
Citation: Lin, K.; Baritaki, S.;

Vivarelli, S.; Falzone, L.; Scalisi, A.;

Libra, M.; Bonavida, B. The Breast

Cancer Protooncogenes HER2,

BRCA1 and BRCA2 and Their

Regulation by the iNOS/NOS2 Axis.

Antioxidants 2022, 11, 1195. https://

doi.org/10.3390/antiox11061195

Academic Editors: Paola Corti,

Daniela Giordano and

Bulent Mutus

Received: 8 May 2022

Accepted: 6 June 2022

Published: 17 June 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

antioxidants

Review

The Breast Cancer Protooncogenes HER2, BRCA1 and BRCA2
and Their Regulation by the iNOS/NOS2 Axis
Katie Lin 1, Stavroula Baritaki 2, Silvia Vivarelli 3,4 , Luca Falzone 5 , Aurora Scalisi 6, Massimo Libra 3,7

and Benjamin Bonavida 1,*

1 Jonsson Comprehensive Cancer Center, Department of Microbiology, Immunology and Molecular Genetics,
David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA;
katielin@mednet.ucla.edu

2 Laboratory of Experimental Oncology, Division of Surgery, School of Medicine, University of Crete,
71003 Heraklion, Crete, Greece; baritaks@uoc.gr

3 Department of Biomedical and Biotechnological Sciences, University of Catania, 95030 Catania, Italy;
silvia.vivarelli@unime.it (S.V.); m.libra@unict.it (M.L.)

4 Occupational Medicine Section, Department of Biomedical and Dental Sciences and Morphofunctional
Imaging, University of Messina, 98123 Messina, Italy

5 Epidemiology and Biostatistics Unit, IRCCS Istituto Nazionale Tumori “Fondazione G. Pascale”,
80131 Naples, Italy; l.falzone@istitutotumori.na.it

6 Italian League against Cancer, 95030 Catania, Italy; a.scalizi@unict.it
7 Research Centre for Prevention, Diagnosis and Treatment of Cancer, University of Catania,

95030 Catania, Italy
* Correspondence: bbonavida@mednet.ucla.edu

Abstract: The expression of inducible nitric oxide synthase (iNOS; NOS2) and derived NO in various
cancers was reported to exert pro- and anti-tumorigenic effects depending on the levels of expression
and the tumor types. In humans, the breast cancer level of iNOS was reported to be overexpressed, to
exhibit pro-tumorigenic activities, and to be of prognostic significance. Likewise, the expression of
the oncogenes HER2, BRCA1, and BRCA2 has been associated with malignancy. The interrelationship
between the expression of these protooncogenes and oncogenes and the expression of iNOS is not
clear. We have hypothesized that there exist cross-talk signaling pathways between the breast cancer
protooncogenes, the iNOS axis, and iNOS-mediated NO mutations of these protooncogenes into
oncogenes. We review the molecular regulation of the expression of the protooncogenes in breast
cancer and their interrelationships with iNOS expression and activities. In addition, we discuss
the roles of iNOS, HER2, BRCA1/2, and NO metabolism in the pathophysiology of cancer stem
cells. Bioinformatic analyses have been performed and have found suggested molecular alterations
responsible for breast cancer aggressiveness. These include the association of BRCA1/2 mutations
and HER2 amplifications with the dysregulation of the NOS pathway. We propose that future studies
should be undertaken to investigate the regulatory mechanisms underlying the expression of iNOS
and various breast cancer oncogenes, with the aim of identifying new therapeutic targets for the
treatment of breast cancers that are refractory to current treatments.

Keywords: breast cancer; iNOS/NOS2; nitric oxide; HER2; BRCA1; BRCA2; TNBC

1. Introduction

Several reports have described the role of inducible nitric oxide synthase (iNOS) in
various cancers and its clinical significance [1–6]. Such reports have indicated that the
expression of iNOS and nitric oxide (NO) in some cancers is anti-tumorigenic. For example,
it was found that in mice, iNOS is anti-tumorigenic in colon cancer cells [7,8]. Additionally,
when iNOS was transfected into murine melanoma cells, iNOS inhibited tumorigenesis and
metastasis [9,10]. However, other reports demonstrated the pro-tumorigenic activity of NO.
One study found that iNOS is induced both in the epithelial cells and the environmental
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stroma community of a tumor, which promotes tumorigenesis [3,11]. Findings in breast
cancer also reported that iNOS expression was correlated with tumor progression and was
of prognostic significance [12–16].

Various mechanisms have been postulated for the contrasting role of iNOS/NO in
cancers. Specifically, it was found that the dual role of iNOS is dependent on its concen-
tration, cell type, and environment [3]. High concentrations of iNOS-induced NO were
found in human ovarian cancer cell lines [10,17]. It was also found that there were higher
levels of iNOS expression in less differentiated breast carcinomas [10,18]. The underlying
mechanisms of the relationship between high iNOS expression and the pathogenesis of
human breast cancer are not well defined. This review aims to address these mechanisms.
We hypothesize that there are some cross-talk signaling pathways between iNOS expression
and the expression of breast cancer protooncogenes: HER2, BRCA1, and BRCA2. In this
report, we describe the molecular regulations of the expression of the breast cancer onco-
genes HER2, BRCA1, and BRCA2 and the role of iNOS expression in those regulations. In
addition, we performed bioinformatic analyses to delineate the interrelationships between
iNOS and the expression of the oncogenes above.

2. Breast Cancer

Breast cancer is a heterogeneous disease that is the global leading cause of cancer-
related death in women [19,20]. It is heterogeneous because it consists of many different
subtypes that have different clinical outcomes [20–22]. As a result, there must be continuing
research advancements in diagnosing and treating breast cancer [20–22]. Specifically, it
is important to study tumor progression and resistance to treatments at the clinical and
molecular levels [20–22]. Different subtypes of breast cancer include alterations in the gene
expression of oncogenes such as HER2/neu, Ras, and PI3K [23].

Protooncogenes are the genes in normal cells that drive the cell cycle forward through
cell proliferation and differentiation [24]. However, when protooncogenes undergo gain-of-
function mutations, they become permanently activated, becoming oncogenes [24]. These
oncogenes stimulate uncontrollable cell division, which promotes tumorigenesis in the
development of cancer [23]. These protooncogenes that turn into oncogenes are HER2,
BRCA1, and BRCA2.

2.1. Breast Cancer Protooncogenes
2.1.1. HER2

There are many oncogenes involved in the development and progression of breast
cancer. HER2 is an oncogene that is located on chromosome 17q and encodes the 185 kDa
tyrosine kinase receptor protein [23,25]. HER2 is a protein that is a member of the epidermal
growth factor receptor (EGFR) family [26,27]. The overexpression of HER2 is found in
breast, ovarian, lung, and oral cancers [27–34]. Specifically, overexpression of HER2 has
been found in 20%–30% of invasive human breast cancer cases [23,28,35].

Transcriptional Regulation of HER2

It has been shown that HER2 is overexpressed through the transactivation of its
promoter [36,37]. One study found that E1A is capable of repressing the HER2/neu gene
at the transcriptional level. E1A represses HER2 by inhibiting transcription factors that
bind to and activate the promoter region of HER2 [37,38]. Specifically, E1A binds to
p300/CBP and inactivates the p300/CBP complex on HER2 [37,39]. Since p300/CBP is
an enhancer-binding protein for HER2, the inhibition of p300/CBP represses HER2 gene
expression [37,40,41].

Another study investigated the effects of the SV40 large T-antigen (c-myc) on HER2
gene expression [42,43]. Hung et al. characterized the rat, mouse, and human HER2
promoters and used transient transfection assays [41,43–47]. Hung et al. found that when c-
myc was transfected into the HER2 promoter regions, the rat HER2 promoter was inhibited
while the human HER2 gene expression was unaffected [42,43,48,49]. As a result, Hung
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et al. concluded that there must be continuing large T gene therapy on HER2 in human
cancer cells to study its regulation of the overexpression of HER2 [43].

Additionally, the effects of epigallocatechin-3 gallate (EGCG) on HER2/neu in breast
cancer cells were investigated [50]. Pianetti et al. analyzed the focal mammary tumors of
transgenic mice that overexpressed HER2/neu [50,51]. EGCG is a main antioxidant in green
tea, and this study fed mice green tea to study the effects of EGCG on HER2/neu [50,52].
Through the use of the Akt kinase assay and immunoblot analysis, Pianetti et al. found that
EGCG slows the proliferation and reduces the growth of tumor cells [50]. EGCG does this
by reducing basal receptor tyrosine phosphorylation of HER2/neu [50]. EGCG also inhibits
HER2/neu signaling pathways, including the pathway that activates NF-kB [50,53]. NF-kB
causes inflammation in tumor cells, which contributes to the progression of cancer [50,53].
As a result, EGCG inhibits the growth and proliferation of mammary tumors by inhibiting
HER2/neu signaling pathways [50]. It also methylates HER2/neu, which results in the
inhibition of HER2/neu gene and protein expression [50].

Epigenetic Regulation of HER2

There are also epigenetic factors that affect the expression of HER2/neu. A study
investigated how DNA methylation and demethylation affect HER2/neu expression in
ovarian cancer [54,55]. The promoter region of HER2/neu has six CpG sites [55,56]. In
this experiment, Hattori et al. methylated these CpG sites using specific primers in PCR
that targeted positions 2, 206, 213, 299, and 513 in the HER2/neu promoter region [55,57].
Hattori et al. then used immunohistochemistry and found that methylating the HER2/neu
promoter resulted in the silencing of the gene [55]. These results were then compared to
the demethylated HER2/neu promoter, where it was found that demethylation increased
HER2/neu gene expression [54,55]. This study was conducted by comparing the samples
of 43 human ovarian cancers to 43 human non-cancerous ovarian tissues [55]. As a result, it
was found that methylation of the promoter region of HER2/neu downregulates HER2
gene expression while demethylation upregulates HER2 gene expression [55].

Post-Transcriptional Regulation of HER2

There are also post-transcriptional factors that regulate HER2/neu gene expres-
sion [58]. Small interfering RNAs (siRNAs) are double-stranded RNAs that induce post-
transcriptional silencing of specific targeted genes [58]. Yang et al. transfected u20bp
miRNAs into HER2/neu of human breast cancer cells [58,59]. From the transfection, it
was found that retrovirus-mediated RNA interference using siRNAs resulted in the gene
silencing of HER2/neu [58]. As a result, siRNAs are able to decrease the expression of
HER2/neu mRNA and protein, which can lead to inhibited tumor growth [58]. The siRNAs
are synthesized to be homologous to regions of the HER2 exons [60]. Choudhury et al. also
synthesized them to be homologous to other HER family members [60].

2.1.2. BRCA1
Wild-Type BRCA1

BRCA1 functions as a tumor suppressor gene that controls cell cycle checkpoints
and repairs DNA within a normal cell [61]. However, in breast and ovarian cancer cells,
BRCA1 is mutated [61]. Normally, BRCA1 represses estrogen receptor α (ER-α), which is
a transcription factor that can mediate tumorigenesis upon exposure to estrogen [61–63].
BRCA1 is a gene that has many important cellular functions within the body, including
DNA repair, cell cycle regulation, and transcriptional regulation of other genes [64–66].
Specifically, it binds to complex DNA structures and regulates the G2/M checkpoint protein
Chk1 [67–69]. It also can induce large-scale chromatin unfolding, which contributes to
transcription and repair within the cell [68,70].

When BRCA1 is mutated, it no longer represses ER-α, which results in the develop-
ment and progression of triple-negative breast cancer [61–63,71].
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Additionally, BRCA1 normally functions to control the migration of breast cancer cells,
which limits metastasis within the body [61]. The mechanism behind this is that BRCA1
ubiquitinates ezrin, radixin, and moesin (ERM), which is a membrane protein complex
that promotes metastasis [61,72]. However, when BRCA1 is mutated in breast cancer cells,
it can no longer degrade the ERM complex [61,73]. This results in the overexpression of
ERM proteins, which leads to the metastasis of breast cancer cells from the prime site to the
secondary site [61].

It was also found that in mammary epithelial cells, mutated BRCA1 promotes cell
motility and invasion [61,74]. In these cells, BRCA1 enhances the protein expression of
transcription factors Snail 1 and Snail 2, known as slug [61,75,76]. The mechanism behind
BRCA1′s regulation of Snail 1 and Snail 2 remains unknown [75]. Upregulation of Snail
1 and Snail 2 elevates the level of epithelial-to-mesenchymal phenotype (EMT) in the
cells [61,76]. EMT changes the shape of cells to be more spindle-shaped, making them
highly motile [61]. As a result, the mutation of BRCA1 results in EMT being induced, which
promotes metastasis of breast cancer cells [61]. Another study found that BRCA1 has a role
in maintaining genetic stability in a normal cell [77].

Specifically, there are three domains of the BRCA1 protein that are mutated in many
cancer cases [78,79]. One such domain is the RING domain that encompasses amino acids
1-109 (exons 2-7), which functions as an E3 ubiquitin ligase [78,79]. To test this, one study
mutated the BRCA1 RING domain by replacing it with alanine in genetically engineered
mice [79–81]. Clark et al. found that the E3 ubiquitin ligase activity and therefore the RING
domain plays a large role in tumor suppression [79–81].

Another domain is the region encoded by exons 11-13, which encompasses over 65%
of the BRCA1 sequence. It also encodes the nuclear localization sequences (NLS) and
has binding sites for proteins such as the retinoblastoma protein (RB), c-Myc, Rad50, and
Rad51 [79,82]. Researchers are continuing to investigate the exact structure and function
of this domain, but Clark et al. have a general idea from assessing the functions of its
binding partners [79,82]. One of its binding proteins includes Myc, which is a transcription
factor for a large number of genes, where binding to this domain would activate other
genes [79,82]. Additionally, Rad50, Rad51, and PALB2 are involved in DNA repair. Lastly,
RB controls cell cycle progression [79,82]. As a result, the researchers concluded that the
domain of exons 11-13 plays a large role in the tumor suppressor function of BRCA1 [79,82].

Finally, there is the BRCT domain from exons 16-24 (amino acids 1650-1863), which is
a phosphoprotein-binding domain [79,83]. It has specificity for proteins that are phospho-
rylated by ATM/ATR kinases, which are both activated by DNA damage [79,83]. The phos-
phoproteins that bind to the domain are BACH1, CtIP, and CCDC98/abraxas [79,84–86].
The main function of the BRCT domain is to recognize the sequence pSer-X-X-Phe in its
phosphorylated binding partners in order to modulate interactions between BRCA1 and
phosphoproteins [79,84–86]. BRCT phosphorylates target phosphoproteins in response to
DNA damage in the cell [79,84–86]. As a result, the mutation of this domain can lead to a
loss of tumor suppressor function in BRCA1 [79].

However, when there is a deficiency of BRCA1, there is uncontrolled cell division,
increased proliferation, and tumorigenesis [71–73]. Estradiol (E2) is an abundant estrogen
that is found in women, and it was shown to induce high levels of BRCA1 during puberty
and pregnancy in mice [87–89]. This is because E2 stimulation leads to the estrogen receptor
(ER-α) and p300 binding to an activator protein site on the BRCA1 promoter [89,90]. As
a result, estrogen regulates BRCA1 activity. However, it was also found that BRCA1
transcriptionally regulates ER-α, creating a negative feedback loop [89,91]. BRCA1 inhibits
transcriptional activation of ER-α by deregulating p300, which is a coactivator of ER-
α [89,91]. However, ER-α signaling pathways promote the proliferation and differentiation
of breast and ovarian tissues [89]. When BRCA1 is mutated, most of the time it results in
the inability of BRCA1 to repress ER-α [89,91]. As a result, tumorigenesis occurs, resulting
in BRCA1-related malignancies in breast, ovary, and prostate tissues [66,89].
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Mutated BRCA1

BRCA1 and BRCA2 mutations are known to contribute to the susceptibility of breast
and ovarian cancers. Through genetic linkage studies, BRCA1 has been localized to
chromosome 17q [92,93]. Specifically, BRCA1 accounts for 81% of breast–ovarian cancer
families, while BRCA2 only accounts for 14% of these families [93–95]. However, studies
have shown that the combination of BRCA1 and BRCA2 mutations accounts for the most
high-risk breast cancer families [93,96]. This was found by using genetic markers to test
for BRCA1 and BRCA2 mutations in families from the Breast Cancer Linkage Consortium
(BCLC) [93].

When BRCA1 is mutated, it was found that it can indirectly promote tumorigenesis
by increasing the mutation rates of other genes [70,97]. Xu et al. found that BRCA1 can
induce mutations in the Trp53 tumor suppressor gene [70,98,99]. Specifically, the mutated
BRCA1 inhibits the expression of Trp53 in mammary gland tissues [70,98,99]. As a result,
the inhibition of Trp53 results in increased cell proliferation and therefore tumor formation
in mammary cells [70,98,99]. Yasmeen et al. analyzed the effects of the 3450delCAAG
BRCA1 mutation on breast carcinogenesis and metastasis [67]. Specifically, it was found
that in human mammary epithelial cell lines, this mutation in BRCA1 promoted cell cycle
progression, cell motility, and cell invasion [67]. Yasmeen et al. tested this by comparing
the mutated cell lines to the normal BRCA1 cell lines using transfection, Western blotting
techniques, and RT-PCR [67].

It was found that mutated BRCA1 deregulates cell cycle progression at the G0/G1
phase [67,100,101]. This is because BRCA1 deregulates cyclins A, E, D1, D2, and D3 along
with their catalytic partners Cdk2, Cdk4, and Cdk6 [67,100,101]. As a result, mammary
epithelial cells surpass the G0/G1 cell cycle checkpoint, allowing for uncontrolled cell
cycle progression [67,100,101]. Additionally, mutated BRCA1 deregulates the expression of
caveolin-1, P-cadherin, E-cadherin, and Id-1, which are major regulators of cell invasion and
metastasis [67]. As a result, the 3450delCAAG BRCA1 mutation deregulates regulators of
cell cycle progression, cell motility, and cell invasion, which can contribute to the metastasis
of breast and ovarian cancers [67].

Another study found that mutated BRCA1 affects the expression of the β-subunit of
human chorionic gonadotropin (β-hCG) in breast cancer [102–104]. β-hCG has been shown
to inhibit apoptosis, promote cell invasion and proliferation, and act as an immunosuppres-
sant [61,105–107]. When BRCA1 is mutated, it upregulates the expression of β-hCG. As a
result, it allows for β-hCG to suppress immune responses through downregulating IL3,
IL13R, TNF12, and TNF10 [61,108,109]. It also has been shown that the mutated BRCA1
induces β-hCG-mediated tumorigenesis through TGFBRII signaling [61]. Therefore, Sengo-
dan et al. found that BRCA1 increases the expression of β-hCG, which is a molecule that
induces metastasis of breast and ovarian cancer cells [61].

Transcriptional Regulation of Wild-Type BRCA1

There are also transcription factors that regulate the expression of BRCA1. The protein
inhibitor of differentiation 4 (ID4) has been shown to downregulate the expression of
BRCA1 in MCF-7 cells [68]. It was also found that the GA-binding protein (GABP)-α/β
binds to the promoter and activates BRCA1 gene expression in MCF-7 cells and T47-D
cells [68]. Additionally, the carboxyl-terminal binding protein 1 (CtBP1) has been found to
be present in 92% of invasive breast cancer cases [110]. Through the use of nuclear staining
of human breast tissue, transfections, and ChIP assays, Deng et al. found that CtBP1
downregulated BRCA1 at the transcriptional level [110]. It inhibits BRCA1 by binding
to the promoter region, which enables CtBP1 to interact with DNA-binding proteins and
co-repressor complexes such as CtIP [110]. As a result, BRCA1 mRNA levels are lower in
cells with higher CtBP1 levels, which results in tumorigenesis [110].

There is also regulation of BRCA1 gene expression by the Rb-E2F pathway in murine
and human cancers [111]. In BRCA1, there is a DNA-binding site for E2F directly up-
stream of exon 1, and when E2F binds to this site, it transcriptionally activates the BRCA1
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pathway [111,112]. However, Rb—a product of the retinoblastoma susceptibility gene
(RB1)—inhibits the expression of E2F by binding to and blocking the activation domain
of E2F proteins [111,113–115]. Therefore, when Rb inhibits the expression of E2F, it can no
longer activate BRCA1 transcription, resulting in decreased BRCA1 gene expression [111].
This inactivation of the tumor suppressor gene contributes to cancer development [111].
These results were found through the use of in vivo transfections of E2F1 in transgenic
mouse models, Northern blot analyses, electrophoretic mobility shift assays (EMSA), and
plasmid and luciferase reporter assays [111].

Epigenetic Regulation of Wild-Type BRCA1

There are also epigenetic factors that regulate the expression of BRCA1 [68]. In
one study, the effects of methylation on the promoter region of BRCA1 were investi-
gated [68,116]. The methylation of the promoter caused the promoter to be less accessi-
ble [68,117]. As a result, the inability of activators to bind to their respective sites on the
promoter leads to decreased BRCA1 transcription and gene expression [68,116]. Rice et al.
conducted this experiment using high-resolution bisulfite sequence analysis of 21 axillary
node-negative breast cancer patient specimens [116].

Lu et al. used a candidate gene approach to study how hypermethylation affects
BRCA1 gene expression [117]. It was found that BRCA1 has a CpG island in its 5′ region of
the promoter [117]. When this CpG island is hypermethylated, it results in the silencing of
the expression of the BRCA1 gene [117–119].

The effects of hypoxia on BRCA1 gene expression because hypoxia often occurs in
tumor microenvironments were investigated [120]. Specifically, Lu et al. examined the
histone modifications that were affected by hypoxia [120]. Using ChIP assays and re-
porter constructs, Lu et al. analyzed the cells MCF-7, A549, RKO, and HCC 38 [120].
Lu et al. found that hypoxia increased H3K9 methylation and decreased H3K9 acety-
lation at the promoter region of BRCA1 [120]. Therefore, hypoxia can regulate BRCA1
expression by transcriptionally repressing the promoter through histone methylation and
acetylation [120].

Bosviel et al. found that the metabolite S-equol had an effect on the gene expres-
sion of BRCA1 and BRCA2 in MCF-7 and MDA-MB-231 cells [121]. This resulted in the
transcriptional activation of BRCA1 and BRCA2, increasing gene expression and tumor
suppressor function [121]. As a result, demethylation activates gene expression in BRCA1
and BRCA2 [121].

Post-Transcriptional Regulation of BRCA1

There are miRNAs that regulate BRCA1 expression in triple-negative sporadic breast
cancer cases [122]. Specifically, miR-146a and miR-146b-5p are two miRNAs that bind to
the same site in the BRCA1 promoter region of the mRNA [122]. Using reporter assays and
transfection of miRNAs in mammary cell lines, it was found that miR-146a and miR-146b-5p
both downregulate the expression of BRCA1 [122]. Garcia et al. concluded this because they
found that the miRNAs increased proliferation and decreased homologous recombination,
which are two impaired processes that are normally regulated by BRCA1 [122].

Other post-transcriptional factors include the miR-15/107 group of miRNAs, which
regulates the BRCA1 coding sequence in primates and rodents [123,124]. In this study,
the miR-15/107 group of miRNAs were transfected into cell lines HT-29 and MCF-7 [124].
After using transient transfection, Quann et al. used quantitative reverse transcriptase PCR,
luciferase validation of miRNA targets, Western immunoblotting, and statistical analyses to
analyze the effects of the miRNAs on BRCA1 gene expression [124]. Eight of ten miRNAs
in the miR-15/107 group downregulate BRCA1 mRNA abundance [124,125]. The miRNAs
repress BRCA1 by degrading its RNA targets and repressing the translation of messenger
RNAs (mRNAs) [124,126,127]. As a result, the miR-15/107 group of miRNAs is a repressor
of BRCA1 gene expression through its coding sequence [124].



Antioxidants 2022, 11, 1195 7 of 35

2.1.3. BRCA2

BRCA2 is a large protein made of 27 exons and 3418 acids that is localized to the
nucleus in MCF7 cells [128–130]. There have been studies that have shown that BRCA2
may play a role in the regulation of transcription [129,131]. There has also been a study
that has shown that BRCA2 is involved in DNA repair and recombination by binding to
rad51 [129,132]. Bertwistle et al. found that BRCA2 is cell cycle-regulated and is induced at
the late G1/early S phase, which is before DNA synthesis [129,133]. However, since BRCA2
is also involved in DNA repair, this means that during DNA synthesis its role could solely
be to maintain genome integrity during replication [129,133]. Hence, BRCA2 is a tumor
suppressor gene like BRCA1 [129].

Transcriptional Regulation of BRCA2

Mutations of BRCA2 have been linked to tumorigenesis in murine sporadic breast
cancers [134,135]. In the murine BRCA2 gene, there is a region 148 bp upstream of the
first exon that is necessary to activate transcription of BRCA2 in mammary cells [135,136].
It was also found that there is a 52 bp fragment between regions −92 and −40 bp that is
necessary for promoter activity [136]. This is because it contains a CREB/ATF-binding
site, where the CREB transcription factor family can bind to this region in the promoter
to activate gene transcription [136]. Specifically, the transcription factors CREB-1, ATF-1,
and CREM bind to their binding site on BRCA2 to activate gene expression [136]. Callens
et al. inhibited these transcription factors, where a decrease in BRCA2 gene expression was
observed [136]. Therefore, the CREB family upregulates BRCA2 gene expression [136].

There are DNA-damaging agents that regulate BRCA2 promoter activity in breast
cancer cell lines [137]. Specifically, Wu et al. focused on the effects of adriamycin (ADR)
and mitomycin C (MMC) on BRCA2 promoter activity [137]. Wu et al. found that ADR
downregulates BRCA2 in a p53-dependent manner [137]. This means that the presence
of ADR and MMC results in p53 inhibiting the USF transcription factor from binding
to the BRCA2 minimal promoter, resulting in the downregulation of BRCA2 promoter
activity [137]. This downregulation decreases BRCA2 mRNA and protein levels in the cell
as a result of DNA damage induced by agents such as MMC and ADR [137].

Epigenetic Regulation of BRCA2

There are also epigenetic factors that regulate BRCA1 and BRCA2, such as hyperme-
thylation [138]. Lobanova et al. used molecular genetic studies of 50 breast cancer tissues,
each in different stages [138]. In 34% of the breast cancer cases, the promoter region of
BRCA1 was hypermethylated [138]. The BRCA2 promoter region was hypermethylated
in 50% of their cases [138]. In this case, hypermethylation inhibited BRCA1 and BRCA2
expression by blocking transcription factors from binding to the promoter [117–119]. There-
fore, the promoter cannot be activated and mRNA and protein levels decrease [138]. This
inhibits the function of BRCA1 and BRCA2 as tumor suppressor genes that regulate the
cell cycle [130]. As a result, hypermethylation of BRCA1 and BRCA2 promoters can lead to
the tumorigenesis of cells [138].

Dworkin et al. identified that methylation of BRCA2 can also affect BRCA2 gene
expression [139]. In this study, 15 tumors that lacked the loss of heterozygosity (LOH)
of the BRCA2 wild-type allele were analyzed [139]. Through sampling these tissues and
analyzing their mutation type, it was found that silencing of BRCA2 through methylation
was not very common in tumor cells [139]. However, in the tumor cells where BRCA2 was
silenced, methylation silenced BRCA2 by binding to the promoter region and inhibiting
other transcription factors from binding, like hypermethylation [139].

Post Transcriptional Regulation of BRCA2

There are also post-transcriptional factors that regulate BRCA2 expression through
interactions with miRNAs [140]. Specifically, one study by Mogilyansky et al. tested the
interactions of the miR-17/92 cluster with the mRNA of BRCA2 in pancreatic, breast, colon,
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and kidney tissue cell lines [140]. Luciferase reporter assays were used to find that in the
cluster, miR-19a and miR-19b interact with the 3′UTR region of BRCA2′s mRNA [140].
The overexpression of these miRNAs resulted in a decrease in BRCA2 mRNA levels and
therefore a decrease in BRCA2 protein levels in these cell lines [140]. Therefore, miR-19a and
miR-19b both downregulate BRCA2 gene expression by directly decreasing mRNAs [140].

There are also lncRNAs that are involved in regulating the repairment of double-
stranded DNA breaks, which can promote tumorigenesis [141]. One known lncRNA is
PCAT-1, which is a cytoplasmic lncRNA that is induced by genotoxic stress [141–143].
Presner et al. found that PCAT-1 regulates the expression of BRCA2 in prostate cancer
cells [141]. PCAT-1 post-transcriptionally represses the BRCA2 3′UTR region of the mRNA,
which disrupts homologous recombination (HR) [142].

3. iNOS/NO
3.1. General

Inducible nitric oxide synthase (iNOS, NOS2) is an enzyme that catalyzes the produc-
tion of large amounts of nitric oxide (NO) by L-arginine [144,145]. Specifically, it oxidizes
L-arginine to produce L-citrulline and NO [146,147] (Figure 1). L-Arginine uptake and avail-
ability are controlled by the cationic amino acid transporters CAT1, CAT2, and CAT3 [148].
These transporters control L-arginine uptake, which in turn regulates the production of
NO by iNOS [148]. iNOS is a main source of NO in the body and regulates the immune
system [149,150].
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Unlike eNOS and nNOS, iNOS is not regulated by calcium levels in the body [150–152]
(Figure 1). In order to activate eNOS and nNOS expression, calcium (Ca2+) has to bind
to calmodulin (CaM) to allow CaM to bind to the CaM-binding domains of eNOS and
nNOS [153,154]. However, in iNOS, CaM is naturally tightly bound to the CaM-binding
domain without the need for Ca2+ [147,155]. As a result, iNOS is unregulated by intra-
cellular Ca2+ levels and therefore is a major contributor to the overproduction of NO in
the body [140,150]. The positive effects of NO overproduction include defending the host
against viral or microbial pathogens. In the Vaccinia virus, NO inhibits DNA synthesis
by inhibiting the activity of DNA-synthesizing enzymes such as ribonucleotide reductase
(RR) [156,157]. NO inhibits the activity of RR by scavenging the tyrosyl radical that is
necessary for the catalysis of RR [158]. As a result, there are decreased levels of Vaccinia
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protein synthesis. This was found by generating the Vaccinia virus recombinant that ex-
pressed murine iNOS in vitro [157,159,160]. The negative effects include contributing to
the pathogenesis of inflammatory diseases such as atherosclerosis [149,150,161–163]. iNOS
is expressed in atherosclerotic lesions, where NO reacts with superoxide anion, causing
oxidative damage that leads to cellular damage and inflammation [162,164,165].

There are different functions of NO synthesized by iNOS, where the concentration
level of NO can either protect against disease or contribute to the pathogenesis of dis-
ease [166–168]. iNOS producing NO can have immunoregulatory effects by functioning
as an intra- and intercellular signaling molecule that can inhibit or enhance the immune
response [149,160,169]. NO binds to and induces a conformational change in the enzymes
involved in immune responses. The conformational change can either activate the enzyme
or hinder the ability of the enzyme to catalyze the reaction [149]. However, the expression
of iNOS is also involved in the pathogenesis of immune diseases. This is seen in the L.
donovani infection in the liver, where the expression of iNOS inhibits T cell proliferation or
induces T cell apoptosis, furthering the progression of infection [149,169–171].

3.1.1. Transcriptional Regulation of iNOS

The human iNOS gene is located on chromosome 17 and consists of 26 exons and
25 introns [172,173]. iNOS gene expression is regulated at different levels, including
transcriptional regulation [173,174]. A number of transcription factors were reported to
bind the iNOS gene promoter, resulting in either the activation or the inhibition of iNOS
transcription [169,175].

In Table 1, one of the first transcription factors identified as a direct transcriptional
inducer of the iNOS gene is the nuclear factor (NF)-κB [169,176]. In addition, iNOS tran-
scription was found to be under the regulation of the STAT-1α pathway. When IFN-γ is
present in the cell, it activates cytoplasmic JAKS that tyrosine phosphorylates the transcrip-
tion factor STAT-1α. This process enables STAT-1α to dimerize, translocate to the nucleus,
and activate iNOS gene expression [169,177–179].

Table 1. Regulation of iNOS.

Transcriptional Factors: Name Type of Factor Expression

NF-kB Pre-transcriptional factor Upregulation
STAT-1α Pre-transcriptional factor Upregulation

cAMP-induced transcription factors Pre-transcriptional factors Upregulation

AP-1 Pre-transcriptional factors Downregulation in human
iNOSUpregulation in murine iNOS

Octamer factor Pre-transcriptional factors Upregulation
PPAR Pre-transcriptional factors Downregulation
p53 Pre-transcriptional factors Downregulation

HIF-1 Pre-transcriptional factors Upregulation
RAR-α Pre-transcriptional factors Downregulation
ER-β Pre-transcriptional factors Upregulation

Nostrill (lncRNA) Transcription factor Upregulation
DNA methylation Epigenetic post-transcriptional regulation Downregulation

Histone H3K9 methylation Epigenetic post-transcriptional regulation Downregulation
Hypermethylation Epigenetic post-transcriptional regulation Downregulation

Demethylation Epigenetic post-transcriptional regulation Upregulation

The cAMP-induced transcription factors bind to the C/EBP-binding sites at positions
−155 to −163 bp on the murine iNOS promoter [180]. In addition, AP-1 is a transcription
factor that regulates murine iNOS expression by binding to the iNOS promoter at position
−1125 bp. However, in human iNOS, overexpression of AP-1 was shown to inhibit iNOS
promoter activity using a supershift assay [169,175].

The octamer factor binds to the iNOS promoter region 24 bp upstream from the TATA
box and activates iNOS transcription in murine and rat cells [169,181–183]. The peroxisome
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proliferator-activated receptors (PPARs) inhibit iNOS promoter activity indirectly by inhi-
bition of NF-kB or AP-1 through competition for CBP/p300 in human chondrocytes and
murine macrophage cells [169,184–186].

The tumor suppressor p53 inhibits iNOS promoter activity through transcriptional
trans-repression of the promoter in human and murine epithelial cells [169,187,188]. The
hypoxia-induced factor-1 (HIF-1) enhances iNOS promoter activity by binding to the HIF-1
site on the promoter in murine macrophages [169,189,190]. The retinoic acid receptor-α
(RAR-α) uses RXR-PPAR-γ heterodimers to inhibit murine iNOS activity [169,191–193].
The estrogen receptor-β (ER-β) mediates the transcriptional activation of the murine iNOS
promoter, which was found using an immunoblot analysis [169,193,194].

Long non-coding RNAs (lncRNAs) were further validated to control iNOS gene
expression. Specifically, the effects of the intergenic lncRNA named Nostrill on iNOS gene
expression were analyzed in human microglia [195]. When Nostrill expression is induced by
cytokine LPS [195–198], it drives secondary and late iNOS gene transcription [195,199,200].
It can also scaffold the RNA polymerase II at the iNOS promoter region, enhancing the
efficiency of the promoter, ultimately increasing iNOS transcription [195,201–203].

3.1.2. Epigenetic Regulation

The human iNOS gene is also regulated at an epigenetic level. It was found that DNA
methylation played a large role in the transcriptional silencing of the iNOS gene at its
promoter [204,205].

Acetylation is another epigenetic factor that regulates iNOS gene expression [206].
Hypermethylation of the iNOS gene promoter can regulate iNOS gene expression [207].
Demethylation is another epigenetic factor that can regulate the expression of the iNOS
gene in human articular cartilage cells [208]. To study the effects of demethylation, one
study used transfection of human articular cartilage samples and fluorescence-activated
sorting [208] (Table 1).

3.1.3. Post-Transcriptional Regulation

iNOS expression is further regulated at a post-transcriptional level mainly through
destabilization of its transcript [209]. Furthermore, several microRNAs have been reported
to negatively regulate iNOS gene expression, directly or indirectly through facilitating
mRNA degradation or inhibiting translational activity and protein synthesis (Table 1).

3.1.4. iNOS-Derived NO Levels in Cells

NO is a signaling molecule that is produced by NO synthases eNOS, nNOS, and
iNOS [146,147]. Specifically, iNOS is responsible for the regulation of NO in the im-
mune system [149,150]. iNOS transcription is induced by cytokines such as LPS and
IFN-γ [210,211]. One experiment used the direct measurement of NO release using an
NO-specific amperometric probe and a cyclic AMP assay [211]. They found that low NO
basal levels are always present in the cytoplasm of the cell [210–212]. It also takes 3–4 h for
NO levels to be increased by iNOS induction [210–212]. They conducted a 48 h experiment,
where they found that iNOS is capable of producing and maintaining higher NO levels for
24–48 h after induction before returning to basal levels [210].

After NO is produced by iNOS, it has a half-life in the range of 9–900 min [213,214].
This half-life is a result of physiological NO reacting with oxygen (O2) to produce ni-
trite (NO2-) [215]. Nitrite is then further oxidized to form nitrate (NO3-), where NO is
metabolized [215]. This results in the return of NO levels in immune cells to return to
basal levels [215]. In biological systems, the metabolic rate of NO to nitrite and nitrate
is dependent on both oxygen concentrations and ambient NO concentrations [215]. As a
result, the shortest half-life of NO occurs after iNOS is induced in immune cells, where NO
concentrations are at the highest levels [210,214].
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3.2. iNOS-Induced NO Effects

The induction of iNOS increases levels of exogenous NO, which can lead to the S-
nitrosylation of different transcription factors. S-nitrosylation is the process of covalently
attaching a nitric oxide moiety to a cysteine thiol. This process can result in regulating the
function and expression of different proteins [216,217].

Reynaert et al. investigated the effects of iNOS-induced NO S-nitrosylation of the
NF-kB family of transcription factors [217,218]. NF-kB transcription factors play a large
role in immune and inflammatory responses [217]. It also regulates cell survival and prolif-
eration [174]. S-nitrosylation by NO in NF-kB inhibits NF-kB-dependent gene transcription,
promoter activity, and DNA binding [217,219,220].

3.3. iNOS/NO Functions in Cancers

iNOS-induced NO plays many roles in cancer development [16]. One study found
that iNOS-induced NO upregulates the expression of matrix metalloproteinase 2 (MMP2),
MMP-0, and VEGF, which promote metastasis [16].

Kielbik et al. found that iNOS-induced NO can also lead to the progression of ovarian
cancer [4,221,222]. NO suppresses BRCA1 and BRCA2 promoter activity, which decreases
their mRNA expression [4]. BRCA2 is another tumor suppressor gene that is involved in
DNA repair [129].

Saed et al. analyzed epithelial ovarian carcinoma (EOC) cells in their pro-oxidant
state [219–226]. In this state, there is increased expression of both iNOS and NO, and when
iNOS was induced by L-arginine, it resulted in lower apoptosis in the EOC cells [223–226].
The mechanism behind this was that iNOS-induced NO S-nitrosylated caspase-3. Caspase-3
is a lysosomal enzyme that is involved in apoptosis for the cells, where S-nitrosylation
decreases its activity and therefore decreases apoptosis in EOC cells, which results in the
progression of ovarian cancer [223–226].

Sha and Marshall investigated how iNOS-derived NO-dependent S-nitrosylation
post-transcriptionally modified proteins [227]. The effects on the p53 tumor suppressor
protein were studied [227]. p53 is modified by Hdm2-mediated proteasomal degrada-
tion [227,228]. However, when NO is present, it S-nitrosylates Hdm2, inhibiting the Hdm2
pathway [227,229]. Therefore, it increases p53 levels in the cell through S-nitrosylation of
Hdm2, which is a ubiquitin ligase [227,229]. It has also been found that S-nitrosylation of the
protein S100B can increase p53 activity because S100B is a binding partner of p53 [227,228].

Jia et al. investigated how iNOS-induced NO can S-nitrosylate GAPDH, which is
a key glycolytic enzyme [230,231]. When GAPDH is S-nitrosylated, it regulates enzyme
activity [230,231]. iNOS induces the S-nitrosylation of GAPDH at Cys152 or Cys247 in
response to the activation of the S100A8/A9 complex [231]. Additionally, it was found
that the S-nitrosylation of GAPDH dysregulates the IFN-γ translational pathway, which
is a pathway that exhibits anti-tumor properties [231,232]. As a result, iNOS-induced NO
S-nitrosylation can regulate the expression of target proteins that can result in inflammation
and cytotoxicity within different cells [231].

4. iNOS and Breast Cancer Implications
4.1. Triple-Negative Breast Cancer (TNBC)

iNOS-induced NO has been shown to contribute to the progression of basal-like triple-
negative breast cancer (TNBC) [233,234]. NO induced mutations in p53 and activated
the epidermal growth factor receptor (EGFR) through S-nitrosylation [234–237]. Specifi-
cally, this S-nitrosylation resulted in the phosphorylation and therefore activation of the
EGFR/ERK/MAPK pathway [14,236]. When this pathway is phosphorylated, it activates
the metabolite prostaglandin E2 (PGE2) [14,238,239]. PGE2 was found to promote cell
migration, invasion, and proliferation on top of inhibiting apoptosis [14,238,239]. PGE2
also leads to COX-2 overexpression, which promotes inflammation in cells [233,236]. This is
important because inflammation is a major driver of cancer metastasis [240]. These results
are schematically represented in Figure 2.
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Figure 2. Role of NO in breast cancer (BC) and other relevant cancers. (A) Pathways regulated by
NO in BC and relative intracellular NO-mediated effects. (B) Direct (plain lines) and indirect (dotted
lines) pathways correlating NO with HER2 (top), (C) BRCA1 (middle), and (D) BRCA2 (bottom). OC,
ovarian cancer; PC, pancreatic cancer; EMT, epithelial–mesenchymal transition.

In TNBC, Garrido et al. found that iNOS-induced NO activated the NF-kB pathway
and increased the secretion of cytokines IL-8, IL-1β, and TNFα [14,241–243]. Interestingly,
the activation of the EGFR pathway induced the expression of these cytokines [14]. IL-8
has been shown to cause cell invasion, metastasis, and epithelial-to-mesenchymal transi-
tion [14,236,244]. IL-1β and TNFα have cytotoxic effects in the cell and promote tumor
progression [14,245–248]. NF-kB promotes inflammation in cancer cells [50,53]. Overall,
iNOS actives the EGFR/ERK/MAPK pathway, which results in the activation of PGE2,
COX-2, IL-8, IL-1β, TNFα, and NF-kB [14]. All of these factors promote the progression of
cancer through metastasis, cell invasion, and inflammation [14].

iNOS expression regulates the expression of TNBC biomarkers [15]. Chen et al. used
shRNA-guided knockdown to downregulate iNOS in TNBC cells [15]. When iNOS was
knocked down, tumor marker CD1 along with special TNBC biomarkers RUNX1 and
BCL11A were downregulated [15]. The iNOS knockdown also upregulated the tumor
suppressor CK1 [15]. As a result, the knockdown of iNOS can partially reverse the tumori-
genesis of TNBC cells [15].

Chen et al. found similar effects when iNOS was inhibited by NG-monomethyl-L-
arginine monoacetate (L-NMMA) and 1400 W [15,249]. The inhibition of iNOS decreased
cell proliferation, cell migration, and cancer stem cell self-renewal [15,249]. iNOS overex-
pression can also result in colon adenoma, enhanced KRAS-induced lung carcinogenesis,
inflammation, tumor growth, and glioma stem cell proliferation [15,188,250,251].
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4.2. ER Breast Cancer

In estrogen receptor-negative (ER-) breast cancer, it was found that Ets-1 is a tran-
scriptional mediator of NO signaling [16,243]. Ets-1 promotes tumorigenesis by activating
the Ras/MEK/ERK signaling pathway [16,237]. Ets-1 is a proto-oncogene that promotes
angiogenesis and extracellular matrix remodeling [16,252–254]. It is activated through
binding to the MMP-9 gene [16,255]. MMP-9 expression also promotes HER2 oncogenic
expression [16,256,257]. As a result, when Ets-1 is activated, it binds to and activates
MMP-9 expression, which in turn also activates HER2 [16,255–257]. Therefore, there is an
indirect relationship between NO and HER2 as a result of them both being mediated by the
transcription factor Ets-1 [16]. These results are shown above in Figure 2B.

Mishra et al. analyzed the effects of eNOS-induced NO on the progression of can-
cer [16]. In the presence of estrogen, eNOS activates the phosphatidylinositol 3-kinase
(PI3K)/Akt/eNOS signaling pathway [16,258,259]. It also activates the ERK-1/2 path-
way [16,258,259]. Both of these pathways have signaling-mediated effects that promote
breast cancer [16,258,259]. It was also found that in the breast cancer subtype invasive
ductal carcinoma, NO biosynthesis was upregulated in higher-grade tumors [16,17].

5. iNOS and Breast Cancer Oncogenes HER2, BRCA1, and BRCA2

iNOS-derived NO has been found to contribute to the progression of breast can-
cer [12,13]. Specifically, iNOS-derived NO can disrupt DNA repair mechanisms and can
cause genomic instability [13,260–263]. It has been found that the rise in NO levels can alter
the levels of cell proliferation and apoptosis in cells [13,234,264]. This can lead to mutations
that are linked to the initiation, promotion, and progression of cancer [13].

5.1. iNOS and HER2

The relationship between IFN-γ, iNOS, and HER2 expression was investigated by
Marth et al. [228]. IFN-γ induces the expression of iNOS [265]. However, IFN-γ decreases
the expression of the HER2 oncogene [265,266]. This was against the predictions of the
study because iNOS is often related to the induction of oncogenes [265]. Marth et al.
suspected that this lack of correlation could be due to the fact that iNOS is dependent on
the activation of other signaling pathways besides IFN-γ [265,267,268]. Therefore, other
signaling pathways could be necessary to establish the relationship between iNOS and
HER2 [265,267,268].

5.2. iNOS and BRCA1

Yakovlev et al. analyzed how iNOS affects the function of BRCA1 in breast cancer
cells [13,269]. BRCA1 is a tumor suppressor gene that is involved in cell cycle regulation
and DNA repair [71–73]. The presence of iNOS-induced NO led to the dephosphorylation
of RBL2 in the promoter region of BRCA1 [13,270,271]. This causes the formation of the
RBL2/E2F4 complex in the same region [13,270,271]. As a result, E2F4 replaces E2F1 in
binding to the BRCA1 promoter [13,270,271]. This is important because E2F1 is an activator
while E2F4 is an inhibitor, where this shift causes the inhibition of BRCA1 promoter
activity [13,270,271]. These results are shown above in Figure 2C.

Therefore, BRCA1 cannot perform homologous recombination repair, resulting in the
increase in error-prone nonhomologous end joining (NHEJ) in the cell [13]. The increase
in mutations causes inflammation, carcinogenesis, and genomic instability, which all con-
tribute to the progression of breast cancer [13]. Yakovlev et al. came to these conclusions by
performing cell cultures with MCF-10A, AF49, and RAW264.7 cells [13].

Plenchette et al. found that iNOS-induced NO can alter BRCA1 tumor suppressor activ-
ity through NO donors [13,272]. Specifically, the NO donors S-nitroso-N-acetylpenicillamine
(SNAP) and diethylenetriamine NONOate (DETANONOate) have been found to promote
the inhibition of BRCA1 expression [13,272]. This results in the hindrance of the ability of
BRCA1 to repair DNA through the HR pathway, which leads to NHEJ and tumorigene-
sis [13,272].
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5.3. iNOS and BRCA2

Garcea et al. found that iNOS-induced NO contributed to the inhibition of 8-OH-
dg adducts [1,273]. This inhibition results in the promotion of pancreatic cancer cell
growth [1,273]. However, BRCA1 and BRCA2 contribute to the repair of these same 8-OH-
dg adducts [1,274]. Therefore, iNOS-induced NO indirectly suppresses BRCA1 and BRCA2
tumor suppressor functions [1,274]. Kielbik et al. also found that iNOS directly inhibits the
promoter activity of BRCA1 and BRCA2 in ovarian cancer cells. As a result, this decreases
the expression and function of BRCA1 and BRCA2 [4].

The relationship between iNOS and BRCA2 was found in ovarian and pancreatic
cancer cell lines. However, little is known about the relationship between iNOS and BRCA2
in breast cancer cell lines. Therefore, further research is necessary to investigate whether or
not the relationship between iNOS and BRCA2 in breast cancer cell lines follows the same
trends as that of pancreatic and ovarian cancer cell lines. These results are shown above in
Figure 2D.

6. Implication of iNOS, HER2, and BRCA1/2 in CSC Pathophysiology

Cancer stem cells (CSCs) constitute a small fraction of cancer cells within the tumor
bulk that possesses pluripotent and renewing properties [275]. CSCs are thought to be
responsible for driving oncogenesis, disease progression, metastasis, and therapeutic
resistance [275]. Recent findings have confirmed the contribution of NO metabolism
in defining the “stemness” properties of CSCs through cross-regulation of “stemness”-
associated signaling pathways, including the Notch and Wnt cascades [276]. Therefore,
molecules able to modify the maintenance of a stem cell phenotype, including NO, are of
great research and therapeutic interest.

Although initial reports have demonstrated that iNOS-generated NO is a distinctive
feature of CSCs originated mainly by tumors developed in an inflammatory background,
further studies demonstrate differential expression and function of NOS isoforms in CSCs
that mainly depend on tumor type and aggressiveness. For example, in hepatocellular
carcinoma, iNOS (NOS2) overexpression in cancer cell lines and human tissues promotes
NOTCH-1-mediated stemness and tumor initiation in vivo, through a cGMP/PKG depen-
dent mechanism [277]. Treatment of lung cancer cells with NO concentrations ranging
between 20 and 40 µM, which are similar to those produced by iNOS, was able to in-
duce dedifferentiation of lung cancer cells towards a stem-cell-like phenotype through
stabilization of critical CSC-associated markers, such as Oct4 [278]. Accordingly, selective
inhibition of the high endogenous iNOS expression in TNBC cells significantly reduced
CSC self-renewal ability, tumor initiation, and the number of lung metastases as a result
of EMT inhibition [279]. Furthermore, targeting of endogenous NO production by iNOS
silencing in ER+ breast cancer cells displayed inhibition of mammosphere formation and
expression of CSC-associated markers, while it significantly reversed tumor resistance to
tamoxifen treatment [280].

Our preliminary findings obtained by gene microarray analysis of a CD133+/CD44+
CSC population isolated from the pancreatic adenocarcinoma (PDAC) cell lines PANC1 and
MiaPACA2 revealed a strong iNOS mRNA induction in MiaPaca2-derived CSCs compared
to non-SC population (CD133-/CD44-), whereas in PANC1 CSCs, iNOS was significantly
inhibited (Figure 3). Furthermore, iNOS overexpression in MiaPaca2 CSCs was positively
correlated with a concurrent significant increase in the mRNA expression of reported
co- and trans-activators of iNOS transcription, including AP-1, CEBPB, GATA 1, NFAT5,
NFATC4, NF-κB, STAT-1a, TP53, and IL-1β (Figure 3). Respectively, iNOS downregulation
in PANC1 CSCs was associated with a reduction in the mRNA levels of GATA 1, NF-κB,
Sp1, and CREB (Figure 3). The observed difference in the iNOS expression profiles between
the two cell lines may be attributed to the diversity of tumor aggressiveness, with MiaPaca2
depending more on high iNOS levels in order to sustain the aggressive phenotype [281].
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In contrast, colon cancer mesenchymal cells do not express iNOS and instead over-
express eNOS that impairs the CSC phenotype and induces tumor cell proliferation [282].
The above findings indicate that the type and expression levels of each NOS isoform in
CSCs might be specific to cancer type and tumor aggressive potential, as well as the impact
of inflammation-induced iNOS and NO in tumorigenesis. In addition, more precise studies
on purified CSC populations are needed for drawing safer conclusions on iNOS impact on
cancer “stemness”.

Downregulation of BRCA1 has been associated with a significant increase in the
CSC-like populations in breast cancer cells, whereas BRCA1 reconstitution increases cell
sensitivity to HDAC inhibitor-induced loss of stemness, thus suggesting that BRCA1 func-
tions as a breast stem cell regulator, while its status may determine tumor response to
therapy [283]. Likewise, the key role of altered (overexpressed/amplified) HER2 signaling
in the maintenance and enrichment of breast CSCs, through crosstalk with stemness-related
pathways, has been highlighted in several reports [284]. A splice variant of full-length
HER2 mRNA and a collection of HER2 truncated carboxy-terminal fragments, known as
d16HER2 and p95HER2, respectively, have been characterized as the most oncogenic HER2
isoforms with significant implications in the regulation of HER2+ breast CSC features, in-
cluding tumor initiation, EMT induction, and resistance to targeted therapy [284]. However,
no direct associations between iNOS, BRCA1, and HER2 expression profiles have been
established so far in any type of CSCs, including breast CSCs.

Given the direct implication of BRCA1/2 signaling in the pathophysiology of heredi-
tary pancreatic adenocarcinoma (PDAC) [285], as well as the recently reported prognostic
impact of HER2 expression or amplification in the survival of PDAC patients [286], we ex-
amined possible alterations in the expression profiles of BRCA1/2 and HER2 mRNAs in our
PDAC CSC models. Both MiaPaca2 and PANC1 cell lines are proficient in BRACA1/2 wild-
type expression [287], while HER2 levels are more profound in MiaPaca2 than PANC1 [288].
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CD133+/CD44+ CSCs from both cell lines significantly overexpress BRCA1 compared to
the corresponding CD133-/CD44- non-SC populations, whereas HER2 overexpression was
observed only in MiaPaca2-derived CSCs. In contrast, PANC-1-derived CSCs showed
significant inhibition of HER2 mRNA expression (Figure 4). No significant differences in
BRCA2 mRNA expression were detected in our CD133+/CD44+ enriched CSC populations
from both cell lines. Overall, our findings from our PDAC CSC model suggest a positive
correlation of iNOS, BRCA1, and HER2 expression in CSCs of aggressive tumors that may
be critical for sustaining cell “stemness” and associated properties (Figure 4).
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Array platform was employed. Quantile normalization and subsequent raw data processing were
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represent mean fold change of gene expression ± SDEV.

7. Bioinformatic Analyses: Correlation between BRCA1/2 Mutations and Genes
Involved in the NOS Pathway

Through the development of high-throughput technologies for the analysis of molecu-
lar alterations associated with tumor development, a huge amount of bioinformatics data
has been generated and collected in publicly available databases [289]. Among these, The
Cancer Genome Atlas (TCGA) consortium collects clinical information as well as gene ex-
pression, ncRNA expression, DNA methylation, and protein expression data of 33 different
human cancers [290].

The analyses of these data have allowed the identification of novel potential diagnostic
and prognostic biomarkers for different tumors through the identification of specific genes,
miRNAs, or proteins dysregulated in cancer [291–293].

Despite the availability of all these molecular data also for breast cancer, only a few
studies have filtered patients according to the presence of BRCA1/2 mutations or the
amplification/overexpression of ErbB2. Similarly, no in-depth correlation studies have
been performed between the expression levels of amplified or mutated genes such as ErbB2
and BRCA and the expression levels of genes involved in the NOS pathway.

To establish the correlation existing between genetic alterations affecting BRCA1,
BRCA2 and ErbB2 with the expression levels of NOS-associated genes, the phenotype and
gene expression data contained in the TCGA Breast Cancer (TCGA BRCA) database were
evaluated. In particular, the TCGA BRCA database contains 24 different datasets collecting
clinical and molecular information on a total of 1247 breast cancer patients [294].

The datasets “Phenotypes” and “IlluminaHiSeq Gene Expression RNAseq” were
downloaded in order to identify breast cancer patients with mutations affecting BRCA1 or
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BRCA2 or amplification affecting ErbB2 and the expression data of 20,530 different genes,
respectively.

Through the “Phenotypes” dataset, 25 BRCA1 and 22 BRCA2 mutated patients were
identified. Similarly, a total of 68 breast cancer patients with ErbB2 amplification were iden-
tified, of which 14 had a HER2 FISH ratio > 2.2 and 47 had a HER immunohistochemistry
(IHC) score of 3+ or higher. Seven patients had both a HER2 FISH ratio > 2.2 and a 3+ IHC
score. For these subsets of patients, the expression levels of BRCA1, BRCA2, and ErbB2 were
obtained by analyzing the “IlluminaHiSeq Gene Expression RNAseq” dataset. From the
same dataset, the expression levels involved in the NOS pathway were observed, including
NOS1, NOS3, nitric oxide synthase interacting protein (NOSIP), and nitric oxide synthase 1
adaptor protein (NOS1AP). Of note, NOSIP negatively regulates the production of nitric
oxide by inducing NOS1 and NOS3 translocation to the actin cytoskeleton, thus inhibiting
their enzymatic activity [295], while NOS1AP is mainly involved in the modulation of
neuronal NO through the regulation of NOS1 with other proteins [296]. Unfortunately,
no expression data about NOS2 were recorded on the “IlluminaHiSeq Gene Expression
RNAseq” dataset; therefore, this gene was not investigated (Figure 5).
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Pearson’s correlation and Spearman’s correlation analyses were performed for the
three groups of breast cancer patients, i.e., BRCA1-mutated, BRCA2-mutated, and ErbB2-
amplified breast cancer patients, depending on the normal or non-normal distribution of
expression data (Figure 6).
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Figure 6. Correlation analyses between the expression levels of BRCA2 and NOS genes in TCGA
breast cancer patients with mutations affecting BRCA2. Each black square represents a cancer patient.

The correlation analyses between the expression levels of BRCA1 and NOS genes
revealed how the expression levels of dysregulated BRCA1 due to somatic mutations
positively correlate with the expression levels of NOS1 (r = 0.5191; p = 0.0078), while no
significant correlations were observed between BRCA1 and NOS3, NOSIP, and NOS1AP
(Figure 7).
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8. Discussion and Perspectives

It has been demonstrated that human breast cancer tissues express high levels of iNOS.
This expression has predicted increased tumor progression and a poor outcome of survival
in women with estrogen receptor alpha-negative (ER-negative) tumors [193,297]. More
recently, the same group of investigators reported that the co-expression of iNOS and COX2
enhances tumor growth and shortens the survival of patients with ER-negative breast
cancer [298].

Several mechanisms have been suggested for the role of iNOS as a driver of breast
cancer progression. For instance, high iNOS expression has been correlated with high p53
mutations. Additionally, iNOS-derived NO activates several survival signaling pathways,
promotes HIF1-alpha stabilization (tumor cells cope with hypoxia), and mediates immuno-
suppression and metastasis [298]. In TNBC, iNOS-induced NO resulted in mutations of
p53 and activation of EGFR. This was through S-nitrosylation leading to the activation of
the EGFR/ERK/MAPK and NF-kB pathways [16]. These activated pathways led to tumor
cell proliferation, migration, invasion, and resistance to cytotoxic drugs [16].

Interestingly, the relationship between iNOS expression and the expression of breast
cancer protooncogenes HER2, BRCA1, and BRCA2 in the pathogenesis of breast cancer
is not well understood. Herein, we have discussed this relationship based on reported
literature. In addition, we have also used bioinformatics to examine the possible linkage
between the NOS pathway and the expression of the protooncogenes.

In ER-negative breast cancer, the protooncogene ETS-1 is a transcriptional mediator
of NO and promotes angiogenesis. Activated Ets-1 binds and activates MMP9 expression,
which in turn activates and increases the expression of HER2. Thus, a linkage is observed
between NO and HER2. However, in other reports, it was found that while IFN-g induces
the expression of iNOS, it also inhibits the expression of HER2 [298]. It is possible that
depending on the stimulus, various signaling pathways may result in either the activation
or inhibition of HER2 expression. It will be useful to ascertain the various conditions
under which NO activates or inhibits HER2 expression in order to develop appropriate
interventions that regulate iNOS expression.

Regarding the relationship between iNOS/NO and BRCA1, it was found that NO
indirectly inhibits BRCA1 promoter activity, and NO can alter BRCA1 tumor suppressor
activity. Similar findings were reported that NO suppresses the tumor suppressor activity
of BRCA2 [13]. Clearly, iNOS-mediated NO affects the tumor suppressor activities of both
BRCA1 and BRCA2 as well as potentiating the expression of HER2. These effects result
in the promotion of tumor growth and malignancy. While many stimuli from the tumor
microenvironment increase iNOS expression in normal cells, it is possible that such an
increase is involved in the initial trigger of oncogenesis, alone or with other factors.

Several mechanisms have implicated the roles of NO and RNS in the induction of
tumorigenesis. For instance, NO leads to oxidative nitrosative stress that promotes DNA
damage, suppression of DNA-repair enzymes, post-translational modification of proteins,
and the formation of nitrosamines [11,299]. In addition, mutations in various genes have
been reported to be strong genetic risk factors for ovarian cancer progression [4]. Inter-
estingly, BRCA1 and BRCA2 mutations are responsible for the development of about 90%
of all ovarian cancers [222]. Genes controlling cell growth, DNA repair processes, and
apoptosis (e.g., TP53, BRCA1, BRCA2, and PARP) appear to be prime targets for mutations
by NO/RNS.

Additionally, the expression of iNOS in breast CSCs is associated with malignancy
and tumor growth. Its selective inhibition has been shown to reduce CSC self-renewal
capacity [257]. In a recent study, Lopez-Sanchez et al. have investigated the resistance of
ER-positive breast cancer CSCs to anti-hormonal therapy (tamoxifen) [280]. Lopez-Sanchez
et al. examined the role of NO in CSC characteristics and examined whether targeting NO
in breast CSCs would have any effect on sensitivity to tamoxifen. Silencing of NO or iNOS
in CSCs resulted in the inhibition of mammospheres and CSC biomarker expression and
sensitized the CSCs to tamoxifen-mediated cytotoxicity. These findings were consistent
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with the findings that tamoxifen-resistant cells exhibited overexpression of iNOS and
NOTCH-1 when compared to parental cells.

Kaplan–Meier survival analysis confirmed these in vitro findings. This analysis found
that low NOS2 expression was associated with lowered metastasis in ER+ breast cancer
patients that were treated with tamoxifen. Clearly, both tumor type and iNOS expression
levels in CSCs dictate the aggressiveness and malignancy of cancer cells. Thus, targeting
iNOS is a therapeutic strategy to treat breast cancer, alone or in combination with cytotoxic
drugs [300]. Of interest, the expression of BRCA1 in breast cancer inversely correlates
with the frequency of the CSCs [301]. In contrast, overexpression of HER2 correlates with
enrichment of CSCs [284]. It will be useful to investigate the associations of iNOS, BRCA1,
and HER2 expression in CSCs.

Similar findings to those observed in breast cancer were also found in bladder cancer
CSCs [302]. In bladder cancer CSCs, high expression of iNOS was associated with increased
invasion and tumor recurrence. Additionally, inhibition of iNOS inhibited tumor progres-
sion and reduced the number of CSCs. Therefore, the findings demonstrated that iNOS
plays a central role in bladder cancer progression and the maintenance of CSCs.

Bioinformatic analyses did not reveal the correlations between iNOS, mutated BRCA1/2,
and overexpression of HER2 in breast cancer datasets. However, the expression levels of
gene products in the NOS pathway were able to be detected, namely NOS1, NOS3, NOSIP,
and NOS1AP. The expression levels of mutated BRCA1 correlated with the expression of
NOS1 with no significant correlations with NOS3, NOSIP, and NOS1AP.

Noteworthily, several studies have already demonstrated the pivotal role of NOS1 in
the development and progression of different tumors. Indeed, its overexpression is associ-
ated with ovarian cell proliferation and invasion as well as with chemoresistance [303,304].
Further studies confirmed the association between NOS1 expression and drug resistance
in other tumors such as melanoma where NOS1 overexpression led to a low response to
interferon [305,306]. As regards breast cancer, no studies on the effect of neuronal NOS
(nNOS/NOS1) are reported in the literature; however, it was demonstrated how NOS1AP
is able to bind other proteins, SCRIB and VANGL1, regulating different features of breast
cancer cells including cell polarity, migration, and progression suggesting how this protein
could be involved in the pathogenesis of this tumor when dysregulated [307]. In addition,
other studies on neurodegenerative disorders demonstrated the strict interaction existing
between NOS1AP and NOS1 identifying potential targetable binding sites useful to regu-
late the effect of the interactions of these two proteins [308]. Similarly, also the interactions
existing between NOS1 and NOSIP have been investigated; however, the functional effects
of these interactions in cancer are not fully understood yet [309,310]. All these data together
with the most recent findings on the efficacy of nitric oxide-targeted therapy in estrogen
receptor-positive breast cancer cells [280] suggest that the entire NO pathway could play a
key role in breast cancer.

Clearly, further studies must be done in order to examine the relationship between
the various subsets of breast cancer and iNOS. While it is clear that the overexpression
of iNOS is associated with breast cancer and other cancer malignancies, there are also
reports that the expression of iNOS/NO is also associated with tumor suppression. Vannini
et al. have reviewed the dual role of NO in cancer and reported several cancer models
where the expression of NO inhibited tumor growth and metastasis [3]. In addition, the
iNOS expression by non-cancer cells in the TME was associated with tumor inhibition and
reduced metastases in model systems.

9. Conclusions

Overall, the above findings have indicated that iNOS/NO is involved in the regu-
lation of the protooncogenes, HER2, BRCA1, and BRCA2. NO and RNS also play a role
in promoting gene mutations. Therefore, clearly both BRCA1 and BRCA2 are suscepti-
ble to mutations and play a large role in the pathogenesis of breast and ovarian cancer.
More investigations are warranted to examine the direct relationship between iNOS/NO,
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BRCA1/2 mutations, and the onset of tumor development. Likewise, the roles of iNOS/NO
in the regulation of HER2 transcription, expression, and onset of tumorigenesis are to be
determined. Such investigations may be useful for therapeutic interventions at early stages
and also as preventive measures in the future.
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CCDC98 Coiled-coil domain-containing protein
CD1 Cluster of differentiation 1
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COX-2 Cyclooxygenase 2
CREB cAMP-response element binding protein
CREM cAMP-responsive element modulator
CSC Cancer stem cell
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E2F1/4 E2 transcription factor 1/4
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EGFR Epidermal growth factor receptor
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EOC Epithelial ovarian carcinoma
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ER-β Estrogen receptor-β
ErbB2 Erythroblastic oncogene B2
ERK Extracellular-signal-regulated kinase
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HER2/neu Human epidermal growth factor receptor 2
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IHC Immunohistochemistry
IL-1/2/4/8 Interleukin 1/2/4/8
IL-1B Interleukin 1 beta
iNOS Inducible nitric oxide synthase
KRAS Kristen rat sarcoma viral oncogene homolog
L. donovani Leishmania donovani
lncRNA Long non-coding RNA
L-NMMA NG-monomethyl-L-arginine monoacetate
LOH Loss of heterozygosity
MAPK Mitogen-activated protein kinase
MCF-7 Michigan Cancer Foundation-7
MEK Mitogen-activated extracellular signal-regulated kinase
miRNA MicroRNA
MMC Mitomycin C
MMP 0/2/9 Matrix metalloproteinase 0/2/9
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ncRNA non-coding RNA
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NFAT-5/C4 Nuclear factor of activated T cells 5/C4
NHEJ Nonhomologous end-joining
NLS Nuclear localization sequences
nNOS/NOS1 Neuronal nitric oxide synthase
NO Nitric oxide
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NOSIP Nitric oxide synthase interacting protein
NOS1AP Nitric oxide synthase 1 adaptor protein
NOTCH-1 NOTCH homolog 1
Oct Octamer factor
PANC-1 Human pancreatic cancer cell line
p53 Tumor suppressor p53
PALB2 Partner and localizer of BRCA2
PARP Poly(ADP-ribose) polymerase
PCAT-1 Prostate cancer associated transcript 1
PCR Polymerase chain reaction
PDAC Pancreatic adenocarcinoma
PGE2 Prostaglandin E2
PI3K Phosphoinositide 3 kinase
qPCR Quantitative polymerase chain reaction
Ras Rat Sarcoma Virus
RB Retinoblastoma protein
Rb-E2F Retinoblastoma protein family-activator E2F
RBL2 RB Transcriptional corepressor like 2
RING Really interesting new gene
RKO Rectal carcinoma cell line
RNA Ribonucleic acid
RNAseq RNA sequence
RNS Reactive nitrogen species
RR Ribonucleotide reductase
RT-PCR Reverse transcription PCR
RUNX1 Runt-related transcription factor 1
S phase Synthesis phase
S100B S100 calcium-binding protein B
shRNA Short hairpin RNA
siRNA Small interfering RNA
Slug Snail 1/2
Sp-1 Specificity protein 1
SNAP S-nitroso-N-acetylpenicillamine
STAT-1α Signal transducer and activator of transcription 1
SV40 Simian vacuolating virus 40
TCGA The Cancer Genome Atlas
TGFBRII Transforming growth factor beta receptor type II gene
TME Tumor microenvironment
TNBC Triple-negative breast cancer
TNF Tumor necrosis factor
TNF-α Tumor necrosis factor alpha
Trp53 Transformation related protein 53
TUNEL Terminal deoxynucleotidyl transferase dUTP nick end labeling
USF Upstream stimulatory factor
UTR Untranslated region
VEGF Vascular endothelial growth factor
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