxidative damage and apoptosis, can be used as a model of
β-cell failure [10]. The triglyceride (TG)/FFA cycle is likely to protect β-cells by avoiding
excessive fuel, increased mitochondrial membrane potential, and ROS production. The
use of the TG/FFA cycle to avoid β-cell damage plays a key role in β-cell compensatory
processes [11]. This information can be used as a new direction for further studies on islet
cell biology. Human amyloid (hA) is a 37-amino acid peptide hormone linked by a disulfide
bond between amino acids 2 and 7. Several studies have shown that amyloid fibers are
cytotoxic, and islet amyloid peptide oligomers can cause cell membrane instability and
induce oxidative stress and mitochondrial damage in the cell [12,13]. Eventually, this leads
to β-cell apoptosis and damages islet function. This is one of the most important pathogenic
factors in T2DM [14].

The relief of oxidative stress mainly depends on various antioxidants inhibiting the
excessive production of ROS. Some bioactive substances extracted from natural products
have received increasing attention due to their excellent antioxidant capacity [15,16]. Zein
peptide, a small molecule peptide, has various biological activities, such as antioxidant
and anti-inflammation [17,18]; however, the molecular mechanism involved is still un-
clear. Tyr-Ala (YA) of zein was separated using protease hydrolysis, ultrafiltration, gel
column chromatography, and reversed-phase high-performance liquid chromatography
by our group [19]. The YA with 1,1-diphenyl-2-picrylhydrazyl free radical quenching
ability, 2,2′-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) radical quenching activity,
and superoxide anion quenching ability may play an important role in regulating blood
glucose levels; hence, we investigated the effect of YA on T2DM.

In our study, in vitro, the INS-1 cell line was used to explore the molecular mechanism
of YA against oxidative stress by H2O2 and human amylin, or high glucose stimulation.
In vivo, high-fat diet-induced diabetic mice were used as the animal model to further
estimate the antioxidant capacity of YA in T2DM, which is relevant for assessing the
biological activity of YA in the human body (Figure 1).
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Figure 1. Schematic experiments of the YA effect on diabetes in vitro and in vivo. In cell assays, YA
treatment increased cell viability and decreased intracellular ROS accumulation and increased insulin
secretion in INS-1 cells exposed to H2O2, human amylin, or high glucose stimulation, which was
achieved by activating the PI3K/AKT signaling pathway. In in vivo experiments, T2DM model was
established by feeding a high-fat diet daily for 10 weeks and injecting STZ for 3 days in the fourth
week. In T2DM mice, YA administration for 6 weeks improved the mice’s health, increased insulin
secretion levels, and decreased blood sugar levels. It also increased the expression of antioxidant
enzymes and decreased the levels of TG and TC. (ROS: reactive oxygen species; InsR: insulin receptor;
PIP2: phosphatidylinositol 4, 5-bisphosphate; PIP3: phosphatidylinositol-3, 4, 5-triphosphate; AKT:
protein kinase A; PI3K: Phosphatidylinositol 3-kinase; YA: Tyr-Ala; STZ: streptozocin).
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2. Materials and Methods
2.1. Chemicals

Tyr-Ala was prepared via protease hydrolysis of zein, which was catalyzed by the alka-
line protease Alcalase, followed by isolation, purification, and synthesis by China Peptides
Co., Ltd. (Shanghai, China). Streptozocin (STZ), D(+)-Sucrose, cholesterol, Sodium cholate,
Propylthiouracil, 2′-7′dichlorofluorescin diacetate (DCFH-DA), and thiazolyl blue tetra-
zolium bromide ((3-(4,5-dimethylthiazol-2-yl))-2,5-diphenyltetrazolium bromide, MTT)
were obtained from Sigma. Human amylin (hA) was purchased from Sunnyvale, which
was used for preparing amylin stock solutions using hexafluoro-2-isopropanol (HFIP) as
the solvent. The measured amounts of hA were solubilized in HFIP overnight to dis-
solve amylin completely. This approach efficiently removed preformed human amylin
aggregates. Before the experiment, the HFIP solvent was evaporated with a gentle stream
of nitrogen, and the peptide was then reconstituted in a reaction buffer to yield a final
monomer concentration of 20 µM.

2.2. Cell Culture

The INS-1 cell line was derived from a rat islet cell tumor and cultured in RPMI-
1640 medium (Gibco, New York, NY, USA) supplemented with 1 mM sodium pyruvate
(Sigma, St. Louis, MO, USA), 50 µM β-mercaptoethanol (Sigma, St. Louis, MO, USA),
10% fetal bovine serum (Kangyuan Biology, Tianjin, China), and 1% penicillin/streptomycin
(Solarbio, Beijing, China). The cells were maintained at 37 ◦C in a 5% CO2 atmosphere
incubator and passaged every three days. The cells in the logarithmic phase of growth at
passages of 6 to 20 were used to ensure reproducibility. After reaching 80% confluence,
1 × 104 cells/well were seeded into 96-well plates for all experiments and maintained in a
culture medium overnight unless otherwise specified.

2.3. MTT Reduction Assay

The reduction in MTT assay was used to assess the effect of YA on cell viability. The
different concentrations of YA (10 µM, 20 µM, 40 µM) were added and co-incubated with
H2O2 or hA for 24 h. MTT solution (1 mg/mL) was added to each well and incubated for
3 h at 37 ◦C. Next, MTT was replaced with isopropanol with 1% HCl, followed by shaking
for 15 min. Colorimetric measurements of viable cell numbers were performed at 570 nm
against a background measurement of 690 nm using a microplate spectrophotometer (Tecan
Group AG, Männedorf, Switzerland) [20].

2.4. Reactive Oxygen Species (ROS) Assay

The DCFH-DA probe was used to assay the ROS in cells. The different concentrations
of YA (10 µM, 20 µM, 40 µM) were added and co-incubated with H2O2 (50 µM). After treat-
ment for 24 h, 10 mM DCFH-DA was added to each well and incubated for 30 min at 37 ◦C.
Then, the cells were washed three times with HEPES buffer, and 150 µL/well HEPES buffer
was added. The total fluorescence intensity was measured at an excitation wavelength of
480 nm and emission wavelength of 525 nm using a microplate spectrophotometer (Tecan
Group AG, Männedorf, Switzerland) [21].

2.5. Insulin Secretion Assay

Insulin resistance model was established by incubating with 40 mM glucose for 24 h,
while the administration group was added with different concentrations of YA (10 µM,
20 µM, 40 µM) and co-incubated with glucose. Then, cells were cultured for 1 h in a Krebs–
Ringer buffer (KRB) containing 2.5 mM glucose and 16.7 mM glucose. Glucose-stimulated
insulin secretion (GSIS) and basal insulin secretion (BIS) in the supernatant of cells were
tested using an insulin secretion assay ELISA kit (R&D systems, Minnesota, USA). Then,
the insulin levels represented by the insulin release index (GSIS/BIS) were calculated [22].
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2.6. Western Blot

INS-1 cells were seeded into 6-well plates at 2 × 105 cells/well overnight and then
treated with glucose (40 mM) alone, co-incubation with glucose (40 mM) and YA (40 µM),
YA (40 µM) alone for 24 h. Cells were washed twice with HEPES (4-(2-Hydroxyethyl)-1-
piperazineethanesulfonic acid), and total lysates were prepared in cell lysis buffer (Cell
Signal Technology Inc., Danvers, MA, USA). Equal proteins from cell extracts were sepa-
rated by 12% SDS-PAGE and transferred onto a polyvinylidene difluoride membrane. The
membrane was blocked with blocking buffer (136.7 mM NaCl, 2.68 mM KCl, 10.14 mM
Na2HPO4, 1.76 mM KH2PO4 pH 7.5, 5% non-fat dry milk) at room temperature for 2 h.
Then, the membranes were probed with primary antibodies (PI3K-P85 1:1000, Akt 1:1000,
P-Akt (Ser 473) 1:1000, P-Akt (Thr 308) 1:1000, β-actin 1:1000) which were purchased by
CST (Cell Signaling Technology, Inc., Boston, MA, USA), respectively, overnight at 4 ◦C.
The blots were then incubated with corresponding horseradish peroxidase-conjugated
secondary antibodies (HRP labeled goat anti-rabbit IgG antibody 1:1000, CST, Boston,
MA, USA) for 1 h. Relative protein band intensities were detected using an enhanced
chemiluminescence (ECL) reagent and quantified by the Quantity One software (Bioscience
Biotech Co., Ltd., Shanghai, China).

2.7. Experimental Animals

Four-week-old male Chinese Kunming mice were purchased from the Experimental
Animal Center of Jilin University. The mice had free access to food and water. After 1 week
of acclimatization, the study commenced and lasted for 10 weeks (Figure 2). First, mice
were divided randomly into two groups: the control group (n = 10), which received a
normal diet, and the high-fat diet group (n = 50), fed a high-fat diet (20% D(+)-sucrose,
10% lard, 10% eggs, 1% cholesterol, 0.1% sodium cholate, 0.2% propylthiouracil, 58.7%
normal diet). After 4 weeks of diet induction, the mice in the high-fat diet group were
injected with 50 mg/kg of streptozocin (STZ) into the abdominal cavity for three days [23].
The fasting blood glucose of the high-fat diet group of mice, certified as successful T2DM
of the model, was approximately higher than 11.1 mmol/mL. Then, T2DM model mice
were randomly divided into the model (NS) group, YA (DL 5 mg/kg, DM 10 mg/kg, DH
20 mg/kg) group, and metformin (DMBG 100 mg/kg) group. After continuous tail vein
injection of drugs, except control and model groups, for 6 weeks, the mice deprived of
food overnight were sacrificed, and blood and tissue samples were collected for analysis.
The experiments were conducted according to the Guidelines for the Care and Use of
Laboratory Animals published by the United States National Institutes of Health (NIH
Publication, revised 2011), and procedures were approved by the Animal Care and Drug
Safety Evaluation committee of Jilin University.
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Figure 2. Schematic flow-chart of T2DM model mice establishment and experimental drug adminis-
tration. T2DM mice were established by feeding HFD daily for 10 weeks and injecting STZ intraperi-
toneally at the fourth week. Starting from week 5, mice were administered DL, DM, DH, DMBG for
6 weeks. Each group contained 10 mice. (ND: control feed; HFD: high fat feed; STZ: streptozocin; NS:
normal saline; DL: YA 5 mg/kg; DM: YA 10 mg/kg; DH: YA 20 mg/kg; DMBG: metformin).
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2.8. Body Weight and Fasting Blood Glucose Assay

Body weight measurements were conducted weekly using an electronic scale in the
morning. Fasting blood glucose was measured using a blood glucometer (GA-1, Sannuo
Bio, Changsha, China) and test strips (Sannuo Bio). The first drop of blood was collected
from the tip of the tail to minimize stress-induced changes in glucose levels.

2.9. Intraperitoneal Glucose Tolerance Test (IPGTT)

The anti-diabetic activity of dipeptide was measured in mice after injection of the drug
for 4 weeks by IPGTT. After the mice were fasted overnight, 20% glucose (10 mg/kg body
weight) in saline was intraperitoneally (IP) administered. Glucose levels were measured
using a blood glucometer at 0, 30, 60, 90, and 120 min.

2.10. Biochemical Assay

Blood samples were withdrawn from the retro-orbital sinus and centrifuged (3500 rpm
at 4 ◦C for 10 min). The serum was separated and stored at −20 ◦C for estimation of
superoxide dismutase (SOD), malonaldehyde (MDA), glutathione (GSH), INS, hemoglobin
A1C (HbA1c), total cholesterol (TC), and TG. INS, GSH, and MDA levels were measured
using ELISA kits (Uscn Life Science Inc., Wuhan, China), while the others were measured
using ELISA kits (Beyotime, Shanghai, China).

2.11. Histopathological Examination

At the end of the observational period, necropsy was performed on each animal to
weigh the liver, spleen, pancreas, and kidneys and calculate the organ coefficient (viscera
weight/body weight × 100%). The pancreas and kidneys were fixed in 10% buffered
formalin and then processed via dehydration, embedding, sectioning at 5 m thickness, and
hematoxylin and eosin (H&E) staining.

2.12. Statistical Analysis

Data were collected from several animals (n = 8/group) and presented as the mean ± SD.
Comparisons were performed by one-way ANOVA for the different groups, followed by
post hoc pairwise repetitive comparisons using Tukey’s test with GraphPad Prism software
(GraphPad software, San Diego, CA, USA). Statistical significance was set at p < 0.05.

3. Results
3.1. Effect of YA on INS-1 Cell Viability

Cell viability was measured to assess the cytoprotective effect of YA on H2O2− or
hA-induced toxicity in INS-1 cells, as shown in Figure 3A. When INS-1 cells were treated
with H2O2 (50 µM) or hA (20 µM), there was a decrease in cell viability. However, treatment
of INS-1 cells with YA protected cells from H2O2− or hA-induced toxicity. With the increase
in YA concentrations, the INS-1 cell viability was increased.

3.2. Effect of YA on ROS Accumulation in INS-1 Cells

The DCF fluorescence intensity represents the ROS level. After treatment with H2O2
(50 µM), the green fluorescence intensity was obviously enhanced, which indicated that the
level of intracellular ROS was increased (Figure 3B). The ROS levels of INS-1cells treated
with co-treatment of YA (10 µM, 20 µM, and 40 µM) and H2O2 (50 µM) decreased compared
to those of H2O2 alone. When INS-1 cells were treated with YA alone, the ROS levels were
almost the same and lower than those in the control group. This indicates YA does not
stimulate cell to produce ROS and perhaps reduces the ROS level in an islet tumor cell.
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YA (10, 20, and 40 µM), hA (20 µM), co-incubation of hA (20 µM) and YA (10, 20, and 40 µM), and YA
(40 µM) alone for 24 h. Cell viability was measured using an MTT viability assay. (*** p < 0.001 vs.
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in INS-1 cells cultured by medium with 40 mM glucose. INS-1 cells were plated in a 96-well plate
overnight and then treated with either glucose (40 µM) or co-incubation of glucose (40 µM) and
YA (10 µM, 20 µM, 40 µM) for 24 h. (** p < 0.01 vs. glucose, *** p < 0.001 vs. glucose). All data are
expressed as mean ± SD for each group (n = 3). HG: glucose 40 mM.

3.3. Effect of YA on Insulin Secretion

Secreted insulin levels were determined by GSIS/BIS. INS-1 cells were exposed to
2.5 mM glucose and 16.7 mM glucose in the KRB for 1 h, and GSIS/BIS were calculated. In
contrast to the control, the treatment with 40 mM glucose for 24 h decreased the GSIS/BIS
levels by almost 30% (Figure 3C). However, the GSIS/BIS levels increased when cells were
treated with 20 or 40 µM YA (p < 0.01, p < 0.001).

3.4. Regulation of YA on PI3K/Akt Signal Pathway

As glucose promotes beta-cell proliferation via upregulation of the PI3K/AKT path-
way, we firstly examined whether YA could stimulate PI3K-p85 production. Administration
of 40 mM glucose significantly reduced PI3K-p85 protein levels compared to the control
group, while co-incubation with 40 µM YA almost restored PI3K-p85 protein levels to
untreated controls (Figure 4A). In addition, YA alone hardly affects PI3K-p85 protein levels,
which are attributed to the stress-resistance effect by YA peptide [19]. Next, we investigated
the effect of YA on p-Akt (Ser 473) and p-Akt (Thr 308) signaling. The levels of p-Akt
(Ser 473) and p-Akt (Thr 308) in the glucose-treated group were significantly lower than
those in the control group. However, after co-treatment with YA (40 µM), the levels of p-Akt
(Ser 473) significantly increased, and p-Akt (Thr 308) rose a little (Figure 4B). Furthermore,
the expression of p-Akt (Thr 308) of YA alone group reduced a bit. The results indicated
that the effect of YA on inhibition of INS-1 injury induced by high glucose was more closely
related to PI3K-p85 and p-Akt (Ser 473).
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Figure 4. Effects of YA treatment on PI3K/Akt signaling pathway in INS-1 cells. INS-1 cells
were treated with 40 µM YA and 40 mM glucose for 24 h, the PI3K (A) and phosphorylation of
Akt473/Akt308 (B) were detected using Western blot. Equal amounts of proteins from each sample
were separated on SDS-PAGE. Phosphorylation of Akt473/Akt308 was probed by p-Akt (Ser 473)
and p-Akt (Thr 308) antibody. PI3K was probed by PI3K-p85 antibody. Total β-actin and Akt were
taken as two control groups separately. Values are means± SD from three representative experiments
(n = 3). (* p < 0.05 vs. glucose, ** p < 0.01 vs. glucose, *** p < 0.001 vs. glucose).

3.5. Effect of YA on General Condition and Weight of Mice

Mice in the control group appeared healthy, with lustrous fur and no hair loss. The
intake of water and food did not obviously change. However, untreated T2DM mice were
depressed and had mature gray fur. Water and food intake increased. After 6 weeks of YA
treatment, the fur of the mice was brightening. Compared with untreated T2DM mice, the
treated mice had reduced water and food intake.

Body weight is also an important indicator of mouse health. Compared with the
control group, the weight gain of the mice in the T2DM group was slower. After treatment
with different concentrations of YA and DMBG, the body weight was higher than that of
T2DM mice after 5 weeks (Figure 5).

3.6. YA Decrease Blood Glucose Levels in T2DM Mice

The fasting plasma glucose (FPG) levels of the T2DM mice increased in contrast
to the normal mice and did not decline over time. FPG levels in the YA and DMBG
groups decreased significantly compared to those in T2DM mice at the end of 10th week
(Figure 6). It shows that YA can decrease glucose levels in T2DM mice during the continuous
intravenous injection.
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Figure 5. Effects of YA on body weight of T2DM mice. (A) Body weight differences between the
different mouse groups. (B) Body weights of different groups mice on the 10th week. Data are
expressed as mean ± SD for each group. (n = 8) (DMBG: metformin) (*** p < 0.001 vs. Control;
** p < 0.01 vs. Control; * p < 0.05 vs. Control).
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Figure 6. Fasting plasma glucose (FPG) of different groups during administration. Values are
expressed as mean ± SD for each group. (n = 8) (*** p < 0.001 vs. Control group, ˆ p < 0.05 vs. T2DM
Model group at the 10th week, ˆˆ p < 0.01 vs. T2DM Model group at the 10th week, ˆˆˆ p < 0.001 vs.
T2DM Model group at the 10th week).

3.7. Effect of YA on Glucose Tolerance of T2DM Mice

The glucose tolerance test showed the insulin sensitivity of T2DM mice. After 4 weeks
of treatment, all groups of mice were challenged with a high glucose solution, and the FPG
levels of mice reached a peak after 30 min. As time passed, FPG levels in the control mice
decreased to normal levels within 120 min because of normal insulin secretion. However,
the insulin sensitivity of the T2DM mice was weakened, and the FPG and blood glucose
levels were higher than those in normal mice. During YA and DMBG treatment, FPG
levels decreased much more rapidly than in untreated mice (Figure 7). This shows that YA
improved insulin sensitivity in T2DM mice in a concentration-dependent manner.

3.8. Effect of YA on Insulin and HbA1c Levels

Compared with normal mice, the insulin levels of mice in the T2DM mice were de-
creased. Insulin levels in YA-treated mice increased in a concentration-dependent manner,
and insulin levels in the medium-and high-dose YA groups were significantly higher than
those in the T2DM mice and the control group. Compared with the T2DM model group,
the insulin levels in the mice administered with DMBG increased, but the difference was
not significant. The results demonstrated that YA could increase insulin levels in mice with
type 2 diabetes (Figure 8A).
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*** p < 0.001 vs. T2DM model).
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Figure 8. Effect of YA on the levels of insulin, hemoglobin A1C (HbA1c), triglyceride (TG), total
cholesterol (TC), and malonaldehyde (MDA), and on the activities of superoxide dismutase (SOD)
and glutathione (GSH) in serum. (A) insulin; (B) HbA1c; (C) TG; (D) TC; (E) SOD; (F) MDA; (G) GSH.
Data are expressed as mean ± SD for each group. (n = 8; DMBG: metformin) (# p < 0.05 vs. control,
## p < 0.01 vs. control, ### p < 0.001 vs. control, * p < 0.05 vs. model, ** p < 0.01 vs. model,
*** p < 0.001 vs. model).
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HbA1c is the product of the combination of hemoglobin and blood sugar, and its
content is proportional to the blood sugar concentration. As shown in Figure 8B, the HbA1c
levels in the T2DM model group had significantly increased. After administration of YA,
the HbA1c levels were obviously decreased. Although HbA1c levels in the DMBG group
were also reduced, there was no significant difference compared to the T2DM mice. In brief,
YA had an inhibitory effect on HbA1c in T2DM mice, and the inhibitory ability was better
than DMBG.

3.9. Effect of YA on TG and TC Levels

TG and TC levels in the T2DM mice were significantly higher than those in the control
group. After YA and DMBG administration for 6 weeks, TG andTC levels were significantly
decreased compared with those in the T2DM model group, and the high-dose YA and
DMBG groups had slightly lower TG levels than the control group (Figure 8B–D). Overall,
YA decreased TG and TC production in T2DM mice.

3.10. Effect of YA on Levels of SOD, MDA, and GSH

Long-term hyperglycemia could induce oxidative stress in vascular endothelial cells,
and then, we measured redox indicators in mouse serum. SOD activity was much lower
in the T2DM mice than in the control group. After the YA and DMBG treatment for
6 weeks, the SOD and GSH activities were effectively enhanced compared with untreated
T2DM mice (Figure 8E,G). MDA levels in the T2DM mice were significantly higher than
those in the control mice. Both the YA and DMBG groups had significantly suppressed
MDA production in mice with type 2 diabetes. YA reduced MDA levels in mice in a
concentration-dependent manner (Figure 8F). These results indicated that YA effectively
alleviated oxidative stress in T2DM mice.

3.11. Effect on Liver, Spleen, Pancreas, and Kidney

The liver, spleen, pancreas, and kidneys of the T2DM mice were heavier than those
of the control group, but the kidneys were most obviously increased. The weights of the
organs from the YA and DMBG groups were lower than those of the T2DM mice (Table 1).
The weight of organs in the YA-treated group decreased with increasing concentrations
of YA, and the weight of spleen, pancreas, and kidneys were recovered to the same level
as the control group when the YA concentration was 20 mg/kg. H&E staining of the
pancreas and kidneys (Figures 9 and 10) showed that the cytoplasm was dyed pink, and
the nucleus was dyed blue. H&E staining of the pancreas (Figure 9) showed that the islets
in normal mice were circular or elliptic funiculars with clear boundaries. These islet cells
were well distributed with a good supply of blood vessels and tightly packed with several
cytoplasm-rich cells. The nuclear boundaries of these cells were also clear. There were
no obvious pathological changes in the pancreas. On the contrary, the pancreatic islets
of T2DM mice were significantly reduced, smaller in size, sparsely arranged, and with
blurred borders. The islet cells with nuclear pyknosis were swollen, necrotic, and with a
visible vacuole degeneration. Unlike T2DM mice, after YA and DMBG treatment, the islet
cells were relatively intact, with clear boundaries. The cells were found morphologically
intact with no obvious swelling or necrosis. The nucleus pyknosis deformation also
significantly decreased.
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Table 1. Weights of livers, spleens, pancreases, and kidneys in different groups. (# p < 0.05 vs. control;
* p < 0.05 vs. T2DM model).

Group
Organs Coefficient @

Liver Spleen Pancreas Kidney

Control 3.95 ± 0.45 0.39 ± 0.06 0.56 ± 0.05 1.20 ± 0.26
T2DM Model 4.98 ± 0.58 * 0.50 ± 0.26 0.58 ± 0.09 1.55 ± 0.30
YA 5 mg/kg 4.75 ± 0.98 0.39 ± 0.15 0.53 ± 0.19 1.48 ± 0.21
YA 10 mg/kg 5.02 ± 0.51 0.41 ± 0.13 0.58 ± 0.16 1.65 ± 0.17
YA 20 mg/kg 4.75 ± 0.44 # 0.39 ± 0.17 0.53 ± 0.06 1.27 ± 0.61

DMBG 100 mg/kg 4.36 ± 0.51 # 0.26 ± 0.07 0.61 ± 0.14 1.54 ± 0.18
@ Values are expressed as mean ± SD for each group (n = 8).
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Figure 10. Representative H&E staining sections of kidneys from mice in the different groups (×200).
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100 mg/mL.
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H&E staining of the kidneys (Figure 10) revealed clear cortical glomerular boundaries
in the kidneys of control group mice, with clear and abundant glomerular stromal and renal
tubular epithelial cells. There was no obvious inflammatory cell infiltration in interstitial
renal cortical cells and no obvious pathological changes in glomeruli and tubules. In the
T2DM mice, the number of adjacent glomerular stromal cells and nuclear enrichment was
reduced, and the renal cortex was locally infiltrated with many inflammatory cells, mainly
lymphocytes. Compared with T2DM mice, in mice treated with low and medium doses of
YA, the renal cortex was not significantly changed; renal cortical interstitium was infiltrated
by some inflammatory cells. In addition, the number of glomerular stromal cells decreased.
After high-dose YA and DMBG treatment, the renal cortexes were relatively intact, and
the glomerular boundaries were clear, with no obvious reduction in glomerular stromal
cells. A few glomerular stromal cells were found to be pyknotic. These kidneys also had
clear renal tubular epithelial cells and nucleoli. In addition, there was a few interstitial
inflammatory cells in the renal cortex.

In conclusion, treatment with YA had a protective effect on the pancreas and kidneys
of mice with type 2 diabetes.

4. Discussion

Pancreatic islet β-cell lines have different features; however, in this study, we used
INS-1 cells, which contain more insulin secretion granules and produce fewer oxygen
radical scavenging enzymes. Furthermore, INS-1 cells are negative for glucagon and am-
icine, thereby avoiding their influence on insulin secretion [24]. The number of islet β-cells
changes with the severity of glucose metabolism disorders and insulin secretion [25]. Cell
necrosis or apoptosis are important factors influencing the number of INS-1 cells, while
apoptosis is the main driver of damage because of ROS oxidative stress [26]. Oxidative
stress is induced in INS-1 cells by many factors, including high blood glucose, high con-
centrations of free fatty acids, streptozotocin (STZ), or H2O2. In normal physiological
status, oxidative stress can activate antioxidant enzymes to reduce ROS-induced damage.
However, low production of antioxidant enzymes in INS-1 cells leads to impaired ROS
removal [27]. Excessive ROS can cause a decrease in the activity of INS-1 cells, ultimately
leading to cell necrosis and apoptosis [28,29]. Insulin resistance is also related to oxidative-
stress-induced dysfunction in type 2 diabetes [5]. In this experiment, we treated INS-1 cells
with hydrogen peroxide, hA or high concentration of glucose to change ROS levels and
establish an insulin resistance model. The results of YA treatment showed that YA could
effectively improve cell viability and alleviate insulin resistance by removing ROS.

Islet amyloid (IA) deposition is a pathological feature of pancreatic islets in type 2 diabetes.
Islet amyloid formation occurs through the aggregation of islet amyloid polypeptide (IAPP),
which is normally secreted by beta cells [30]. Under normal physiological conditions, IA
is secreted by β-cells and regulates blood glucose levels via insulin and glucagon. IA,
except for insulin, is the only endocrine hormone that can lower blood glucose in vivo [31].
However, under pathological conditions, IA is a pathological product of T2DM. In the
early stages of T2DM, the reduced secretory function of β-cells causes a decrease in insulin
and amylin levels, which is an important mechanism, leading to IR and dysregulation
of glucose metabolism [32]. Therefore, suppression of amylin is a feasible method for
preventing and treating T2DM. This study showed that YA inhibits IAPP toxicity and
improves cell viability.

Furthermore, researchers have found that suppression of the PI3K/Akt signaling
pathway is implicated in high-glucose-induced cell dysfunction [33]. As shown in Figure 1,
insulin activates and binds to the insulin receptor (InsR), inducing PI3K-AKT activation.
The InsR is activated by insulin and binds to it, which in turn induces PI3K-AKT activation.
After PI3K receives signals from tyrosine kinases or G-protein-coupled receptors, it recruits
the regulatory subunit p85 to the plasma membrane and binds to the catalytic subunit p110,
promoting phosphatidylinositol 4, 5-bisphosphate (PIP2) to generate phosphatidylinositol-
3, 4, 5-triphosphate (PIP3) [34]. PIP3 binds to phosphoinositide-dependent kinase 1 (PDK1)
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through the signaling protein of the homology domain of AKT, induces the activated AKT
to the cell membrane, and then the AKT is fully activated by phosphorylation of Thr308 and
Ser473, regulating glycogen synthesis, gluconeogenesis, and glucose uptake [35]. Excessive
ROS inhibits InsR phosphorylation and blocks downstream signaling pathways. In this
study, YA reduced intracellular ROS levels and alleviated oxidative damage, and on the
other hand, YA reversed the downregulation of Thr308/Ser473-phosphorylated Akt and
PI3K-p85 induced by high glucose stimulation. These results indicated that YA reversed
the effects of GSIS in INS-1 cells through the PI3K/Akt pathway.

T2DM is often associated with dyslipidemia, an initial factor in IR, and is a key compo-
nent of many diseases, such as nonalcoholic fatty liver disease (NAFLD), hypertension, and
hyperlipidemia [36,37]. Rising TG levels are usually a sign of dyslipidemia. Blood lipids
include TC and TG, mostly from dietary intake, caused by consuming a high-fat and high-
sugar diet, leading to the accelerated synthesis of TC and TG [38]. Thus, it is important to
improve lipid metabolism in T2DM patients. In this study, during treatment with either YA
or metformin for a month, both TC and TG levels in type 2 diabetic mice were significantly
decreased. As treatment with YA reduced TC and TG levels, we inferred that YA might
decrease blood lipids, reducing the complications of T2DM and arresting dyslipidemia.

FPG and HbA1c are important indicators for evaluating T2DM [39]. After treatment
for 1 month, FPG levels in the YA and DMBG groups were significantly lower than those in
the T2DM mice but were still higher than those in the control group. This indicated that YA
can treat mice with type 2 diabetes; however, their blood glucose levels did not return to
normal. HbA1c, formed by an irreversible metabolic reaction between hemoglobin and
glucose, reflects the mean plasma glucose [40]. Our research indicated that during YA and
DMBG treatment, FPG and HbA1c levels were markedly decreased compared with those
in the T2DM mice, which could alleviate diabetes mellitus.

SOD, MDA, and GSH are the main biomarkers of oxidative stress [41]. SOD is an
important antioxidant enzyme that can remove free radicals in the body, especially super-
oxide anions [42]. MDA, a degradation product of lipid peroxides and a toxic byproduct
of lipid peroxidation in vivo, is relatively stable and easy to measure and is commonly
used as an indicator of oxidative stress [43]. GSH mediates cellular redox homeostasis,
protects the integrity of the cell membrane, and is an important indicator for measuring the
antioxidant ability of an organism [44]. In this study, SOD and GSH levels were significantly
increased, and MDA levels were significantly decreased in YA-treated T2DM mice. This
could accelerate the TG/FFA cycle, which is likely to protect β-cells by avoiding excessive
fuel and ROS production [11]. The results showed that YA increased GSH activity in type
2 diabetic mice, which was even higher than that in normal mice. Therefore, YA exhibits
good oxidation resistance in vivo.

The animal viscera coefficient is an important measure for identifying genetic qualities
of the animal, and the weight, shape, color, and luster of the viscera are important indicators
of animal health. Lipid ectopic deposition refers to lipid accumulation in non-fatty tissues,
such as the muscles and pancreas, but especially in the liver. If too many lipids accumulate
in non-fatty tissues, it can cause serious damage to the organism. The liver, spleen, pancreas,
and kidney viscera coefficients were higher in the model group than in the control group
because of lipid accumulation. Furthermore, viscera coefficients of mice treated with YA or
DMBG were decreased and approached the values seen in the normal mice. This indicates
that YA may remove lipids from organs. Furthermore, H&E staining of the kidney and
pancreas of mice showed that YA and DMBG treatment improved both the morphology and
activity of islet cells, and the renal cortex also recovered. Furthermore, YA had a protective
effect on the kidneys and pancreas of type 2 diabetic mice, resulting in a reduction in
diabetes symptoms.

5. Conclusions

In conclusion, our study demonstrated that YA extracted from zein has a diabetes-
relieving effect. YA attenuated oxidative damage to INS-1 cells by H2O2 or human amylin
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and promoted insulin secretion under high glucose stimulation in vitro. Moreover, YA
treatment could reduce HbA1c, TC, TG, and MDA levels in T2DM mice, indicating that YA
has a therapeutic effect on T2DM and its complications. This activity could be related to
activate the PI3K/AKT signaling pathway with regulating oxidative stress, implying that
YA may serve as a strategy to improve treatment of diabetes mellitus.
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