
Citation: Lai, C.; Liang, Y.; Zhang, L.;

Huang, J.; Kaliaperumal, K.; Jiang, Y.;

Zhang, J. Variations of Bioactive

Phytochemicals and Antioxidant

Capacity of Navel Orange Peel in

Response to Different Drying

Methods. Antioxidants 2022, 11, 1543.

https://doi.org/10.3390/

antiox11081543

Academic Editors: Sergio Borghi

and Wander R. Pavanelli

Received: 19 July 2022

Accepted: 7 August 2022

Published: 9 August 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

antioxidants

Article

Variations of Bioactive Phytochemicals and Antioxidant
Capacity of Navel Orange Peel in Response to Different
Drying Methods
Chunling Lai 1, Yan Liang 1,*, Linyan Zhang 1, Jiangjiang Huang 1, Kumaravel Kaliaperumal 1, Yueming Jiang 1,2

and Jun Zhang 1,2,*

1 National Engineering Research Centre of Navel Orange, Gannan Normal University, Ganzhou 341000, China
2 Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden,

Chinese Academy of Sciences, Guangzhou 510650, China
* Correspondence: zjhxy110@126.com (Y.L.); bri71527152@outlook.com (J.Z.)

Abstract: The effects of five different drying methods, namely, freeze drying (FD), shade drying (SD),
hot-air oven drying at 50 ◦C (OD50), 70 ◦C (OD70), and microwave drying (MD) on the bioactive
phytochemicals and antioxidant capacity of navel orange peel were assessed and comprehensively
discussed in detail. Compared with other drying methods, MD-treated peel contained the lowest total
phenolic content (TPC) and total flavonoid content (TFC). The peel subjected to OD70 treatment was
superior in TPC relative to other treatments and the highest TFC was found in the peels treated with
FD. HPLC analysis identified thirteen flavonoids involving three flavanone glycosides (FGs) and ten
polymethoxyflavones (PMFs) in navel orange peel and revealed that PMFs in peel were stable under
all these drying methods, whereas the three major FGs (narirutin, hesperidin, and didymin) in peel
significantly degraded in response to MD treatment. The peels subjected to OD50/OD70 treatments
had the most potent antioxidant capacity when compared to other drying methods. Furthermore,
Pearson’s correlation analysis was performed. The results revealed here allow us to recommend the
use of OD50 or OD70 for the drying of orange peel, both of which help the maintenance of bioactive
compounds in the peel and improve its antioxidant capacity.

Keywords: drying methods; orange peel; chemical composition; antioxidant activity

1. Introduction

Navel orange, one of the main varieties of citrus fruits, is widely grown in Ganzhou
of Jiangxi Province, China. In 2021, the total planting area and the annual output of navel
orange in Ganzhou reached over 100 thousand hectares, and over 1 million tons, respec-
tively [1]. With the consumption of orange flesh, large quantities of peels were discarded,
which caused the waste of resources and environmental pollution, thus raising concerns
about the value-added utilization of this abundant resource [2]. Citrus peels contain large
amounts of biologically active compounds, mainly phenolic acids and flavonoids, which
exhibit pronounced antioxidant, neuroprotective, anti-inflammatory, antiproliferation, an-
tiallergy, and antiviral properties [3–5]. Therefore, orange peel could be considered a
valuable source of bioactive substances which may function as important ingredients in
the production of cosmetics, pharmaceuticals, and nutraceuticals [6,7]. Fresh orange peel
with a moisture content of over 70% is difficult to preserve due to the deterioration caused
by microbes or enzymes [4]. Drying is one of the extensively used methods to extend the
storage life of orange peel by removing water to inhibit spoilage as well as reduce the
activity of enzymes [4,7]. In general practice, the drying process of the citrus peel should
be conducted before carrying out further procedures, such as storage, transportation and
extraction of bioactive components.
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Several drying techniques have been applied to the dehydration of citrus byprod-
ucts, involving shade drying, sun drying, far-infrared radiation drying, hot-air drying,
freezing drying, microwave drying, etc. [3,4,8]. Shade drying usually takes a long time
and is generally applied to some traditional Chinese medicines containing volatile oils or
mucus [3]. Freeze drying can prevent the degradation of heat or oxygen-sensitive bioactive
compounds, but requires high energy consumption and lengthy processing time, making
it much more suitable for some high-value products [8]. In contrast, hot-air drying is a
relatively inexpensive and user-friendly method [9]. Microwave drying has been reported
to efficiently transfer energy for the removal of moisture, thus decreasing the drying time
and preserving the quality of the product, whereas it is hard to control the temperature
to have a homogeneous treatment [10]. The effects of different drying methods on the
chemical and biological properties of citrus products have been reported previously, but
with some controversial results, suggesting that more influential factors such as citrus
cultivar, the parameter of drying method, and extracting method, might influence the
results as well. For example, the freeze-drying method resulted in the highest total phenolic
content (TPC) and antioxidant effects in the immature citrus fruits of four citrus species
(Ponkan, Gaocheng, Foyu, and Huyou), compared to the hot-air and sun drying meth-
ods [3]. However, Papoutsis et al. reported that the lemon pomace dried by hot air at 110 ◦C
had the highest TPC, whereas the freeze-dried one had the lowest [8]. On the other hand,
Ledesma-Escobar et al. reported that the lemon dried by freeze-drying had higher TPC than
that dried by hot-air drying at 45 ◦C [11]. The total polyphenols, flavonoids, ascorbic acid,
and antioxidant capacity of orange peel markedly decreased after drying processing [7]. In
other studies, the highest antioxidant capacity for orange peel was obtained when the peel
was dried in a hot-air oven at 60 ◦C [9], and the microwave drying at 450W significantly
improved the extractible amounts of phenolics compared to the fresh orange peel [10].
Therefore, the selection of suitable drying methods for orange peel is challengeable and it
plays an important role in realizing the optimal valorization of orange peel. To the best of
our knowledge, the research about the drying methods of peel from navel orange planted
in Ganzhou of China is largely unavailable yet.

Herein, the effects of five different drying methods, namely, freeze drying (FD), shade
drying (SD), hot-air oven drying at 50 ◦C (OD50), 70 ◦C (OD70), and microwave drying
(MD) on the chemical composition and antioxidant capacity of navel orange peel were
evaluated for the first time. In the present study, the chemical compositions involving TPC,
total flavonoid content (TFC) and thirteen individual flavonoids were comparatively ana-
lyzed, and three antioxidant assays as 2,2-diphenyl-1-picrylhydrazyl free radical (DPPH),
2,2′-azinobis-(3-ethylbenzthiazoline-6-sulphonate) free radical (ABTS), and ferric reduc-
ing antioxidant power (FRAP) assays were employed together for the antioxidant tests.
Moreover, Pearson’s correlation analysis was adopted to examine the relationships among
all variables tested. The present results might provide useful information for the drying
processing of orange peel, and contribute to the value-added utilization of this abundant
side-product.

2. Materials and Methods
2.1. Chemicals

2,4,6-Tris(2-pyridyl)-s-triazine (TPTZ), 2,2-diphenyl-1-picryhydrazyl (DPPH, 97%), 2,2-
azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt (ABTS, 98%) and Folin–
Ciocalteu reagent (1 M) were purchased from Solarbio Science and Technology Co., Ltd. (Bei-
jing, China). Methanol, 95% ethanol, petroleum ether, ethyl acetate, dichloromethane, and N,
N-Dimethylformamide (DMF) were of analytical grade and purchased from Damao Chemi-
cal Reagent Factory (Tianjin, China). The flavonoids involving narirutin, hesperidin, didymin,
isosinensetin, 3,3′,4′,5,7,8-hexamethoxyflavone, sinensetin, 4′,5,7,8-tetramethoxyflavone,
3,3′,4′,5,6,7-hexamethoxyflavone, nobiletin, 4′,5,6,7-tetramethoxyflavone, 3,3′,4′,5,6,7,8-
heptamethoxyflavone, 5-hydroxy-6,7,3′,4′-tetramethoxyflavone, and tangeretin were iso-
lated from the orange peel by authors according to chromatographic methods [2] and each
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had a purity of >95% (data shown in the supplement material). Acetonitrile (ACN) was
of high-performance liquid chromatography (HPLC) grade (Anaqua Chemicals Supply,
Houston, TX, USA). De-ionized water used for chromatography was obtained from a
Milli-Q Gradient A10 system (Millipore, Billerica, MA, USA). All other chemicals were of
analytical grade and purchased from Sigma-Aldrich (Shanghai, China).

2.2. Plant Materials

Newhall navel oranges (50 kg) at a commercial mature stage were harvested on
15 December 2020 from an orchard located in Ganzhou (23.1291◦ N, 113.2644◦ E) of Jiangxi
Province, China. The orange trees were planted in red-yellow loam soil (pH 5.39 ± 0.3) and
spaced at 4 m and 3 m between and along the rows, respectively. The freshly harvested
fruits were transferred to the laboratory, washed and squeezed immediately. The peels
were then collected from the pomace by hand and were cut into pieces of approximately
1 cm2 each. The pieces of peel were pooled together and stored at −80 ◦C in sealed plastic
bags until drying experiments.

2.3. Drying of Orange Peel

Orange peels were subjected to five different drying methods termed FD, SD, OD50,
OD70, and MD. For each treatment, 1 kg of orange peel was used. The detailed procedures
were described as follows: (1) For FD, the pieces of peel were spread out on trays to form a
thin layer of about 0.5 cm thickness. The peels on trays were pre-frozen in the refrigerator
at −80 ◦C overnight. The frozen peels were then dried to a constant weight for 48 h by
using a freeze dryer (FD8-6 P, SIM International Group, Newark, NJ, USA). (2) For SD, the
pieces of peel were spread out on trays to form a thin layer having a thickness of about
0.5 cm. The trays were kept in a well-ventilated and shady area at ambient temperature
(approximate temperature 5–20 ◦C) and 60–80% relative humidity for 14 days to achieve a
constant weight. (3) For both OD50 and OD70, the peels were distributed on a stainless
steel wire mesh to form a thin layer (thickness of about 0.5 cm) and dried in a hot-air
oven (DHG-9240A, Jinghong Co., Shanghai, China) at 50 or 70 ◦C with 2 m/s air flow
rate and 5–10% relative humidity for 12 h (OD50) or 8 h (OD70) to achieve a constant
weight. (4) The MD treatments were performed in a domestic microwave oven equipped
with a glass turntable (M1-L204A, Midea, Guangdong, China) with the following features:
220 V (voltage), 1150 W (input power), 700 W (output power) and 2450 MHz (operating
frequency). The peels were distributed on glass dishes to form a single layer (thickness
of about 0.5 cm). The dishes containing peels were then placed on the turntable of a
microwave oven and dried at 600 W for 12 min to achieve a constant weight.

After drying, samples were kept in a desiccator overnight to allow a homogeneous
distribution of moisture, and the final moisture content was 10 ± 0.5% wet basis. The dried
peels were ground to a powder by using an electric grinder (QE-100, Zhejiang YiLi Tool
Co., Ltd., Jiaxing, China), followed by sieving through a 40-mesh sieve. The powders were
packed in plastic bags, labeled and stored at −80 ◦C until extraction. The experiments were
performed in triplicate for each drying method.

2.4. Extraction of Dried Orange Peel

Maceration extraction at room temperature was employed to extract bioactive com-
pounds from the dried orange peel. Briefly, dried peel powders (5 g) were added into a
250 mL conical bottle, followed by the addition of 50 mL of 95% ethanol. The conical bottle
was placed on the bench for 24 h with occasional shaking. After that, the mixture was
filtered with Whatman filter paper (No 1) and the residue was collected and repeatedly
extracted four times as described above. All filtrates were combined and concentrated
by a vacuum rotary evaporator at 35 ◦C to give a brown residue, which was subjected to
lyophilization for 48 h by using a freeze dryer (FD8-6 P, SIM International Group, Newark,
NJ, USA) and stored at −80 ◦C until further analysis. The experiments were performed in
triplicate for each dried sample.
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2.5. TPC Analysis

TPC was determined spectrophotometrically with the Folin–Ciocalteu reagent accord-
ing to one of our previous reports [2]. Briefly, the extract solution in methanol (20 µL),
distilled water (60 µL), and Folin–Ciocalteu reagent (15 µL, pre-diluted from 1 M to 0.5 M
with water at a volume ratio of 1:1) were sequentially added to a 96-well plate and mixed
well by smoothly shaking for 3 min. After 4 min of static incubation at room temperature,
75 µL Na2CO3 aqueous solution (2% w/v) was added, followed by slightly shaking for
3 min. The optical density was measured at 750 nm using a microplate reader (Tecan
Spark 10M, Männedorf, Switzerland) after 15 min of static incubation at room temperature.
The methanol was used as a blank control. TPC was calculated from a linear calibration
curve (y = 0.0046x + 0.012, R2 = 0.9998, linear range from 6.25 to 100 mg/L) which was
constructed by plotting the absorbance values against the concentrations of gallic acid,
and expressed as micromole of gallic acid equivalent per gram dry weight of extract (µM
GAE/g DW). Each measurement was conducted in triplicate.

2.6. TFC Analysis

TFC was estimated by the method described previously [2]. Briefly, 500 µL NaNO2
(5% w/v), 500 µL AlCl3 (10% w/v) and 500 µL NaOH (1.0 M) were sequentially added to a
10 mL volumetric flask containing 500 µL of extract solution in methanol at 0, 5 and 11 min,
respectively. Each addition was followed by gentle shaking. Methanol was used as a blank
control. The reaction mixture was kept at room temperature for 15 min with occasional
shakings, distilled water was then added to achieve a final volume of 10 mL. The absorbance
of the reaction mixture was measured at 415 nm by a UV-vis photospectrometer (Model
2450, Shimadzu Co., Ltd., Kyoto, Japan). TFC was calculated from a linear calibration curve
(y = 0.0013x + 0.0031, R2 = 0.9996, linear range from 31.25 to 500 µg) which was constructed
by plotting the absorbance values against the amounts of quercetin, and expressed as
micromole of quercetin equivalent per gram dry weight of extract (µM QE/g DW). Each
measurement was conducted in triplicate.

2.7. HPLC Analysis

The individual flavonoids were analyzed according to the method reported previously
with some minor modifications [12]. The peel extract was dissolved in 5% DMF/methanol
solution (v/v) to form a clear solution with a concentration of 25 mg/mL, which was then
filtered through a 0.22 µm Millipore filter. The flavonoids of the extract were analyzed by
Agilent 1200 HPLC system coupled with an XBridge-C18 reverse phase column (150 mm
length× 4.6 mm id, 5.0 µm particle size) at 340 nm detection wavelength. The mobile phase
consisted of acetonitrile (A) and water (B) with a gradient elution: 10–25% A (0–15 min),
25–35% A (15–25 min), 35–50% A (25–50 min), 50–90% A (50–60 min), 90% A (60–70 min),
90–10% A (70–75 min). The injection volume was 20 µL with a flow rate of 1.0 mL/min.
The identification of individual flavonoids in the extract was achieved by comparisons
of retention time and UV absorption pattern with those of standard compound, and the
calibration equation was used to quantify the amount of each flavonoid with the result
being expressed as µg flavonoid per mg of the dry weight of peel extract (µg/mg DW). The
retention time, regression parameters, and linear range of standard compounds analyzed by
HPLC were reported in Table S1 (Supplementary File). Each measurement was conducted
in triplicate.

2.8. DPPH Scavenging Assay

DPPH assay was performed according to the method reported previously with some
modifications [13]. Briefly, DPPH was freshly prepared in methanol at a concentration
of 0.1 mM. The peel extract was dissolved in methanol and subjected to two-fold di-
lution with methanol to prepare desired solutions with concentrations ranging from
0.625 to 10 mg/mL. In total, 50 µL of each solution was placed into a 96-well plate,
followed by the addition of a freshly prepared DPPH reagent (150 µL). The plate was
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incubated at 37 ◦C in dark for 20 min, then the absorption at 517 nm was detected
by using a microplate reader (Tecan Spark 10M, Männedorf, Switzerland). Vitamin C
(VC) was used as a positive control. The measurements were performed in triplicate
with three replications. The inhibitory rate was calculated according to the formula:
Inhibition (%) = [1 − (Atreated − Ablank)/Acontrol] × 100, where Atreated represents the av-
erage absorption of wells adding both DPPH and extract solution, Ablank is the average
absorption of wells only adding extract solution, and Acontrol is the average absorption of
wells only adding DPPH. The IC50 value represents the sample concentration scavenging
50% of the DPPH radical.

2.9. ABTS Scavenging Assay

ABTS radical scavenging ability was determined according to a previous method
with some minor modifications [2]. The ABTS aqueous solution (7 mM) and ammonium
persulfate aqueous solution (2.45 mM) were mixed at a volume ratio of 1:1 and reacted
in dark at room temperature for 12 h to form a stable ABTS radical solution, which was
then diluted with 70% ethanol/water to an absorbance of 0.70 ± 0.02 at 734 nm before use.
The peel extract was dissolved and two-fold diluted with 70% ethanol/water to prepare
test solutions. In total, 50 µL of each test solution was added to the wells of a 96-well
plate, followed by the addition of freshly prepared ABTS radical solution (200 µL). A
70% ethanol/water and vitamin C mixture was employed as a blank and positive control,
respectively. The plate was smoothly shaken for 10 min, then the absorbance was measured
at 734 nm by using a microplate reader (Tecan Spark 10M, Männedorf, Switzerland).
The scavenging capacity was calculated according to the formula: Inhibition (%) = [1 −
(Atreated−Ablank)/Acontrol] × 100, where the Atreated represented the average absorption of
wells containing both ABTS and extract solution, Ablank was the average absorption of wells
containing only extract solution, and Acontrol was the average absorption of wells containing
only ABTS. The measurements were performed in triplicate with three replications. The
IC50 value was expressed as the concentration scavenging 50% of ABTS radical.

2.10. FRAP Assay

FRAP assay was carried out according to a previous method with minor modifica-
tions [14]. FRAP solution was prepared by mixing TPTZ (10 mM in 40 mM HCl aqueous
solution), acetate buffer (0.1 mM, pH 3.6), and ferric chloride (20 mM in 40 mM HCl aque-
ous solution) at a volume ratio of 1:10:1. The peel extract was dissolved and two-fold
diluted with 70% ethanol/water to give test solutions. In total, 50 µL of each test solution
was added to the wells of a 96-well plate, followed by the addition of a freshly prepared
FRAP reagent (200 µL). A 70% ethanol/water and vitamin C mixture was used as the
blank and positive control, respectively. The plate was smoothly shaken for 10 min, and
the absorbance was then measured at 593 nm by a microplate reader (Tecan Spark 10M,
Männedorf, Switzerland). The measurements were performed in triplicate with three repli-
cations. FRAP value was calculated from a linear calibration curve (y = 0.0345x − 0.0084,
R2 = 0.9997, linear range from 1.56 to 50 mg/L) which was constructed by plotting the
absorbance values against the concentrations of vitamin C (VC), and expressed as µg of VC
equivalent antioxidant capacity per mg of the dry weight of the extract (µg VC/mg).

2.11. Statistical Analysis

Data were expressed as mean ± standard deviation (SD) of independent experiments
performed in triplicate and were analyzed by using one-way analysis of variance (ANOVA)
(p < 0.05) with SPSS 21 (IBM Corporation, Armonk, NY, USA). Pearson’s correlation analysis
was performed using SPSS 21 (IBM Corporation, Armonk, NY, USA) and the heatmap was
obtained by the software TBtools (version 1.0692).
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3. Results and Discussion
3.1. Effect of Different Drying Methods on the Extracting Yield, TPC, and TFC

The maceration extraction at room temperature was used to extract the dried peel
in the present study since it had a minimum side effect on the chemical components
compared to other extraction methods employing heat or sonication treatments which
might cause degradation or decomposition of compounds. Therefore, the present result
might give convincing results reflecting the effect of only different drying methods without
the influence of extraction processing. The extracting yield was shown in Table 1. The
peel treated with MD had the best extracting yield (35.63%) when compared to other
treatments, followed in sequence by FD (34.59%), OD50 (33.33%), OD70 (32.08%), and SD
(32.44%) treatments. Similarly, a previous study has reported that freeze drying has an
obvious advantage in extracting yield compared with the hot-air drying method [15]. The
microwave radiation might make the fiber matrix become larger and looser and promote
the formation of a more porous structure in the peel, thus facilitating the extraction with
solvent, which might account for the highest extracting yield for MD treatment in the
present study. This assumption was supported by previous studies indicating that the pore
size of the citrus peel dried by the microwave method was greater than that of the citrus
peel dried by the hot-air method [16] and that the fiber structure in hot-air dried shiitake
mushrooms was arranged tightly while the microwave-dried samples demonstrated a clear
porous structure [17].

Table 1. Extracting yield, TPC and TFC of extracts from navel orange peel dried by different methods.

Drying Methods Yield (%) TPC
(µM GAE/g DW)

TFC
(µM QE/g DW)

FD 34.59 ± 0.27 b 75.42 ± 0.41 c 183.06 ± 1.57 a

SD 32.44 ± 0.31 d 77.75 ± 0.62 b 160.41 ± 1.22 c

OD50 33.33 ± 0.15 c 78.93 ± 1.04 b 182.57 ± 3.21 a

OD70 32.08 ± 0.11 d 81.36 ± 0.91 a 168.14 ± 0.92 b

MD 35.63 ± 0.12 a 71.72 ± 0.73 d 139.93 ± 3.28 d

The data are reported as average ± SD (three replicates). The different superscript lowercase letters within the
same column indicate significant statistical difference (p < 0.05). GAE: Gallic acid equivalent. QE: Quercetin
equivalent. DW: Dry weight. TPC: Total phenolic content. TFC: Total flavonoid content. FD: Freeze drying. SD:
Shade drying. OD50: Hot-air oven drying at 50 ◦C. OD70: Hot-air oven drying at 70 ◦C. MD: Microwave drying.

The TPC in peel subjected to different drying methods was listed in the order OD70 >
OD50 > SD > FD > MD. As shown in Table 1, the two highest TPC values were obtained both
from the OD treatments, suggesting that the heat treatment might enhance the production
of extractable phenolics in the peel. This suggestion was supported as well by the TPC
results showing OD > SD > FD, where the drying temperature decreased in sequence. The
phenolics in citrus were present in two forms—bound or free form—and the bound form
was supposed to be liberated to the free form as the temperature increased [3]. The present
result supported this assumption and suggested that the high drying temperature would
liberate some bound phenolics to free form, thus resulting in more extractable phenolics in
OD-treated peel than those in SD or FD-treated ones. Similarly, Papoutsis et al. reported
that TPC was higher in lemon pomace dried by hot air than that dried by freeze drying
and it increased as the drying temperature increased [8].

In addition, the TPC result in the present study could be attributed to the presence
of polyphenol oxidase (PPO) in the peel as well. PPO is an enzyme responsible for the
selective oxidation of polyphenols, and its activity tends to reduce as temperature in-
creases [18]. In the present study, the PPO activity in OD70-treated peel should be lower
than in other treatments since the drying temperature during OD70 processing is 70 ◦C,
which might deactivate the enzymatic activity and cause less oxidative degradation of
phenolics, thus resulting in the highest TPC value in the peel treated with OD70 compared
to other treatments.
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The TFC in dried peel was significantly affected by different drying methods (p < 0.05).
As shown in Table 1, the peel treated with FD had the highest TFC value, followed by
OD50, OD70, SD, and MD in sequence. The flavonoids could be degraded by thermal
treatment and by some endogenous enzymes such as PPO and peroxidase (POD) [19].
The TFC in OD50 was slightly lower than that in FD (no significant difference at p > 0.05),
suggesting that the heat temperature at 50 ◦C could be capable of deactivating the enzymes
associated with the degradation of flavonoids, but not be high enough to significantly
destroy flavonoids by thermal decomposition during drying processing. When the tem-
perature is raised to 70 ◦C, some heat-sensitive flavonoids might be decomposed, thus
resulting in lower TFC in OD70 relative to OD50 in the present study. The SD treatment
was performed at ambient temperature which might be an appropriate temperature for the
catalytic activity of some related enzymes such as PPO or POD, implying the flavonoids
might be exposed to these high-activity enzymes for a long time, therefore, the TFC in SD
treated peel was significantly lower than that in OD treated ones. It has been reported
that the optimum temperature for the enzymatic activity of PPO and POD in Rumex ob-
tusifolius L. is 30 and 25 ◦C, respectively [20], which is supportive of this assumption. In
agreement with the present result, the TFC of physiologically dropped immature citrus
fruit dried by hot air at 60 ◦C was not significantly different from that obtained from freeze
drying, and both of them were higher than that treated with sun drying at a temperature
around 25 ◦C [3]. Interestingly, the present result indicated that both the TPC and TFC
values in the peel treated with MD were the smallest among all these five treatments. The
microwave radiation with high energy can rapidly diffuse into the internal cells and be
quickly absorbed by some molecules such as phenolics and flavonoids [21], thus causing
their decomposition by breaking down covalent bonds, which might account for this ob-
servation. Similarly, Liu et al. reported that the microwave treatment contributed to the
greatest losses of phenolics and antioxidant capacities in buckwheat samples relative to all
other thermal treatments [22], and the microwave drying caused the greatest decrease in
TPC of Phyllanthus amarus as compared to the sun and hot-air drying methods [23].

3.2. Effect of Different Drying Methods on the Contents of Individual Flavonoids

As shown in Figure 1, thirteen flavonoids involving three flavanone glycosides (FGs)
and ten polymethoxyflavones (PMFs) were identified from the peel extract. The contents
of these flavonoids were quantified by HPLC as shown in Table 2. The present study
indicated that the most abundant FG in navel orange peel was hesperidin, followed by
narirutin and didymin. The PMFs mainly consisted of sinensetin, nobiletin, 3,3′,4′,5,6,7,8-
heptamethoxyflavone, 3,3′,4′,5,6,7-hexamethoxyflavone, and 4′,5,6,7-tetramethoxyflavone
with a descending order in content, as revealed in Table 2. In line with the present result,
previous phytochemical investigations have shown that hesperidin and narirutin are the
two dominant flavanone glycosides present in the orange peel [6], and PMFs involving
nobiletin, tangeretin, and sinesetin are abundant flavones in citrus peel [5]. The contents
of these thirteen individual flavonoids from peels dried with different methods were
compared in the present study. As shown in Table 2, the contents of PMFs were slightly
influenced by different drying methods, which showed no significant statistical difference
among all these different treatments. However, the MD treatment significantly reduced
the content of all three FGs in peel extract compared with other treatments. The content of
narirutin, hesperidin, and didymin was 6.22, 17.28, and 0.88 µg/mg DW, respectively, in
the peel treated with MD, whereas it ranged from 8.17 to 9.57, 31.29 to 36.27, and 1.71 to
1.85, respectively, for other treatments.
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nensetin, (5) 3,3′,4′,5,7,8-hexamethoxyflavone, (6) sinensetin, (7) 4′,5,7,8-tetramethoxyflavone, (8)
3,3′,4′,5,6,7-hexamethoxyflavone, (9) nobiletin, (10) 4′,5,6,7-tetramethoxyflavone, (11) 3,3′,4′,5,6,7,8-
heptamethoxyflavone, (12) 5-hydroxy-6,7,3′,4′-tetramethoxyflavone, (13) tangeretin.

Table 2. HPLC quantification analysis of flavonoids (µg/mg DW) in extracts from the orange peels
dried by different methods.

NO Flavonoids FD SD OD50 OD70 MD

1 narirutin 9.10 ± 0.32 a 8.17 ± 0.80 a 9.13 ± 0.70 a 9.57 ± 0.32 a 6.22 ± 1.11 b

2 hesperidin 36.27 ± 3.25 a 31.29 ± 1.19 a 32.79 ± 2.14 a 35.51 ± 1.22 a 17.28 ± 2.91 b

3 didymin 1.71 ± 0.05 a 1.72 ± 0.26 a 1.85 ± 0.35 a 1.82 ± 0.14 a 0.88 ± 0.25 b

4 isosinensetin 0.12 ± 0.01 a 0.12 ± 0.01 a 0.11 ± 0.02 a 0.12 ± 0.01 a 0.10 ± 0.01 a

5 3,3’,4’,5,7,8-hexamethoxyflavone 0.05 ± 0.01 a 0.04 ± 0.01 a 0.05 ± 0.01 a 0.06 ± 0.01 a 0.05 ± 0.01 a

6 sinensetin 1.59 ± 0.04 a 1.62 ± 0.01 a 1.59 ± 0.09 a 1.56 ± 0.05 a 1.56 ± 0.07 a

7 4’,5,7,8-tetramethoxyflavone 0.05 ± 0.01 a 0.04 ± 0.01 a 0.05 ± 0.01 a 0.05 ± 0.01 a 0.05 ± 0.01 a

8 3,3’,4’,5,6,7-hexamethoxyflavone 0.58 ± 0.01 a 0.59 ± 0.01 a 0.59 ± 0.03 a 0.59 ± 0.02 a 0.58 ± 0.02 a

9 nobiletin 1.09 ± 0.03 a 1.13 ± 0.04 a 1.12 ± 0.06 a 1.10 ± 0.04 a 1.09 ± 0.05 a

10 4’,5,6,7-tetramethoxyflavone 0.52 ± 0.01 a 0.56 ± 0.02 a 0.53 ± 0.03 a 0.51 ± 0.02 a 0.52 ± 0.04 a

11 3,3’,4’,5,6,7,8-heptamethoxyflavone 0.90 ± 0.01 a 0.93 ± 0.02 a 0.92 ± 0.05 a 0.92 ± 0.03 a 0.89 ± 0.04 a

12 5-hydroxy-6,7,3’,4’-
tetramethoxyflavone 0.09 ± 0.01 a 0.08 ± 0.01 a 0.08 ± 0.01 a 0.11 ± 0.03 a 0.10 ± 0.01 a

13 tangeretin 0.13 ± 0.01 a 0.14 ± 0.01 a 0.15 ± 0.01 a 0.14 ± 0.02 a 0.14 ± 0.01 a

The data are reported as averages ± SD (three replicates). Different superscript lowercase letters within the same
line indicate significant statistical difference (p < 0.05). FD: Freeze drying. SD: Shade drying. OD50: Hot-air oven
drying at 50 ◦C. OD70: Hot-air oven drying at 70 ◦C. MD: Microwave drying.

Despite there being no significant difference in the content of FGs in peels treated
with FD, SD, OD50, and OD70, the peel treated with SD contained the lowest amounts of
both narirutin and hesperidin among them. This result was consistent with the TFC result
showing that the peel treated with MD and SD contained the lowest and the second-lowest
TFC, respectively. Previous studies indicated that microwave irradiation can cleave the ester
and glycosidic bond of phenolics in citrus peel [24], and have the ability to hydrolyze rice
starch by breaking down C-O-C covalent linkage between monosaccharides [25]. Therefore,
we assumed that the glycosidic bond of FGs might be vulnerable to the MD treatment,
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which might initially break down upon absorbing the microwave irradiation, then inducing
the further degradation of FGs, thus making the peel treated with MD contain low amounts
of FGs as shown in Table 2. Moreover, the PMFs’ structural differences from FGs mainly
by the absence of sugar moiety were slightly influenced by MD treatment, which further
supported this assumption. However, more studies should be carried out to elucidate the
degradation mechanisms of FGs. The present result also revealed that the PMFs were much
more stable under all these drying conditions, which was in line with a previous study
showing that the methylation treatments improved the stability of flavonoids [26].

3.3. Evaluation of Antioxidant Capacity

The antioxidant capacity of peels dried with different methods was evaluated by
DPPH, ABTS, and FRAP assays. As shown in Table 3, the extract from peel treated with
OD50 demonstrated the most potent capacity in scavenging both DPPH and ABTS radicals,
and the extract from peel treated with OD70 was superior in FRAP assay when compared
to other treatments. In contrast, the extract from the peel treated with FD had the highest
IC50 value in both DPPH and ABTS assays, and the SD treatment made the peel extract less
powerful in reducing ferric (III) to ferrous (II) ions as revealed in the FRAP assay relative to
other treatments. Both DPPH and ABTS are stable free radicals, the scavenging of these two
radicals is mainly based on the electron transfer and the hydrogen atom transfer reaction
mechanisms [27]. Being different from the radical-scavenging assays, the FRAP assay is
commonly used to evaluate the overall reducing ability of antioxidants by measuring the
reduction of ferric (III) to ferrous (II) ions [28]. The antioxidant capacity evaluated by the
DPPH assay is much more consistent with that by the ABTS assay but different from that
obtained by the FRAP assay in the present study, which might be due to the discrepancy
in the mechanisms of different antioxidant assays. The present result also supported that
more than one antioxidant assay should be performed to comprehensively evaluate the
antioxidant capacity because a single antioxidant assay is not sufficient to measure the
various modes of action of antioxidants [29]. Similar to the present study, the extract
from lemon pomace dried by hot air exhibited higher antioxidant capacity in scavenging
DPPH radical than that dried by freeze drying [8]. However, Sun et al. reported that the
antioxidant capacity of physiologically dropped immature citrus fruits dried by freeze
drying was higher when compared to those dried by hot air or sun drying in both DPPH
and FRAP assays [3], which was inconsistent with the present study. These differences
could be attributed to the different drying conditions and the extraction methods applied,
as well as the different citrus cultivars used.

Table 3. Antioxidant capacity of extracts from the navel orange peels dried by different methods via
DPPH, ABTS, and FRAP assays.

Drying Methods DPPH
(IC50 mg/mL)

ABTS
(IC50 mg/mL)

FRAP
(µg VC/mg)

FD 1.37 ± 0.01 a 0.32 ± 0.01 a 4.03 ± 0.04 b

SD 1.23 ± 0.02 b 0.24 ± 0.01 c 3.39 ± 0.05 d

OD50 1.15 ± 0.04 c 0.23 ± 0.00 c 3.92 ± 0.03 bc

OD70 1.18 ± 0.01 bc 0.28 ± 0.01 b 4.27 ± 0.09 a

MD 1.34 ± 0.01 a 0.29 ± 0.01 b 3.86 ± 0.06 c

VC (positive control) 0.0033 ± 0.0003 d 0.0029 ± 0.0001 d —
The data are reported as average ± SD (three replicates). The different superscript lowercase letters within
the same column indicate significant statistical difference (p < 0.05). VC: Vitamin C. —: Not applicable. FD:
Freeze drying. SD: Shade drying. OD50: Hot-air oven drying at 50 ◦C. OD70: Hot-air oven drying at 70 ◦C. MD:
Microwave drying. DPPH: 2,2-Diphenyl-1-picrylhydrazyl free radical. ABTS: 2,2′-Azinobis-(3-ethylbenzthiazoline-
6-sulphonate) free radical. FRAP: Ferric reducing antioxidant power.

3.4. Pearson’s Correlation Analysis

Pearson’s correlation analysis was used to evaluate the relationships among all vari-
ables in the present study. The result of Pearson’s correlation analysis is usually expressed
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as a correlation coefficient value, which is represented as r. The values of r range between
−1.000 and 1.000. A correlation of −1.000 shows a perfect negative correlation, while a
correlation of 1.000 shows a perfect positive correlation [30]. As shown in Figure 2, TFC was
highly correlated with all three FGs involving narirutin (r = 0.777), hesperidin (r = 0.843)
and didymin (r = 0.795) at p < 0.01, suggesting that these three FGs should be the major
flavonoids present in peel extract. In addition, the consistent variation trend of DPPH
and ABTS in response to different drying methods was found in the present study, which
was supported by the strong positive correlation between DPPH and ABTS (r = 0.770,
p < 0.01). Similarly, several previous studies reported a high positive correlation between
them [13]. Moreover, DPPH was highly negatively correlated with TPC (r = −0.793,
p < 0.01), and moderately negatively correlated with TFC (r = −0.455, p < 0.01), suggesting
that the phenolics rather than flavonoids should be the main contributors in scavenging the
DPPH radical in peel extract. DPPH was expressed as IC50 in the present study, the lower
value of it representing the higher antioxidant capacity of extract, therefore, the negative
correlation coefficient value was obtained. FRAP showed a weak correlation with both TPC
(r = 0.258, p < 0.01) and TFC (r = 0.313, p < 0.01), indicating that the antioxidant capacity
evaluated by FRAP assay could be ascribed to the synergistic effects among antioxidants,
or come from other compounds such as polysaccharides, limonoids, and ascorbic acid.
Consistent with the present study, a very weak correlation (r = 0.118) was observed between
FRAP and TPC of extracts from the pomelo peel [14].
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Actually, the antioxidant activity might not always correlate with phenolic content,
and the presence of other bioactive compounds such as terpenoids and limonoids in citrus
peel could act as an antioxidant [5]. The high correlations between DPPH with didymin
(r = −0.529, p < 0.01) and between FRAP with 3,3′,4′,5,6,7-hexamethoxyflavone were found
in the present study, suggesting these two compounds might be potent antioxidants in
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the orange peel. In line with our results, a high correlation between didymin and DPPH
(r = 0.83, p < 0.01) was found in a recent report studying immature dropped Citrus sinensis
L. Osbeck fruits [31].

4. Conclusions

This study comprehensively studied the effects of five different drying methods,
namely FD, SD, OD50, OD70, and MD, on the chemical compositions and antioxidant
capacity of navel orange peel. The peel treated with OD70 had the highest TPC and
FRAP values, and the peel treated with OD50 exhibited the best antioxidant capacity in
both DPPH and ABTS assays, when compared to other treatments. The highest TFC was
obtained in peel dried by the FD method, which was slightly higher than that in the peel
treated with OD50, but there was no significant difference between them (p > 0.05). The
peel dried by the MD method had the highest extracting yield but contained the lowest TPC
and TFC, as well as the lowest contents of three FGs involving narirutin, hesperidin, and
didymin, relative to other drying methods. HPLC analysis identified thirteen flavonoids
(three FGs and ten PMFs) in the peel extract, and all PMFs were stable during the drying
process, showing slight variation in all five different drying methods applied. Pearson’s
correlation analysis was further employed to test the relationships among all variables. The
results revealed here allow us to recommend the use of OD50 or OD70 for the drying of
orange peel, both of which help the maintenance of bioactive compounds in the peel and
improve its antioxidant capacity. This recommendation is supported as well since the OD
drying method is a relatively inexpensive and user-friendly method.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/antiox11081543/s1. Table S1. The retention time, regression
parameters, and linear range of standard compounds analyzed by HPLC. Figures S1–S13. HPLC
profile (340 nm) of flavonids (1-13) obtained from the navel orange peel.
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