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Abstract: The essential oils (EOs) of Duguetia echinophora, D. riparia, Xylopia emarginata and
X. frutescens (Annonaceae) were obtained by hydrodistillation and the chemical composition was
analyzed by GC-MS. An antioxidant assay using the ABTS and DPPH radicals scavenging method
and cytotoxic assays against Artemia salina were also performed. We evaluated the interaction of
the major compounds of the most toxic EO (X. emarginata) with the binding pocket of the enzyme
Acetylcholinesterase, a molecular target related to toxicity in models of Artemia salina. The chemical
composition of the EO of D. echinophora was characterized by β-phellandrene (39.12%), sabinene
(17.08%) and terpinolene (11.17%). Spathulenol (22.22%), caryophyllene oxide (12.21%), humulene
epoxide II (11.86%) and allo-aromadendrene epoxide (10.20%) were the major constituents of the EO
from D. riparia. Spathulenol (5.65%) and caryophyllene oxide (5.63%) were the major compounds
of the EO from X. emarginata. The EO of X. frutescens was characterized by α-pinene (20.84%) and
byciclogermacrene (7.85%). The results of the radical scavenger DPPH assays ranged from 15.87 to
69.38% and the highest percentage of inhibition was observed for the EO of X. emarginata, while
for ABTS radical scavenging, the antioxidant capacity of EOs varied from 14.61 to 63.67%, and the
highest percentage of inhibition was observed for the EO of X. frutescens. The EOs obtained from
D. echinophora, X. emarginata and X. frutescens showed high toxicity, while the EO of D. riparia
was non-toxic. Because the EO of X. emarginata is the most toxic, we evaluated how its major
constituents were able to interact with the Acetylcholinesterase enzyme. The docking results show
that the compounds are able to bind to the binding pocket through non-covalent interactions with the
residues of the binding pocket. The species X. emarginata and X. frutescens are the most promising
sources of antioxidant compounds; in addition, the results obtained for preliminary cytotoxicity of
the EOs of these species may also indicate a potential biological activity.
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1. Introduction

Essential oils (EOs) are complex mixtures of substances formed in the secondary
metabolism of plants [1,2], and the substances present in EOs are intended to protect
plants against pests, herbivores, fungi and bacteria [3]. Among these substances, sesquiter-
penes, monoterpenes, aldehydes, alcohols, esters, and ketones stand out [4–8]. In aromatic
species belonging to the Annonaceae family, compounds belonging to the class of mono and
sesquiterpenoids have been identified as predominant [9,10]. Due to the strong demand
for pure natural ingredients in various fields, EOs have been widely used all over the
world for various applications in industrials sectors, such as food, pharmaceuticals and
cosmetics production [11].

The antioxidant activity of EOs is a property of great interest because the EOs may
preserve foods, cosmetics, perfumes and other products from the toxic effects of oxidants.
Moreover, the ability of EOs to scavenge free radicals may play an important role in
prevention of some diseases such as brain dysfunction, cancer, heart disease and immune
system decline. Increasing evidence has suggested that these diseases may result from
cellular damage caused by free radicals [12–14]. Furthermore, the Artemia salina Leach assay
is a preliminary toxicity test that screens a large number of biosynthesized compounds
from plant secondary metabolism and can quickly indicate the potential biological activity
of EOs [15]. In general, authors report that the molecular target in toxicity tests with A.
salina is acetylcholinesterase, so it is important to investigate the interaction mechanisms
using in silico studies [16,17].

Annonaceae has numerous species that produce EOs. This family consists of 2106 species
and more than 130 genera concentrated in the tropics. Around 900 species are neotropical,
450 are Afrotropical and the other species are Indomalayan [18]. In the Amazon region it is
estimated that there are approximately 268 species [19]. The biological activities described
for the EOs of these species include antioxidant [20–22] and cytotoxic activities [23]. Con-
sidering the large number of species of Annonaceae occurring in the Amazon region, there
are still few studies investigating the chemical composition and the biological activities of
the EOs of these species. In this paper, the chemical composition and the antioxidant and
cytotoxic properties of the EOs obtained from the Annonaceae species collected in the State
of Pará-Brazil (Duguetia echinophora R.E.Fr., D. riparia Huber, Xylopia emarginata Mart. and
X. frutescens Aubl) were evaluated. We also studied the interaction of the major compounds
of the most toxic EO with the binding pocket of the enzyme Acetylcholinesterase.

It is worth mentioning that there is still no literature available on the biological properties
of the EOs from D. echinophora, D. riparia or X. emarginata nor on the chemical composition
of the EO of the species D. echinophora. The chemical composition of EOs from D. riparia,
X. emarginata and X. frutescens has been evaluated and is characterized by mono and sesquiter-
penes [24–26]. The EO from X. frutescens showed interesting anticancer [26] and repellent
activities [27]. In folk medicine, this species is known in Brazil as “embira”, “semente-de-
embira”, “embira-vermelha” and “pau carne”, and is widely used to treat flu, digestive
problems, rheumatism, halitosis, tooth decay and as a bladder stimulant [26,28,29].

The present work provides new information related to the antioxidant potential of EOs
from the species D. echinophora, D. riparia, X. emarginata and X. frutescens for use in areas such
as food conservation. In addition, we investigate preliminary toxicity that provides important
information related to the application of these EOs in potential biological activities.

2. Materials and Methods
2.1. Botanical Material

The leaves of Annonaceae species were collected in the municipality of Magalhães
Barata (State of Pará, Amazon region, Brazil) in March 2018 (00◦47′51.6′′ S; 047◦33′38.4′′ W).
The samples were identified by Jorge Oliveira, a parataxonomist from the Museu Paraense
Emílio Goeldi (MPEG), Belém, Pará, Brazil. The voucher specimens were deposited at the
Herbarium of MPEG under the registration codes MG-237446 for D. riparia, MG-237477 for
D. echinophora, MG-237444 for X. frutescens and MG-237449 for X. emarginata.
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2.2. Preparation of Botanical Material and Extraction of Essential Oils

The leaves of Annonaceae species were dried in an air-circulation oven for five days at
35 ◦C and then crushed in a knife mill (Tecnal, model TE-631/3, Piracicaba, São Paulo, Brazil).
The moisture content was analyzed using a moisture analyzer (Marte, model ID50,
São Paulo, Brazil). The EOs were extracted from the leaves of Annonaceae species by
hydrodistillation in a glass modified Clevenger-type apparatus [30,31], using 150 g of
plant material for each experiment. Hydrodistillations were carried out for 3 h at 100 ◦C.
The obtained EOs were dried over anhydrous sodium sulfate and stored in a freezer at
−10 ◦C. The yields of EOs (%) were calculated based on plant dry weight and expressed in
mL/100 g of dried material.

2.3. Analysis of Chemical Profile of Essential Oil

The phytochemical profiles of the EOs were analyzed using chromatography/mass
spectrometry (GC/MS) using a Shimadzu QP Plus 2010 GC-MS (Kyoto, Japan) following
protocols reported earlier by our research group [32,33]. The retention index was calculated
for all volatile constituents using a homologous series of n-alkanes (C8-C40, Sigma-Aldrich,
St. Louis, MO, USA) according Van den Dool and Kratz [34], and the compounds were
identified by comparing their mass spectrum and retention index with the data from
the libraries [35].

2.4. ABTS•+ Radical Scavenging Assay

The ABTS•+ assay was performed according to the methodology adapted from
Miller et al. [36], and modified by Re et al. [37]. ABTS•+ was prepared using 7 mM ABTS•+
and 140 mM of potassium persulfate incubated at room temperature without light for
16 h. The solution was then diluted with phosphate-buffered saline until it reached an
absorbance of 0.700 ± 0.02 at 734 nm. To measure the antioxidant capacity, 2.97 mL of
the ABTS•+ solution was transferred to the cuvette, and the absorbance at 734 nm was
determined using a Biospectro SP 22 spectrophotometer. Then, 0.03 mL of the sample was
added to the cuvette containing the ABTS•+ radical, and after 5 min, the second reading
was performed. The data were expressed as percent inhibition.

2.5. DPPH• Radical Scavenging Assay

The test was carried out according to the method proposed by Blois et al. [38]. To
measure the antioxidant capacity, initially, the absorbance of DPPH• 0.1 mM diluted in
ethanol was determined. Subsequently, 0.6 mL of DPPH• solution, 0.35 mL of distilled
water, and 0.05 mL of the sample were mixed and placed in a water bath at 37 ◦C for 30 min.
Thereafter, the absorbances were determined in a spectrophotometer at 517 nm. The data
were expressed as percent inhibition.

2.6. Preliminary Toxicity

The toxicity of the essential oils was tested against larvae of the microcrustacean
Artemia salina leach (brine shrimp). The eggs of A. salina (25 mg) were incubated at room
temperature (27–30 ◦C) in an aquarium with artificial salt water composed of a mixture
of 46 g of NaCl, 22 g of MgCl2.6H2O, 8 g of Na2SO4, 2.6 g of CaCl2.6H2O, and 1.4 g of
KCl in 2.0 L of distilled water. The pH was adjusted to the 8.0–9.0 range using Na2CO3
to avoid the risk of larvae death by lowering the pH during incubation. After 24 h of egg
hatching, oil solutions were prepared at concentrations of 100, 50, 25, 10, 5 and 1 µg·mL−1

using brine as vehicle and 5% dimethyl sulfoxide as diluent. Ten larvae of A. salina were
placed in each tube containing the solution, and the mortality rate of the larvae after 24 h
was calculated. The mean lethal concentration (LC50) was estimated using the Probitos
statistical method. All the experiments were performed in triplicate using same protocols
as described by Rebelo et al. [39].
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2.7. In silico analysis

To carry out the in silico study, the molecules spathulenol and caryophyllene ox-
ide (the major constituents present in the EO of Xylopia emarginata) were constructed
using GaussView 5.5 software [40,41]. Their molecular structures were optimized with
B3LYP/6-31G* [42,43] with Gaussian 09 [44]. We used the molecular method to evaluate
the compounds interaction mode with Acetylcholinesterase (AChE). For this we used the
Molegro Virtual Docker (MVD) 5.5 [45–47], and the crystal structure used as a molecu-
lar target can be found in the Protein Data Bank using the ID: 4M0E [48]. The MolDock
Score (GRID) scoring function was used with a Grid resolution of 0.30 Å and 5 Å radius
encompassing the entire connection cavity. The MolDock SE algorithm was used with the
following parameter settings: number of runs equal to 10, maximum of 1500 interactions,
and maximum population size equal to 50. The maximum evaluation of 300 steps with a
neighbor distance factor equal to 1 and energy threshold equal to 100 was used during the
molecular docking simulation.

2.8. Multivariate Analysis

The multivariate analysis was performed using the Minitab 17® software (free version
number 17, Minitab Inc., State College, PA, USA). The chemical constituents of the EOs
from the leaves of D. echinophora, D. riparia, X. emarginata and X. frutescens, (≥3%), were
set as the experimental variables, thus forming a matrix of 4 (samples) × 23 (variables)
according to the literature [15,32,33].

3. Results and discussion
3.1. Chemical Composition

The EOs yields from the leaves of the Annonaceae species were 1.76, 0.08, 0.27 and
1.50% for D. echinophora, D. riparia, X. emarginata and X. frutescens, respectively. The yield
found in this study for the EO of D. riparia was close to those found in studies with
other species of the Duguetia genus (0.1–0.6%) [24]. The EOs yields found for the Xylopia
species were also very close to those found in others studies [25,26]. The yields and EOs
compositions of the species are shown in Table 1.

Table 1. Yield and chemical compositions of the Annonaceae species essential oils.

DE DR XE XF

Essential Oil Yield (%) 1.76 0.08 0.27 1.50

RT RIL RIC Constituents (%)

5.19 801 798 Hexanal 0.95
6.95 844 845 Hex-(3E)-enol 1.35
7.25 863 857 Hexanol 0.85
8.30 924 925 α-Thujene 4.89

11.17 932 932 α-Pinene 4.14 1.31 3.14 20.84
11.23 946 948 Camphene 2.72
11.98 969 974 Sabinene 17.08
12.32 974 974 β-Pinene 2.01 25.95
12.57 988 991 Myrcene 3.61
13.09 1002 1002 α-Phellandrene 1.27 1.73
13.56 1008 1011 δ-3-Carene 0.95
13.89 1014 1016 α-Terpinene 0.85
14.02 1020 1022 p-Cymene 0.65 0.54 0.44
14.32 1024 1027 Limonene 3.00
14.79 1025 1029 β-Phellandrene 39.12 2.60
14.90 1026 1031 1,8-Cineole 3.36 1.00
14.99 1032 1043 (Z)-β-Ocimene 0.44
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Table 1. Cont.

DE DR XE XF

Essential Oil Yield (%) 1.76 0.08 0.27 1.50

RT RIL RIC Constituents (%)

15.02 1054 1055 γ-Terpinene 1.00 1.40
15.13 1065 1068 cis-Hydrate sabinene 0.17
15.74 1086 1084 Terpinolene 11.17 0.39
15.87 1095 1099 Linalool 0.30 1.74
16.07 1112 1118 trans-Thujone 0.09
16.15 1114 1119 endo-Fenchol 0.33
16.48 1118 1123 cis-p-Ment-2-en-1-ol 0.08
16.89 1122 1126 α-Campholenal 0.38 0.14
17.32 1135 1140 trans-Pinocarveol 4.46 0.36
17.54 1137 1149 cis-Verbenol 0.49 0.15
17.76 1154 1156 Sabina ketone 0.27
17.94 1160 1162 Pinocarvone 2.35 0.16
17.98 1166 1168 p-Mentha-1,5-dien-8-ol 1.26 0.11
18.03 1167 1169 Umbellulone 0.04
18.09 1174 1180 Terpinen-4-ol 1.16 1.06
18.51 1179 1186 p-Cymen-8-ol 3.36 0.71
18.74 1186 1194 α -Terpineol 0.97
18.82 1195 1196 Myrtenal 3.24
18.91 1204 1207 Verbenone 1.62 0.1
19.13 1215 1218 trans-Carveol 0.33
19.22 1239 1243 Carvone 0.23
19.38 1249 1248 Geraniol 0.39
19.53 1335 1335 δ-Elemene 2.32 4.41
19.68 1345 1345 α-Cubebene 0.74 0.08
19.95 1373 1367 α-Ylangene 1.35
20.37 1374 1368 Isoledene 0.02
20.90 1374 1374 α-Copaene 0.25 1.07 0.25
21.56 1379 1378 Geranyl acetate 1.38
22.02 1387 1381 β-Bourbonene 0.93
22.95 1389 1389 β-Elemene 0.74 0.49 3.10 0.54
23.68 1409 1405 α-Gurjunene 0.11 0.06
23.82 1417 1422 (E)-Caryophyllene 2.98 1.56 0.93 0.03
24.17 1419 1416 β-Ylangene 0.72
25.04 1434 1429 γ-Elemene 0.19 0.39
25.26 1439 1439 Aromadendrene 0.75 0.39
26.13 1442 1442 6,9-Guaiadiene 0.06
26.58 1451 1450 trans-Muurola-3,5-diene 0.38
26.81 1452 1452 α-Humulene 0.73 1.40 0.35 0.10
27.05 1458 1456 allo-Aromadendrene 0.11
27.19 1464 1465 (E)-9-epi-caryophyllene 0.26
27.81 1471 1470 Dauca-5,8-diene 0.29
27.98 1478 1484 γ -Muurolene 3.06
28.10 1484 1492 Germacrene D 1.24 1.34 1.08 3.26
28.18 1489 1487 β-Selinene 1.61
28.29 1493 1494 epi-Cubebol 0.91
28.33 1495 1490 γ-Amorphene 0.67
28.52 1496 1489 Viridiflorene 0.56
28.61 1500 1497 Bicyclogermacrene 0.21 7.85
28.91 1500 1498 α-Muurolene 0.95
29.03 1513 1513 γ-Cadinene 2.67 0.13
29.17 1514 1513 Cubebol 0.68 0.05
29.57 1522 1520 δ-Cadinene 1.61 0.38
29.98 1528 1520 cis-Calamenene 2.06 4.01 0.48
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Table 1. Cont.

DE DR XE XF

Essential Oil Yield (%) 1.76 0.08 0.27 1.50

RT RIL RIC Constituents (%)

30.06 1533 1531 trans-Cadina-1,4-diene 0.16 0.01
30.24 1533 1534 10-epi-Cubebol 0.09
30.39 1537 1536 α-Cadinene 0.24
30.58 1539 1540 α-Copaen-11-ol 0.04
30.67 1544 1540 α-Calacorene 1.47
30.83 1548 1548 Elemol 0.06
31.57 1564 1561 β-Calacorene 0.65
31.97 1577 1579 Spathulenol 1.87 22.22 5.65 2.18
32.28 1582 1583 Caryophyllene oxide 2.49 12.21 5.63 0.18
32.51 1590 1589 Globulol 1.10
32.62 1592 1593 Viridiflorol 0.61 0.54
32.76 1595 1594 Cubeban-11-ol 0.23
32.85 1596 1596 Fokienol 2.48
32.92 1600 1604 Rosifoliol 0.23
33.09 1602 1601 Ledol 0.10
33.25 1608 1609 Humulene Epoxide II 0.21 11.86 1.41
33.81 1630 1630 Muurola-4,10(14)-dien-1-β-ol 4.70
34.18 1638 1643 epi-α-Cadinol 0.09
34.36 1639 1657 Allo-Aromadendrene Epoxide 10.20 0.02
34.45 1639 1661 Caryophylla-4(12),8(13)-dien-5-α-ol 1.36
34.51 1640 1664 epi-α-Muurolol 0.12
34.71 1644 1669 α-Muurolol 0.83
34.84 1645 1672 Cubenol 2.57 0.68
34.89 1648 1678 cis-Guaia-3,9-dien-11-ol 0.54
34.93 1652 1681 α-Cadinol 3.45 0.30
35.49 1668 1684 trans-Calamenen-10-ol 0.30
35.62 1668 1692 14-Hydroxy-9-epi-(E)-caryophyllene 1.00
35.94 1676 1694 Mustakone 3.36
36.28 1685 1695 Germacra-4(15),5,10(14)-trien-1-α-ol 0.76 1.40 0.04
39.41 1767 1768 14-oxi-α-Muurolene 0.48
59.61 2400 2408 Tetracosane 0.02
62.38 2500 2512 Pentacosane 0.02

Monoterpenes hydrocarbon
Oxygenated monoterpenes

Sesquiterpenes hydrocarbon
Oxygenated sesquiterpenes

Others class

78.99 1.80 8.41 62.53
4.52 0 19.45 6.17
8.32 8.50 27.42 19.05
4.57 71.76 22.99 5.03

- - 3.42 2.30

Total 96.4 82.06 81.69 95.08

RT: Retention Time; RIC = Calculated retention index; RIL = Literature retention index; DE: Duguetia echinophora;
DR: Duguetia riparia; XE: Xylopia emarginata; XF: Xylopia frutescens.

The chemical compositions of the EOs of D. echinophora, D. riparia, X. emarginata
and X. frutescens were characterized by GC-MS, and a total of 22, 19, 59 and 62 compo-
nents were identified, representing 96.40, 82.06, 81.69 and 95.08% of the total EOs for each
species, respectively. The hydrocarbon monoterpenes compounds represented the most
abundant class in the EOs of D. echinophora (78.99%) and X. frutescens (62.53%), and the oxy-
genated sesquiterpenes class characterized the EO of D. riparia (71.76%). The compounds
β-Phellandrene (39.12%), sabinene (17.08%) and terpinolene (11.17%) were dominant in the
D. echinophora EO, while spathulenol (22.22%), caryophyllene oxide (12.21%), humulene
epoxide II (11.86%) and allo-aromadendrene epoxide (10.20%) were the major constituents
of the D. riparia EO. The EO of X. emarginata was characterized by spathulenol (5.65%) and
caryophyllene oxide (5.63%), and X. frutescens EO was characterized byα-pinene (20.84%) and
byciclogermacrene (7.85%). Ion chromatograms are available in the Supplementary Material.
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According to data previous published, the chemical compositions of the EOs of An-
nonaceae species occurring in Brazil are predominantly characterized by substances belong-
ing to the class of mono and sesquiterpenes, and among these compounds, the most abun-
dant are β-elemene, α-pinene, β-pinene limonene, bicyclogermacrene, (E)-caryophyllene,
caryophyllene oxide, spathulenol, and germacrene D, [9].

Previous reports have investigated the chemical composition of the EOs from the
Annonaceae species described in this work (D. riparia, X. emarginata and X. frutescens).
The leaves and fine stems EO of D. riparia, also collected in State of Pará-Brazil, showed
spathulenol (46.5%), caryophyllene oxide (28.9%) and α-pinene (6.1%) as their main com-
pounds [24], and quantitative differences were observed for the constituents spathulenol
and caryophyllene oxide in relation to the D. riparia EO described in the present work.
The EO from the leaves of X. emarginata, collected in Caxiuanã National Forest, Melgaço,
State of Pará-Brazil, showed a high percentage of sesquiterpene spathulenol (73.0%) [11],
whereas in the present work, this constituent was obtained at a low percentage (5.65%) [25].
The EO from the leaves of X. frutescens, collected in Municipality of Capela, Sergipe
State, Brazil, had as its major compounds (E)-caryophyllene (31.48%), bicyclogermacrene
(15.13%), germacrene D (9.66%), δ-cadinene (5.44%), viridiflorene (5.09%) and α-copaene
(4.35%) [26], while the EO from the leaves of the specimen collected in the city of Itabaiana,
Sergipe-Brazil, had as its major constituents bicyclogermacrene (23.23%), (E)-caryophyllene
(17.24%), β-elemene (6.35%) and (E)-β-ocimene (5.23%) [27].

The chemical composition of EOs can be strongly influenced by several factors, in-
cluding season, climate, geography, age, genotype, organ, development periods, collection
place and even extraction method, etc. [49–51]. Figueiredo and collaborators evaluated the
influence of seasonal variation on the EO of Eugenia patrisii Vahl (Myrtaceae) and verified
a potential correlation between the content of the main constituents of the essential oil
and climatic parameters (temperature, insolation and humidity rate) [52]. The EOs of Flos
Chrysanthemi indici, an important medicinal and aromatic plant in China, were obtained by
different extraction techniques, hydrodistillation (HD), steam distillation (SD), solvent-free
microwave extraction (SFME) and supercritical fluid extraction (SFE), and the authors
found that the EO yield, chemical composition and bioactivities varied according to the
extraction method used [53]. Some Annonaceae species have shown qualitative and quanti-
tative variability in their EO compositions according to different collection sites. The EOs
from the leaves of Annona vepretorum Mart. collected in the State of Sergipe, Brazil, showed
bicyclogermacrene, spathulenol and α-phellandrene as the major constituents [54], while
another specimen collected in the State of Pernambuco, Brazil, showed α-pinene, limonene,
spathulenol and caryophyllene oxide as the compounds with higher percentage [55]. The
compounds α-selinene, aristolochene, (E)-caryophyllene and (E)-calamenene were identi-
fied as the major constituents of EO from leaves of a specimen of Duguetia lanceolata collected
in the state of Minas Gerais, Brazil [23], while another specimen collected in the State of
São Paulo, Brazil, had as its main constituents of the EO the compounds trans-muurola-
4(14),5-diene, β-bisabolene, 3,4,5-trimethoxy-styrene and 2,4,5-trimethoxy-styrene [56].

3.2. Multivariate Analyses

Figures 1 and 2 show the correlations between the classes of compounds identified in
the different samples according to the multivariate analyses, principal component analysis
(PCA) and hierarchical cluster analysis (HCA), respectively. PC1 and PC2 represent the
principal components (PC), which contained 39.0% and 32.0% of the variables, respectively,
and accounted for 71.0% of the variance in the analyzed data. In the HCA analysis, tree
groups were observed that show the similarity between the identified classes. Group I,
including the samples of EOs from D. echinophora and X. frutescens showed a similarity of
10.67% (Figure 2) and comprised the compounds β-phellandrene, p-cymen-8-ol, bicycloger-
macrene, terpinolene, α-pinene, sabinene, myrcene, limonene, β-pinene and α-thujene
(Figure 1). Groups II and III contained only one sample each and comprised β-elemene,
1,8-cineol, muurola-4,10(14)-dien-1-β-ol, trans-pinocarveol, myrtenal and γ-muurolene
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(X. emarginata EO) and cis-calamenene, α-cadinol, mustakone, allo-aromadendrene epoxide,
humulene epoxide II, spathulenol and caryophyllene oxide (D. riparia EO), with similarities
of 7.18% and 0%, respectively (Figure 2).
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3.3. Antioxidant Capacity

The antioxidant potential of the EOs from Annonaceae species was evaluated based on
their ability to scavenge stable free DPPH• (2,2-diphenyl-1-picrylhydrazyl) and ABTS•+
(2,2′-Azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) radicals; the results are shown in
Figure 3. The results of the DPPH assays ranged from 15.87 to 69.38% and the highest per-
centage of inhibition was observed for the EO of X. emarginata, characterized by spathulenol
(5.65%) and caryophyllene oxide (5.63%). For ABTS radical scavenging, the antioxidant
capacity of EOs ranged from 14.61 to 63.67%. The species X. frutescens showed the higher
antioxidant capacity by the ABTS•+ assay. This may be due to the presence of α-Pinene
(20.84%) and β-Pinene (25.95%), the major components present in this EO. Possibly, the
antioxidant activity of the X. emarginata EO can also be attributed to its main components
which are described as antioxidants [57,58]. The high free radical scavenging effect of this
sample may be related to the fact that the combination of the numerous organic chemical
constituents present in EOs have a synergistic effect, increasing the biological activity or,
conversely, an antagonistic effect [59]. In addition, bioactive compounds belonging to the
monoterpenoid class have antioxidant activity, as reported in the literature [60].
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Other studies investigating EOs of the Duguetia and Xylopia genera identified antiox-
idant effects. The EO of Xylopia sericea A. St.-Hil. showed significant antioxidant activ-
ity using DPPH (IC50 49.1 µg·mL−1), β-carotene/linoleic acid bleaching (IC50 6.9 µg·mL−1),
TAC (IC50 78.2 µg·mL−1) and TBARS (IC50 80.0 µg·mL−1) methods [20]. The EO of Duguetia
lanceolata St. Hil. branches showed antioxidant effects using a DPPH assay (EC50 159.4 µg·mL−1),
Fe+3 reduction (EC50 187.8 µg·mL−1) and inhibition of lipid peroxidation (41.5%); the authors
suggest that caryophyllene oxide is one of the active compounds found in this EO [21].

3.4. Cytotoxic Activity of Essential Oils

The toxicity of the EOs from Annonaceae species was measured in terms of LC50 (lethal
concentration) with two negative control groups (control 1:10 nauplii and artificial sea-water
with DMSO 0.1%; control 2: 10 nauplii and artificial seawater) and one positive control
(K2Cr2O7, 50 µg·mL−1). The values are shown in Table 2. Values of LC50 < 80 µg·mL−1 are
considered highly toxic [15,61,62]; values of LC50 within the range 80 to 250 µg·mL−1 are
moderately toxic; and LC50> 250 µg·mL−1 are considered as low toxicity or non-toxic [63].
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The EOs of D. echinophora, X. emarginata and X. frutescens showed high toxicity, whereas
the EO of D. riparia showed low toxicity or was non-toxic. The major compounds from
the EOs of X. emarginata (spathulenol and caryophyllene oxide) [64,65], D. echinophora
(β-phellandrene and terpinolene) [66,67] and X. frutescens (α-pinene and byciclogerma-
crene) [68,69] showed cytotoxic effects and these results indicate that the cytotoxic potential
observed for the EOs tested may be related to the presence of these secondary metabolites.

Table 2. LC50 concentrations of the essential oils using Artemia salina assay.

Essential Oil LC50 (µg·mL−1)

Duguetia echinophora 28.00 ± 0.30
Duguetia riparia 310.80 ± 0.70

Xylopia emarginata 26.72 ± 0.17
Xylopia frutescens 54.36 ± 0.20

Positive control (K2Cr2O7) 50.00 ± 0.00
Values are expressed as mean and standard deviation (n = 3).

Toxicity tests in A. Salina performed with Coriandrum sativum L. (Apiaceae) showed
an LC50 value of 23 µg·mL−1 [70], which is similar to those obtained in the present work
for D. echinophora and X. emarginata EOs. Oliva and coworkers evaluated toxicity of the
EOs from some medicinal plants, and the results showed a decreasing activity in the
brine assay of Aloysia polystachia (Verbenaceae) (LC50 6459 µg·mL−1), Aloysia triphylla (Ver-
benaceae) (LC50 1279 µg·mL−1), Minthostachys verticillata (Myrtaceae) (LC50 1848 µg·mL−1),
and Schinus poligamus (Anacardiaceae) (LC50 1179 µg·mL−1), that were considered non-
toxic [71], Other authors have also reported the toxicity of essential oils from a variety
of plants [17,72,73].

The essential oils of Duguetia species have been studied by using the A. salina bioassay.
The EOs from the leaves, underground heartwood and underground stem bark of Duguetia
furfuracea (A. St. -Hil.) Saff. showed potent activity against A. salina larvae (LC50 6.01,
7.79 and 9.98 µg·mL−1, respectively) and the leaf EO from D. lanceolata also showed potent
activity against the same larvae (LC50 0.89 µg·mL−1) [23]. In another study, the EOs of
D. lanceolata showed toxicity against A. salina with LC50 values of 49.0 µg·mL−1 (2 h of
hydrodistillation extraction) and 60.7 µg·mL−1 (4h of hydrodistillation extraction) [74].

3.5. Molecular Docking

Molecular modeling approaches have been used to investigate how natural com-
pounds interact with molecular targets of pharmacological interest [75–78]. One of the
tools used has been molecular docking, which can provide insights into how these com-
pounds interact with the binding pocket of proteins. Here, we use this approach to assess
how the major compounds of the EO from X. emarginata interact with the AChE active
site, as this target is closely related to the toxicity mechanism observed in the A. salina
assays [79,80]. Spathulenol formed hydrophobic interactions with various residues such as
Ser293, Phe297, Trp286, Tyr72, Tyr341, and Phe338. A hydrogen bond was established with
Ser293. Caryophyllene oxide established pi-alkyl hydrophobic interactions with Trp286,
Tyr341 and Tyr337 (Figure 4). The interaction between spathulenol and caryophyllene
with the active site of AChE has already been described [58] and this could be the likely
mechanism responsible for the cytotoxicity of the EO from X. emarginata.
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4. Conclusions

The present study presents new insights concerning the chemical composition, antiox-
idant activity and preliminary toxicity of some Annonaceae EOs. Essential oils obtained
from D. echinophora, X. emarginata and X. frutescens showed high toxicity, compared with
EO obtained from D. riparia, which showed low toxicity or was non-toxic. The cytotoxicity
test against A. salina can be considered as a good preliminary assessment of bioactive com-
pounds, and may indicate a potential biological activity. The docking results elucidated the
interaction mode of the major compounds of X. emarginata EO, spathulenol and caryophyl-
lene, with the active site of the enzyme Acetylcholinesterase. The greatest capacities to
scavenge DPPH and ABTS radicals were found in the essential oils of X. emarginata and
X. frutescens, respectively, and the main constituents of the EO of this species may play
the main role in the observed antioxidant capacity; however, the impact of less abundant
constituents also should be considered.
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