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Abstract: The Fenton and Fenton-like reactions are of major importance due to their role as a source
of oxidative stress in all living systems and due to their use in advanced oxidation technologies. For
many years, there has been a debate whether the reaction of FeII(H2O)6

2+ with H2O2 yields OH•

radicals or FeIV=Oaq. It is now known that this reaction proceeds via the formation of the intermediate
complex (H2O)5FeII(O2H)+/(H2O)5FeII(O2H2)2+ that decomposes to form either OH• radicals or
FeIV=Oaq, depending on the pH of the medium. The intermediate complex might also directly
oxidize a substrate present in the medium. In the presence of FeIII

aq, the complex FeIII(OOH)aq is
formed. This complex reacts via FeII(H2O)6

2+ + FeIII(OOH)aq → FeIV=Oaq + FeIII
aq. In the presence

of ligands, the process often observed is Ln(H2O)5−nFeII(O2H)→ L•+ + Ln−1FeIII
aq. Thus, in the

presence of small concentrations of HCO3
− i.e., in biological systems and in advanced oxidation

processes—the oxidizing radical formed is CO3
•−. It is evident that, in the presence of other transition

metal complexes and/or other ligands, other radicals might be formed. In complexes of the type
Ln(H2O)5−nMIII/II(O2H−), the peroxide might oxidize the ligand L without oxidizing the central
cation M. OH• radicals are evidently not often formed in Fenton or Fenton-like reactions.

Keywords: OH•; FeIV=Oaq; CO3
−; pH effect; reactive oxidizing species

1. General Remarks

In 1894, Mr. Fenton reported that FeII(H2O)6
2+ catalyzes the oxidation of tartaric acid

by H2O2 [1]. No mechanism of this process was suggested by Mr. Fenton. Since then,
the reaction FeII(H2O)6

2+ + H2O2 has been called the Fenton reaction and the reactions
MnLm + ROOR’—where M is either Fe or another low-valent transition metal, L is either
H2O or another ligand, and R and R’ are either H or another substituent—are called
Fenton-like reactions.

The Fenton and Fenton-like reactions are of major importance due to two reasons:

1. They are considered to be the major source of oxidative stress in all living systems.
2. They are used in the advanced oxidation technologies/processes that are of major

importance in the environmental removal of pollutants.

Due to this prominence, a search in SciFinder for Fenton in 2021 results in 3286 references.
The first mechanisms of the Fenton reaction were suggested in 1932 by two groups in

parallel. Bray and Gorin [2] suggested that the mechanism is:

FeII(H2O)6
2+ + H2O2 → FeIV=O2+

aq (1)

whereas Haber and Weiss [3,4] suggested that the mechanism of the Fenton reaction is:

FeII(H2O)6
2+ + H2O2 → FeIII(H2O)6

3+ + OH• + OH− (2)
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The debate whether the oxidizing intermediate formed in the Fenton reaction is
FeIV = O2+

aq or OH• has lasted for many decades. Thus, even as recently as this year, it has
been suggested that reaction (1) is the correct mechanism, at least in neutral solutions [5],
and that (2) is the only process even at pH 5 [6].

The difficulty in differentiating between the two mechanisms stems from the fact that
both OH• radicals and FeIV=O2+

aq react with organic substrates, usually by abstracting
a hydrogen atom, and often form the same, or similar, radicals. Using EPR to quantify
the relative yields of the radicals formed in order to decide whether their sources are OH•

radicals often fails due to their different lifetimes [7]. This difficulty was overcome by
measuring the final products formed when a mixture of two alcohols is present.8 This
technique requires that the low-valent metal cation initiating the Fenton-like reaction has
a fast ligand exchange rate, i.e., it does not fit FeII(H2O)6

2+. Using this technique, it was
shown that the reaction CrII(H2O)6

2+ + H2O2 proceeds via a mechanism analogous to
reaction (2), whereas the reaction CuI

aq
+ + H2O2 does not yield OH• radicals or CuIII

aq [8].
Furthermore, thermodynamic arguments [8] and kinetic arguments using the Marcus
theory [9] indicate that the Fenton and Fenton-like reactions do not proceed via the outer
sphere mechanism. Therefore, an inner sphere mechanism was proposed [8,9]:

MLm
n+ + H2O2 
 {Lm−1M(H2O2)n+ + L}/{Lm−1M(HO2)(n−1)+ + L + H+} (3)

For simplicity, it will be assumed in that the complex formed is LmM(H2O2)n+.
Reaction (3) might be followed by a variety of routes, e.g., [8,9]:

−−−−−→MLm
(n+1)+ + OH• + OH− (4a)

LmM(H2O2)n+ −−−−−−→MLm
(n+2)+ + 2OH−

RH
(4b)

−−−−−→MLm
(n+1)+ + R• + OH− + H2O

R=R
(4c)

−−−−−→MLm
(n+1)+ + HOR-R• + OH− (4d)

Naturally, Lm−1M(H2O2)n+ might also directly oxidize different substrates, e.g., inor-
ganic reducing agents.

It was later discovered that when the central cation M has a too high redox potential,
e.g., Co(II) [10], or cannot be oxidized, e.g.: AlIII, GaIII, InIII, ScIII, YIII, LaIII, BeII, ZnII,
and CdII [11–13], the binding of two or more peroxides to the central cation might lead to
the formation of OH• radicals via disproportionation of the peroxides without involving
oxidation of the central cation [10–13]:

Mn
aq + kH2O2 
 Mn(HO2

−)k−1(H2O2)aq + (k−1)H+ (k = 2 or 3) (5)

Mn(HO2
−)k-1(H2O2)aq →Mn(HO2

•)(HO2
−)k−2(OH−)aq + OH• (6)

The observation that ligated H2O2 can oxidize a second ligated peroxide suggests that
it might also oxidize other ligands. This was tested theoretically, by DFT [14], and experi-
mentally for the oxidation of a carbonate ligated to CoII [15], thus proving this possibility.

2. The Fenton Reaction Is (Fe(H2O)6
2+ + H2O2)

Efforts to determine whether the reaction Fe(H2O)6
2+ + H2O2 forms OH• radicals via

following the formation of the DMPO-OH• adduct by EPR failed, as it was shown that
even mild oxidants, e.g., FeIII

aq, oxidize DMPO via [16]:

DMPO + Ox→ DMPO•+ + Red (7)
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DMPO•+ + H2O→ DMPOH• + OH− (8)

The rate constant of the Fenton reaction in acidic media is k(Fe(H2O)6
2+ + H2O2)

~50 M−1s−1. The measured rate constants depend on the pH and on the ratio [H2O2]/
[Fe(H2O)6

2+]; the latter dependencies mainly stem from the observation that in the pres-
ence of excess H2O2 reactions (9) [17] and (10) [17,18] contribute to the observed rate
constants [17].

FeIII
aq + H2O2 
 FeIII(HO2) + H+ (k9 = 69 M−1s−1 k−9 = 0.11 s−1 at pH 2.0) (9)

Fe(H2O)6
2+ + FeIII(HO2)→ FeIII

aq + {FeIII
aq + OH•}/{FeIV=Oaq} (10)

K10 = 7.7 · 105 M−1s−1 at pH 1.0

The nature of the products of reaction (10) were later determined [19] to be FeIII
aq +

FeIV=Oaq; thus, clearly in acidic solutions when [H2O2]/[Fe(H2O)6
2+] > 1, a mixture of

OH• radicals and FeIV=Oaq is formed.
Next, Bakac et al. developed a new procedure to differentiate between OH• radicals

and FeIV=Oaq based on the different final products formed in the reactions of OH• radicals
and FeIV=Oaq with DMSO, (CH3)2SO [20]. This technique can only be used for iron. Using
this technique, it was proved that, in acidic solutions, OH• radicals are formed by the
Fenton reaction, whereas in neutral solutions, where pH > 6, the product is FeIV=Oaq [20].
This proves that the Fenton reaction under physiological conditions does not form OH•

radicals: However, this statement is not correct for the acidic organelles, e.g., lysosomes [21]
and some peroxisomes [22]. This conclusion is correct for reactions of Fe(H2O)6

2+, but not
for all Fenton-like reactions of FeIILm, as seen below.

Recently, it was shown that the Fenton reaction is dramatically accelerated in the
presence of low concentrations of bicarbonate well below those present in living cells [19].
The oxidizing transient formed under these conditions is the carbonate anion radical,
CO3

•− [19]. CO3
•− is a strong oxidizing agent, E0(CO3

•−/CO3
2−) =1.57 V vs. NHE [23]

and is evidently somewhat stronger in neutral media. CO3
•− is still a considerably weaker

oxidizing agent than OH• radicals and is, therefore, more selective as a ROS [24,25]. The
reactions occurring were proposed to be [19]:

Fe(H2O)6
2+ + H2O2 
 (H2O)5Fe(O2H)+/(H2O)3Fe(O2H)+ + H3O+ (11)

(H2O)5Fe(O2H)+/(H2O)3Fe(O2H)+ + HCO3
− → FeIII

aq + CO3
•− (12)

Fe(H2O)6
2+ + HCO3

−
 (H2O)3Fe(CO3) + H3O+ + 2H2O (11a)

(H2O)3Fe(CO3) + H2O2 → FeIII
aq + CO3

•− (12a)

Recent unpublished results [26] suggest that reaction (12) likely proceeds via:

(H2O)5Fe(O2H)+/(H2O)3Fe(O2H)+ + HCO3
− → (CO3)FeIV

aq (13)

and reaction (12a) likely proceeds via:

(H2O)3Fe(CO3) + H2O2 → (CO3)FeIV
aq (13a)

The (CO3)FeIV
aq thus formed might decompose via:

(CO3)FeIV
aq−−−−−→ (14)

−−−−−−→ FeIII
aq + CO3

•− (14a)

Substrate
−−−−−−→ FeIII

aq + oxidized-substrate + HCO3
− (14b)
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The competition between reactions (14a) and (14b) depends on the substrate. Thus,
for DMSO k14a >> k14b, but for PMSO (phenyl-methyl-sulfoxide) k14a~k14b.

3. Fenton-like Reactions Involving FeIILm

Two types of Fenton-like reactions have to be considered.
When ligands, L, different from H2O are ligated to The FeII central cation, the effect

of HCO3
− on the mechanism, discussed above, can be included herein. It should be

noted that the technique to distinguish between OH• radicals and FeIV=Oaq, developed
by Bakac et al. [20], cannot always be applied here because the mechanism of the reaction
LFeIV=O with DMSO is not known. The mechanism of the reactions of FeIILm with H2O2
for the following ligands was studied.

• L = PO4
3−/HPO4

2− [20]. The results suggest that the Fenton reaction in the presence
of phosphate in neutral solutions yields OH• radicals and not (PO4

3−)mFeIV=Oaq [20].
• L = edta [22]. The reaction FeII(edta)2− + H2O2 was studied at pH > 5.5 using the

technique developed by Masarwa et al. [8]. The results indicate that OH• radicals are
the product of this reaction [27].

• L = nta, nta = N(CH2CO2
−)3

3− [28]. The reaction FeII(nta)− + H2O2 was studied. Sur-
prisingly, though edta and nta are very similar ligands, the results differ considerably.
The results suggest that the major product of the FeII(nta)− + H2O2 is a (nta)FeIV=Oaq
complex [28]. The yields of the final products are pH dependent [28].

• L = citrate [29]. The reaction of FeII(citrate)− with H2O2 was studied. This reaction
is of importance because FeIII(citrate) is a major component of the non-transferrin
iron mobile pool [30]. The results indicate that the reaction FeII(citrate)− + H2O2 in
neutral solutions does not yield OH• radicals. The results do not answer the question
whether a FeIV(citrate)aq species is a transient formed by this reaction. When low
concentration of HCO3

− are added to this system, the kinetics and final products are
changed dramatically, indicating that the CO3

•− radical anion is a major product of
the reaction under these conditions [29].

The results presented in this section indicate that the mechanism of the Fenton-like
reactions of FeIILm complex dramatically depend on the nature of the ligand. Therefore, one
cannot assume that FeII complexes with analogous ligands react via the same mechanism.

When different peroxides are used as oxidants in the Fenton-like reaction, such as in
biological systems, the most important peroxides are the ROOH compounds, where R is
an alkyl. The ROOH peroxides are formed in biological systems, mainly in lipids, via the
chain reaction [30,31]:

RH + Ox→ R• + Ox-H/(Ox− + H+) (Ox = OH•, R’•, FeIV=Oaq etc.) (15)

R• + O2
• → RO2 (16)

RH + RO2
• → RO2H + R• (17)

Therefore, the mechanism of the reaction (CH3)3COOH + Fe(H2O)6
2+ was studied.

The results indicate that in this system FeIV=Oaq is also formed in neutral solutions in the
absence of bicarbonate. In the presence of low concentrations of bicarbonate, CO3

•− radical
anions are the product of this Fenton-like reaction [32].

The S2O8
2− and HSO5

− peroxides are of major importance in advanced oxidation tech-
nologies [33–36]. Therefore, the mechanisms of the reactions Fe(H2O)6

2+ + HSO5
−/S2O8

2−

were studied. The results indicate that in acidic media, SO4
•− radical anions are the active

oxidizing species formed, in neutral solutions, FeIV=Oaq is formed, and in the presence of
low concentrations of bicarbonate, CO3

•− is the oxidizing intermediate formed [26].

4. Other Fenton-like Reactions

Fenton-like reactions are reported for most low-valent transition metals and even for
cations that are not involved in redox processes [11–13]. Herein, only Fenton-like reactions
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involving CuI [37] and ZnII [38–41] that are of biological importance and CoII, due to its
role in advanced oxidation technologies [15], are discussed.

The reaction of CuI with H2O2 was long thought to yield OH• radicals [42], but it
was later shown that the active oxidizing agent is CuI(H2O2) [8] or CuIII

aq [43]. It was
also proposed that the reaction of CuI with S2O8

2− yields CuIII
aq [44]. Conversely, it was

proposed that the reactions of Cu(II) with HSO5
−and S2O8

2− yield CuIII
aq and SO4

•− [45].
Surprisingly, Zn2+

aq and ZnII-complexes were shown to be involved in the formation
of reactive oxygen species (see references [38–41] for example.). However, no chemical
mechanism initiating this process was forwarded. One possible mechanism is that sug-
gested by Shul’pin et al. [13]. According to this mechanism, the reactions involved are:

Zn2+
aq + H2O2 
 ZnII(O2H−)+

aq + H+ (18)

ZnII(O2H−)+
aq + H2O2 
 ZnII(O2H−)(H2O2) +

aq (19)

ZnII(O2H−)(H2O2)+
aq → Zn2+

aq + OH• + HO2
• + OH− (20)

As the steady state concentration of H2O2 in biological media is very low, the probabil-
ity that two H2O2 will bind to the same Zn2+

aq is low. Therefore, it is tempting to propose
that the process leading to the formation of reactive oxygen species catalyzed by Zn2+

aq is:

Zn2+
aq + HCO3

−
 ZnII(HCO3
−)+

aq (21)

ZnII(HCO3
−)+

aq + H2O2 
 ZnII(HCO3
−)(H2O2)+

aq (22)

ZnII(HCO3
−)(H2O2)+

aq → Zn2+
aq + OH• + CO3

•− + H2O (23)

These two plausible mechanisms must be studied experimentally to prove one or both
of them.

The reaction Co(H2O)6
2+ + H2O2 to yield OH• radicals is endothermic due to the

high redox potential of the CoIII/II couple [10]. However, it was shown that the following
reactions replace the simple Fenton-like reaction [14]:

Co(H2O)6
2+ + 3H2O2 
 (H2O)CoII(HO2

−)2(H2O2) (24)

(H2O)CoII(HO2
−)2(H2O2)→ (H2O)CoII(HO2

−)(HO2
•)(OH−) + OH• (25)

In the presence of bicarbonate, the complex cyclic-(CO4)CoII(HO2
−)2(H2O) is formed.

This complex decomposes via [15]:

cyclic-(CO4)CoII(HO2
−)2(H2O)→ (H2O)CoII(HO2

•)(OH−)2 + CO3
•− (26)

The reaction of HSO5
− with Co(H2O)6

2+ and with CoII(P2O7)(H2O)2
2− require more

than one peroxymonosulfate to form radicals [46].
Finally, it should be pointed out that it is likely that ligands other than carbonate, with

the proper redox potential, might also be oxidized directly by peroxides [14].

5. Heterogeneous Fenton-like Processes

A variety of heterogeneous catalysts react with H2O2 in Fenton-like processes. Thus,
ZnO-nanoparticles induce the formation of reactive oxygen species in biological systems.
However, this is attributed to the dissolved Zn2+

aq ions [39] and is, therefore, not truly
heterogeneous.

The most important heterogeneous catalysts of Fenton-like processes have iron atoms/
cations as the active participants, e.g., zero-valent iron [47], MFe2O4 (e.g., Fe3O4 [48] and
MgFe2O4 [49]), and LaFeO3 [50]. These systems are used in advanced oxidation processes
and not in biological ones. Therefore, their mechanisms are not discussed herein.
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6. Concluding Remarks

The major conclusions of this perspective are:

I. The reaction FeII(H2O)6
2+ + H2O2 yields OH• radicals as the active oxidizing agent

in acidic solutions when [FeII(H2O)6
2+] > [H2O2], a mixture of OH• radicals and

FeIV=Oaq in acidic solutions when [FeII(H2O)6
2+] < [H2O2], FeIV=Oaq in neutral

solutions, and CO3
•− in solutions containing even low concentration of HCO3

−,
i.e., under physiological conditions.

II. It is important to note that mechanisms of the reactions H2O2 + FeIILm(H2O)k, where
L are ligands different than water, depend dramatically on the properties of L. Thus,
one must study the mechanism for each ligand separately.

III. The study of the mechanisms of Fenton-like reactions with other peroxides requires
separate studies.

IV. The mechanisms of Fenton-like reactions of other low-valent metal cations differ from
each other and thus require separate studies.

Therefore, it must be concluded that the mechanism of each Fenton-like reaction
should be studied before concluding which oxidizing transient is formed in that reaction.
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