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Abstract: Transport is essential in cross-regional culturing of juvenile fish. Largemouth bass
(Micropterus salmoides) often exhibit decreased vitality and are susceptible to disease after transporta-
tion. To study the effects of transport stress on juvenile largemouth bass, juveniles (average length:
8.42 ± 0.44 cm, average weight 10.26 ± 0.32 g) were subjected to a 12 h simulated transport, then
subsequently, allowed to recover for 5 d. Liver and intestinal tissues were collected at 0, 6 and 12 h
after transport stress and after 5 d of recovery. Oxidative and immunological parameters and the
gut microbiome were analyzed. Hepatocytic vacuolization and shortened intestinal villi in the bass
indicated liver and intestinal damage due to transport stress. Superoxide dismutase, lysozyme and
complement C3 activities were significantly increased during transport stress (p < 0.05), indicating
that transport stress resulted in oxidative stress and altered innate immune responses in the bass.
With the transport stress, the malondialdehyde content first increased, then significantly decreased
(p < 0.05) and showed an increasing trend in the recovery group. 16S rDNA analysis revealed that
transport stress strongly affected the gut microbial compositions, mainly among Proteobacteria,
Firmicutes, Cyanobacteria and Spirochaetes. The Proteobacteria abundance increased significantly
after transport. The Kyoto Encyclopedia of Genes and Genomes functional analysis revealed that
most gut microbes played roles in membrane transport, cell replication and repair. Correlation
analyses demonstrated that the dominant genera varied significantly and participated in the mea-
sured physiological parameter changes. With 5 days of recovery after 12 h of transport stress, the
physiological parameters and gut microbiome differed significantly between the experimental and
control groups. These results provide a reference and basis for studying transport-stress-induced
oxidative and immune mechanisms in juvenile largemouth bass to help optimize juvenile largemouth
bass transportation.

Keywords: largemouth bass; transport stress; gut microbiome; oxidative stress; innate immunity
response

1. Introduction

Transportation is important in cross-regional fingerling cultures. However, the fish
often showed decreased vitality, loss of appetite, and low resistance after long-distance
transportation, which adversely affects healthy breeding and limits rapid development in
the aquaculture industry. Many reasons, such as water quality changes, fish body bruising,
starvation and so on, may cause transport stress. Increases in ammonia-nitrogen and nitrite
concentrations in the water caused by fish metabolites during transportation is often con-
sidered as one of the important factors causing transport stress [1] and increased mortality
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in the fish after transport [2]. Transport stress can cause irregular oxidation in the aero-
bic metabolic pathway, resulting in oxidative stress in transported fish [3,4]. Mechanical
damage caused by turbulence and congestion during transport can lead to immune injury,
making fish susceptible to pathogenic infection [5]. Transport stress significantly affected
glycogen, superoxide dismutase (SOD) and malondialdehyde (MDA) contents in hybrid
snapper (Pagrus major♀× Acanthopagrus schlegelii♂) livers, with significantly increased
mortality in these fish after transport [6]. One study found that liver lysozyme and IgM
activity increased significantly in hybrid Pelteobagrus fulvidraco (Tachysurus fulvidraco♀×
Pseudobagrus vachellii♂) after transport stress [7]. Another study found that alkaline phos-
phatase, acid phosphatase, SOD activity and total antioxidant capacity (T-AOC) in the gills
first increased, then decreased [8]. Additionally, short-distance transport stress significantly
decreased the SOD and T-AOC activities in liver tissue from Oncorhynchus mykiss [9]. T-
AOC, CAT and MDA levels first increased, then decreased during transport in Ictalurus
punctatus [2], and T-AOC, lysozyme and complement C3 activities increased significantly
in blunt snout bream (Megalobrama amblycephala) after transport [10].

The intestines are important for digestion and absorption in fish, and the gut mi-
crobiome participates in metabolism and synthesis of proteins, amino acids and other
substances [11], which is important in physiological metabolism and immunity. Gut mi-
crobiome stability is important for maintaining host health [12]. Environmental stress can
change the gut microbiome structure [13]. Crowding stress significantly changed the gut
microbial abundances in blunt snout bream (Megalobrama amblycephala) at the genus level,
with a significant correlation between intestinal microorganisms and 13 metabolites [14].
In Penaeus vannamei, stress from high ammonia-nitrogen concentrations significantly de-
creased the gut microbial abundances and reshaped the genus-level community structure
of the gut microbiome [15]. Additionally, transport stress changed the intestinal microbial
diversity of hybrid yellow catfish (Tachysurus fulvidraco♀× Pseudobagrus vachellii♂) and
affected host microbial functions [16].

Largemouth bass (Micropterus salmoides) are native to freshwater basins in North Amer-
ica and are now widely farmed throughout China. This species is economically important
owing to its fast growth and strong disease resistance [17,18]. However, breeding large-
mouth bass seedlings is concentrated in Jiangsu and Guangdong, and the fingerling often
need to be transported long distances, which can lead to decreased vitality and sometimes
death, which adversely affects healthy breeding and limits rapid development in the aqua-
culture industry. This study was conducted to observe the effects of transport stress on liver
and intestinal tissue structures in largemouth bass by simulating long-distance transport.
We also analyzed the effects of transport stress on antioxidant and immune abilities in
largemouth bass and clarified the differences in gut microbiome compositions before and
after transport stress. The results provide a reference for optimizing transportation of
juvenile largemouth bass.

2. Materials and Methods
2.1. Experimental Materials

Largemouth bass (50 days of age with average body length 8.42 ± 0.44 cm, average
weight 10.26 ± 0.32 g) were selected from the Yixing Base of Freshwater Fisheries Center,
Chinese Academy of Fishery Sciences (Wuxi, China). The bass were cultured in a recirculat-
ing aquaculture system consist of 26 cylindrical circulation barrels with a diameter of 1.0 m,
height of 1.2 m, and the water used for aquaculture was filtered pond water. The bass were
fed commercial feed (crude protein 46.0% and crude fat 6%) at 2% of their body weight
twice daily (8:00 am and 16:00 pm) in a recirculating aquaculture system with density of
1.3 g/L at 24.0 ± 0.3 ◦C, ammonia-nitrogen <0.01 mg/L, and dissolved oxygen >6 mg/L
before the experiment. The culture conditions were applied to the control and recovery
groups. The fish was fasted 24 h immediately after last feeding, then used for experiment.
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2.2. Experimental Design

The experiment was divided into treatment groups: 0-h, 6-h, and 12 h transport stress;
5 d recovery after a 12 h simulated transport, and a control group. Three parallels were set
per group. The bass that remained in the recirculating aquaculture system were used as
controls. Twelve double-layered plastic bags (40 × 80 cm) containing one-third water and
two-third oxygen were placed on an automated shaker (Mince instrument, Changzhou,
China) to simulate the actual transport. The vibration frequency was set at 100 rpm [6,16],
and each bag contained 15 fish. The air conditioning temperature was set to 22 degrees to
ensure that the ring temperature was constant during the simulated transportation, and
avoided all light in the process. Nine bags were used for sampling at 0, 6, and 12 h of
transportation. The other three bags were placed in the recirculating aquaculture system
for recovery after 12 h of transport stress, then sampled after 5 d of recovery. The recovery
conditions were the same with the control group.

2.3. Sample Collection

Three bags were randomly selected for sampling at each time point, water samples
were taken, 15 fish were randomly selected and 5 of the 15 fish were sampled from each
of the 3 bags. Control water and fish were obtained from the recirculating aquaculture
system at the corresponding time points. The fish were anesthetized via 200 mg/L MS-
222 before sampling. The livers and posterior section of the intestines were collected
from three fish and fixed with 4% paraformaldehyde solution for histological analysis.
The livers and intestines from the remaining 12 fish were homogenized and mixed with
precooled phosphate-buffered saline, then centrifuged for 15 min at 12,000× g at 4 ◦C. The
supernatant was aspirated and stored at −80 ◦C for physiological parameter analysis. The
hindguts were collected from five fish each from the control, 12 h transport and recovery
groups, immediately frozen in liquid nitrogen, and stored in a −80 ◦C freezer for gut
microbiome analysis.

2.4. Water Quality Detection

The dissolved oxygen was measured using an oxygen-dissolving meter (Hach, Love-
land, CO, USA), and the total ammonia-nitrogen and nitrite-nitrogen contents were deter-
mined via spectrophotometry [7].

2.5. Histological Analysis of the Liver and Intestinal Tissues

The tissues were immersed in 4% paraformaldehyde for 24 h, then routinely processed,
embedded in paraffin, and sectioned. The sections were dewaxed in xylene for 2–5 min,
then washed continuously in 100%, 96%, 80%, and 70% ethanol for 1 min. Sections were
then stained with hematoxylin for 7 min, rinsed with distilled water for 2 min, rinsed with
0.1% hydrochloric acid and 50% ethanol for 2–5 s, rinsed with tap water for 5–7 min, stained
with eosin for 2–4 min, rinsed with distilled water for 1 min, dehydrated with 95% and 100%
ethanol for 1 min each and finally rinsed with xylene (2–5 min) [19]. The sections were then
air-dried, and the slides were covered and observed under a light microscope. Hematoxylin
stained the normal nuclei blue. The liver tissue size and cavitation ratio (cavitation ratio
[%] = cell vacuolar area/section area×100) were measured using Image-Pro Plus 6.0 [20].

2.6. Liver and Intestinal Biochemical Analyses

Liver SOD, MDA, lysozyme, complement C3, intestinal SOD and MDA activities
were detected using commercial kits (Jiancheng Institute, Nanjing, China) following the
manufacturer’s instructions [16].

2.7. Determination of the Gut Microbiome

The E.Z.N.A.® Stool DNA Kit (D4015, Omega Inc., Norcross, GA, USA) was used to ex-
tract microbial DNA from the intestinal samples, and the DNA sample quality was detected
via 1% agarose gel electrophoresis and quantified using an ultraviolet spectrophotometer.
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Samples with correct target bands were regarded as qualified samples. PCR was performed
using universal primers: v3-v4 region [21]: 341F: 5′-CCTACGGGNGGCWGCAG-3′ and
805R: 5′-GACTACHVGGGTATCTAATCC-3′. The PCR reaction system consisted of 50 ng
template DNA, 12.5 µL of PCR Premix, 2.5 µL each of forward and reverse primers and
ddH2O added to 25 µL. The PCR amplification reaction was 98 ◦C predenaturation for 30 s,
35 cycles of 98 ◦C denaturation for 10 s, 54 ◦C annealing for 30 s, and a 72 ◦C extension
for 45 s. Extension was continued at 72 ◦C for 10 min at the end of the cycle, and finally,
preserved at 4 ◦C. The product quality was detected via 1% agarose gel electrophoresis.
Correctly sized target bands with 700 bp were considered qualified samples. PCR products
were purified using AMPure XT beads (Beckman Coulter Genomics, Danvers, MA, USA)
and quantified using Qubit (Invitrogen, Carlsbad, CA, USA). The sequencing libraries
were prepared by Pacific Biosciences SMRTbellTM Template Prep kit 1.0 (Kapa Biosciences,
Woburn, MA, USA). The size and number of amplicon libraries were assessed using a
library quantification kit from Illumina (Kapa Biosciences, Woburn, MA, USA) and an
Agilent 2100 Bioanalyzer (Agilent, Santa Clara, CA, USA).

Eligible libraries were sequenced on the Illumina NovaSeq platform and read by
FLASH merge matching ends. Under specific filtering conditions, fqtrim (v0.94) was
used to quality-filter the raw read data to obtain high-quality clean labels. Chimeric
sequences were filtered with the Vsearch (v2.3.4) software. The feature table and sequence
were obtained by demodulation using DADA2. Observed species, Chao1, Shannon and
Simpson indices were used to evaluate alpha diversity. Beta-diversity indexes were used
to evaluate species composition differences among samples. The alpha and beta diversity
were calculated using QIIME2. Species with significantly different abundances between
groups were analyzed with the nonparametric factor Kruskal–Wallis rank-sum test. The
PICRUSt2 software was used for Kyoto Encyclopedia of Genes and Genomes (KEGG)
enrichment analysis.

2.8. Statistical Analysis

Data were analyzed and processed using SPSS 26.0 (SPSS Inc., Chicago, IL, USA).
Shapiro–Wilk and Levene tests were used to analyze the normality and variance homogene-
ity of the data, and single factor analysis of variance (one-way ANOVA) was used to analyze
significant differences among groups by Duncan’s multiple comparisons. The control and
treatment groups were compared using independent sample t-tests. The Kruskal–Wallis
method was used to analyze the significant differences in alpha diversity indexes among
samples, and correlations between the gut microbiome and physiological parameters were
analyzed via Spearman’s correlation analyses. Box plots were drawn using origin software;
all other pictures were constructed in R [22]. p < 0.05 was considered significant, and all
data were expressed as means ± standard error of the mean.

3. Results
3.1. Water Quality during Transport

The total ammonia-nitrogen and nitrite-nitrogen concentrations increased significantly
as the transportation time increased (p < 0.05, Figure 1A,B). After 12 h of transportation,
the total ammonia-nitrogen concentration reached 0.723 ± 0.009 mg/L, which was signifi-
cantly higher than that of its control group (0.0163 ± 0.002 mg/L), and the nitrite-nitrogen
concentration was 0.129 ± 0.008 mg/L, which was significantly higher than that of its
control group (0.009 ± 0.002 mg/L). The dissolved oxygen was kept above 20 mg/L during
transport (Figure 1C).
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Figure 1. Changes in total ammonia-nitrogen (A) nitrite-nitrogen (B) and dissolved oxygen (C) levels
during transport. T0h: transport stress at 0 h; T6h: transport stress at 6 h; T12h: transport stress at
12 h. * significant difference between control and treatment groups (paired samples t-test, *: p < 0.05).
Lowercase letters indicate significant differences (p < 0.05) between treatments (Duncan’s multiple
range test).

3.2. Histological Analysis of the Liver and Intestinal Tissues

After 0 h of transport stress, liver cells from the juvenile largemouth bass were undam-
aged, and the cells exhibited obvious boundaries (Figure 2(Aa)). After 6 h of transport stress,
vacuoles appeared in the liver cells, at proportions reaching 22.60% (Figure 2(Ab); Table 1).
After 12 h of transport stress, the liver cells showed severe vacuolization (Figure 2(Ac)),
with proportions reaching 60.34%, which was significantly higher than that after 6 h of
transport stress (p < 0.01), and the healthy hepatocytes were squeezed as the vacuoles
expanded. After 5 days of recovery, the vacuolar area remained significantly larger than
that of the control group (37.06%; p < 0.05; Figure 2(Ad)).

Hematoxylin-eosin staining showed that the intestinal muscle layer thickness in-
creased and the intestinal villus length decreased under transport stress (Figure 2B). The
intestinal muscle layer thickness did not significantly differ among groups at 0, 6 and 12 h
of transport (p > 0.05). However, the thickness in the recovery group was significantly
greater than those at 0 and 6 h of transport stress (p < 0.05) and did not significantly differ
from that at 12 h of transport stress (p > 0.05). The villus length decreased as the transport
time increased and remained significantly shorter after 5 days of recovery (p < 0.05; Table 1).
No fish died during transport.

Table 1. Changes in liver vacuolar area, intestinal muscular thickness and villus length in juvenile
largemouth bass under transport stress.

Items
Groups

T0h Ctrl T6h Ctrl T12h Ctrl R5d Ctrl

Liver vacuolar area (%) 0.81 ± 0.02 d 0.37 ± 0.04 23 ± 0 c 1.04 ± 0.10 60 ± 1 a 0.97 ± 0.07 37 ± 1 b 1.36 ± 0.47
Muscularis thickness (µm) 39 ± 5 b 37 ± 4 39 ± 3 b 40 ± 2 50 ± 7 ab 34 ± 4 56 ± 2 a 37 ± 8

The length of intestinal
villus (µm) 391 ± 7 a 378 ± 10 316 ± 21 b 415 ± 18 272 ± 16 c 420 ± 13 193 ± 11 d 381 ± 4

T0h: transport stress at 0 h; T6h: transport stress at 6 h; T12h: transport stress at 12 h; R5d: 5-day recovery after
transport stress; Ctrl: control group at the corresponding time points. Lowercase letters indicate significance
differences (p < 0.05).
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Figure 2. (A) Histopathological sections of juvenile largemouth bass livers under transport stress. LC:
liver cells; N: nucleus; V: vacuoles. Scale 1:400. (B) Histopathological sections of juvenile largemouth
bass intestines under transport stress. MF: intestinal villi; M: muscular layer. Scale 1:200. Sections
under transport stress at 0 h (a), 6 h (b), 12 h (c) and after 5 d of recovery (d) after transportation.

3.3. Oxidative and Immunological Parameters

None of the measured physiological parameters differed significantly in the control
group (Figure 2). However, SOD activity in the livers and intestines of the juvenile large-
mouth bass increased significantly as the transport time increased (p < 0.05), and the SOD
activity peaked after 5 days of recovery, which was significantly higher than that after 12 h
of transport stress (Figure 3A,E; p < 0.05). MDA concentrations in the livers and intestines
peaked after 6 h of transportation, decreased significantly after 12 h of transport (p < 0.05),
then increased significantly after 5 days of recovery (Figure 3B,F; p < 0.05). Lysozyme activ-
ity increased as the transport stress time increased (p < 0.05), with the highest activity at 12 h
of transport stress. No significant difference was noted in the recovery group (Figure 3C).
Complement C3 levels increased rapidly from 6 to 12 h of transport stress (Figure 3D;
p < 0.05), with no significant difference between the 12 h transport group and the recovery
group. The SOD, MDA, lysozyme and complement C3 levels differed markedly between
the recovery and control groups.
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Figure 3. Antioxidant- and immune-related physiological parameters in the livers and intestines
of juvenile largemouth bass under transport stress. Superoxide dismutase, SOD; malondialdehyde,
MDA; lysozyme, LZM (A) liver SOD; (B) liver MDA; (C) liver LZM; (D) liver complement C3;
(E) intestinal SOD; (F) intestinal MDA. T0h: transport stress at 0 h; T6h: transport stress at 6 h; T12h:
transport stress at 12 h; R5d: recovery for 5 d. **: significant difference between the control and
treatment groups (paired samples t-test, **: p < 0.01). Lowercase letters indicate significant differences
(p < 0.05) between treatments (Duncan’s multiple-range test).

3.4. Transport Stress Effects on the Gut Microbiome

To investigate the effects of transport stress and recovery on the gut microbiomes of
juvenile largemouth bass, the gut microbiomes of the control, 12 h transport stress and 5 d
recovery groups were analyzed. High-throughput sequencing yielded 3207 characteristic
data points of which 157 were shared by the three groups. The recovery group had the least
characteristic data (Figure 4A). Alpha diversity indexes (i.e., observed species, Shannon,
Simpson, and Chao1 indexes) were used to assess the richness and evenness of the intestinal
microbiotas (Figure 4B), which did not significantly differ among the groups (p > 0.05).

Principal coordinates analysis based on weighted and unweighted UniFrac distances
was used to describe the beta diversity of the intestinal flora to quantify the microbial
community compositions in each group (Figure 4C). The samples in each group were
clustered together. The distance between the control and treatment groups was long, and
the overlap between the 12 h transport and recovery groups was large.

The gut microbiome compositions of the juvenile largemouth bass were analyzed at
the phylum and genus levels. At the phylum level (Figure 5A), Proteobacteria, Firmicutes,
Cyanobacteria and Spirochaetes were predominant. The box plots describe their abundance
changes (Figure 5B). The Proteobacteria abundance increased significantly after transport
stress (p < 0.05), with no significant difference between the 12 h transport and recovery
groups. Firmicutes increased in abundance after transport stress, but did not significantly
differ among the groups. The relative abundances of Cyanobacteria and Spirochetes
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were higher in the control group, but decreased significantly after 12 h of transport stress
(p < 0.05). The abundance was maintained in the recovery group.
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Figure 4. (A) Common and unique operational taxonomic units (OTUs) displayed by Venn diagram
in the control, 12 h transport and recovery groups. The overlap indicates shared OTUs (B) and
alpha and beta diversity of the gut microbiomes of juvenile largemouth bass under transport stress.
Measures of alpha diversity included: (a) Observed species; (b) Shannon index; (c) Simpson index;
(d) Chao1 index. (C) Beta diversity analysis based on principal coordinates analysis of unweighted
UniFrac (a) and weighted UniFrac (b) distances. Ctrl: control group; T12h: transport stress for 12 h;
R5d: recovery for 5 d.

Linear discriminant analysis results (Figure 6A,B) showed significant differences in
the abundances of Plesiomonas, Cyanobium_PCC_6307, Firmicutes_unclassified, Brevinema
Clostridium_sensu_stricto_1 and Cetobacterium. The Plesiomonas abundance increased signifi-
cantly after transport stress, and was maintained in the recovery group (Figure 6(Ca)). The
relative abundances of Cyanobium_PCC_6307 and Brevinema were significantly higher in the
control group than in the 12 h transport stress and 5 d recovery groups (Figure 6(Cb,Cd);
p < 0.05). The relative abundances of Clostridium_sensu_stricto_1 and Firmicutes_unclassified
were significantly higher in the 5 d recovery group than in the control and 12 h transport
groups (Figure 6(Cc,Cf); p < 0.05). The relative abundance of Cetobacterium was significantly
higher in the 12 h transport group than in the control group but was similar to that of the
recovery group (Figure 6(Ce)).
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groups. * significant difference between the control and treatment groups (Kruskal-Wallis H test,
*: p < 0.05).



Antioxidants 2023, 12, 157 10 of 17
Antioxidants 2023, 12, x FOR PEER REVIEW  10  of  18 
 

 

Figure 6. Linear discriminant analysis effect size (LEfSe) analysis comparing abundances of bacterial 

taxa in the control (Ctrl), 12 h transport (T12h) and recovery (R5d) groups. The LDA score >4. (A) 

Cladogram based on LEfSe analysis. Green, blue and red represent taxa enriched in the Ctrl, T12h 

and R5d groups. (B) Bacterial taxa with different abundances among groups. (a) Ctrl vs. T12h, (b) 

Ctrl vs. R5d, (c) T12h vs. R5, and (d) by Kruskal–Wallis test. (C) Relative abundances of dominant 

bacteria at the genus level (a–f) in the Ctrl, T12h and R5d groups. *, **: significant differences be‐

tween the control and treatment groups (Kruskal–Wallis H test, *: p < 0.05, **: p < 0.01). 

Figure 6. Linear discriminant analysis effect size (LEfSe) analysis comparing abundances of bacterial
taxa in the control (Ctrl), 12 h transport (T12h) and recovery (R5d) groups. The LDA score >4.
(A) Cladogram based on LEfSe analysis. Green, blue and red represent taxa enriched in the Ctrl,
T12h and R5d groups. (B) Bacterial taxa with different abundances among groups. (a) Ctrl vs. T12h,
(b) Ctrl vs. R5d, (c) T12h vs. R5, and (d) by Kruskal–Wallis test. (C) Relative abundances of dominant
bacteria at the genus level (a–f) in the Ctrl, T12h and R5d groups. *, **: significant differences between
the control and treatment groups (Kruskal–Wallis H test, *: p < 0.05, **: p < 0.01).

Bacteria with significant changes in abundance were used to analyze the correlations
with intestinal SOD, MDA, villus length and muscle layer thickness. The measured in-
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testinal parameters were strongly correlated with the gut microbiome at the genus level
(Figure 7A). The MDA content was correlated with all bacterial genera, the intestinal villus
length and muscle layer thickness were correlated with five genera, and the SOD content
was correlated with four genera.
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KEGG functional analysis showed that that gut microbiome was mostly enriched in
membrane transport, replication and repair, and translation (Figure 7B). Compared with the
control group, fewer gut microbes were involved in replication and repair and translation,
and more functional bacteria were involved in membrane transport in the 12 h transport
and 5 d recovery groups.

4. Discussion
4.1. Water Quality Parameters during Transport Stress

Many factors, such as water quality changes, fish body bruising, starvation and so on,
may cause transport stress during fish transportation. The total ammonia-nitrogen, nitrite-
nitrogen and oxygen concentrations are the important factors causing transport stress in
fish [1]. Studies have shown that increased ammonia-nitrogen concentrations can destroy
the osmotic pressure balance and cause oxidative stress [3], while increased nitrite-nitrogen
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concentrations can poison fish and inhibit nonspecific immunity [23]. In this experiment,
while the ammonia-nitrogen and nitrite-nitrogen concentrations increased significantly
(ammonia-nitrogen concentrations from 0.01 ± 0.00 mg/L to 0.72 ± 0.09 mg/L and nitrite-
nitrogen concentrations from 0.01 ± 0.00 mg/L to 0.13 ± 0.02 mg/L) as the transport time
increased, the detected N levels were still ~20-fold below those considered to be harmful
to wild fish [24]. Even so, elevated aquatic N levels may have increased the transport
stress incurred by the largemouth bass, possibly owing to increases in fish metabolites.
This variation tendency is consistent with previous studies [6,7]. Increased ammonia-
nitrogen and nitrite concentrations during transport stress have been shown to cause
oxidative stress responses in channel catfish and nonspecifically damage hybrid yellow
catfish [4,7]. This may be due to the increased ammonia-nitrite concentration accelerating
reactive oxygen species (ROS) production, thus causing oxidative stress during transport.
Additionally, deteriorated water quality can cause pathogen proliferation and damage
nonspecific immunity among largemouth bass. In our study, the oxygen concentration
(about 20 mg/L) remained relatively stable but four times higher than the control group
under transport stress, possibly because the transport bags contained two-thirds oxygen,
which caused hyperoxia to fish. Rainbow trout exposed to intermittent hyperoxia showed
significant oxidative stress [25]. Hyperoxia results in transient oxidative stress and alters
antioxidant enzymes in goldfish [26]. Tristan et al. [27] believe that hyperoxia can affect
the level of ROS in fish and give rise to oxidative stress. So, hyperoxia may be one of the
reasons for the changes in the antioxidant enzyme activities in this study.

4.2. Effects of Transport Stress on Liver and Intestinal Structure in Juvenile Largemouth Bass

The liver is involved in the synthesis and decomposition of various substances in fish.
Vacuolation, edema and necrosis of liver cells are all signs of damage to fish livers under
environmental stress [28]. Safahieh et al. [29] believe that liver cell vacuolization indicates
degeneration before cell necrosis. In this study, as the transport stress increased, the liver
cell volume and number of vacuoles increased, possibly related to energy metabolism
increases in largemouth bass to maintain homeostasis during transport, resulting in an
altered liver glycogen content, leading to liver cell vacuolization [30]. Severe vacuolization
in the liver tissue persisted even after the 5-day recovery, indicating that the liver damage
caused by transport stress could not be recovered within 5 days.

Villus length, villus width and muscle thickness enable evaluating the intestinal health
of fish [31]. In this experiment, the intestinal villus length was significantly shortened after
transport stress, suggesting intestinal damage and likely affected nutrient digestion and
absorption in juvenile largemouth bass [32]. Additionally, transport stress significantly
increased the intestinal muscle layer thickness, possibly because it induced intestinal
inflammation. Studies have shown that the shortened intestinal villus length and altered
muscle layer thickness may be related to intestinal inflammation [31,33].

4.3. Effects of Transport Stress and Recovery on Antioxidant and Immune Enzyme Activities in
Juvenile Largemouth Bass

SOD is cells’ first-line defense against toxic free radicals can remove excessive ROS in
fish [34]. In this study, the SOD activity increased significantly under transport stress, likely
due to the increased ammonia-nitrogen and nitrite concentrations and the long crowding
conditions, leading to excessive ROS production in transported fish [35]. Meanwhile, the
hyperoxia environment also could be the underlying cause for enzyme activity changes or
increased levels of ROS [27]. ROS are harmful substances produced by metabolic activities
in fish, which can cause oxidative stress. Increased SOD activity accelerates ROS removal.
Additionally, increased activity of SOD may be related to the accelerated generation of
ROS. A study on hybrid snapper also showed that SOD activity increases under transport
stress [6]. Free radicals and ROS can damage fish livers [36] by damaging the liver cell
biofilm through lipid peroxidation (LPO), resulting in liver cell damage [37]. Oxidative
stress caused by transport stress may have been one reason for the liver damage in this
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study. Biofilm oxidation by ROS leads to LPO, and MDA, the final product of LPO, is an
important indicator of antioxidant capacity in fish [6]. Previous studies have shown that
oxidative stress caused by transport stress significantly increased MDA contents in fish [2,6],
and the significant increase in MDA content after 6 h of transport stress indicated oxidative
stress caused by transportation. However, the MDA content decreased significantly in the
12 h transport group, possibly owing to accelerated MDA metabolism under high-oxygen
conditions (dissolved oxygen >20 mg/L). Fish can regulate enzymatic and nonenzymatic
antioxidant defense systems to accelerate MDA clearance under hyperoxic conditions [38].
Additionally, oxidative stress can reduce polyunsaturated fatty acid contents by damaging
cell membrane structures, which can be oxidized and produce MDA, thus reducing MDA
concentrations [39].

The lysozyme activity and complement C3 concentration increased significantly after
transport stress. Lysozyme is an important component of fish’s nonspecific immunity and
can lyse bacterial cell walls and effectively resist pathogen invasion [9,40]. Complement
comprises the plasma protein family and is the core component of innate immunity [41].
Complement C3 helps fish recognize invading microorganisms, mark damaged host cells,
and help phagocytes eliminate pathogenic bacteria and damaged cells [42]. Under en-
vironmental stress, fish activate homeostatic regulatory mechanisms to affect the body’s
immune response [43]. The increased lysozyme and complement C3 activity indicate
an enhanced immune response in fish. Transport stress experiments with Pelteobagrus
fulvidraco and Piaractus mesopotamicus showed increased lysozyme and complement C3 con-
tents [7,44], possibly because the transport stress impaired part of the immune capacity of
the largemouth bass, combined with the deteriorated water quality accelerating pathogen
proliferation, which exacerbated bacterial infection in the fish, thus activating the lysozyme
and complement C3.

The lysozyme and complement C3 activities were significantly higher in the recovery
group than in the 0 h transport group. Studies on transport stress in Lateolabrax maculatus
and Piaractus mesopotamicus have also reported this phenomenon [42,43], possibly due to
the susceptibility of the fish after transport stress, sustaining the immune response. There
is a study that shows that transport stress can damage the immune system of transported
fish [44], making them vulnerable to bacterial infection. Studies have shown that pathogen
infection often leads to excessive ROS production in animals [45], resulting in oxidative
stress, which may be why the SOD activity in the recovery group was significantly higher
than that of the 12 h transport stress without recovery. Therefore, we suspect that the
infectibility of the largemouth bass after transportation caused their inability to recover.

4.4. Effects of Transport Stress on Gut Microbial Diversity and Structure in Juvenile
Largemouth Bass

In this experiment, alpha diversity did not significantly differ among the groups,
possibly owing to individual factors in largemouth bass. Yan et al. [46] suggested that
the influence of the fish itself on its gut microbiome was much greater than that of the
environment. Sullam et al. [47] studied Poecilia reticulata and proposed that its core flora was
strongly correlated with the host genotype, which does not easily fluctuate when affected
by the external environment. Largemouth bass are carnivorous; their gut microbiome may
be stable even with different treatments, and no significant differences were noted in their
gut microbiome alpha diversity [48,49]. Therefore, largemouth bass gut microbiomes may
be associated with their own genes, and their alpha diversity is not significantly altered
under transport stress. However, significant differences were observed in beta diversity,
suggesting that transport stress did not alter the gut microbial richness or evenness but
significantly affected the gut microbial composition and distribution in juvenile largemouth
bass. Changing community structures can easily cause abnormal host physiological func-
tions [50], thus affecting nutrient digestion and absorption [51]. Additionally, correlation
analysis results showed a significant correlation between gut microbes at the genus level
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and the measured intestinal parameters; however, the connection between these bacteria
and intestinal parameters during transport stress requires further study.

Gut microbes perform diverse functions within the host’s gut and are closely related
to host health [50]. Proteobacteria are the largest branch of prokaryotes and include
pathogens such as Escherichia coli, Salmonella, Vibrio, and Helicobacter pylori [52]. Increased
numbers of Proteobacteria are a potential marker of fish infection [53]. In this study, the
Proteobacteria abundance increased markedly after transport stress, which may have
increased the susceptibility to infectious diseases in juvenile largemouth bass. Plesiomonas,
the dominant genus in this study, is a Gram-negative bacterium of the Enterobacteriaceae
family. Shigella is also related to outbreaks of fish disease [54]. We found that the abundance
of Plesiomonas in the 12 h transport group was significantly higher than that of the control
group, which might indicate the infectivity of juvenile largemouth bass after transport stress.
Therefore, juvenile largemouth bass may be more susceptible to disease after long-distance
transportation. The high abundance of Proteobacteria in the 5 d recovery group showed
that largemouth bass remained susceptible to bacteria after 5 days, which is consistent
with the results for the antioxidant and immune enzyme activities. KEGG functional
analysis showed that few gut microbes were enriched in metabolic diseases; therefore, we
suspect that increased abundances of Proteobacteria may be a marker of susceptibility to
infection in juvenile largemouth bass and that Proteobacteria are not directly pathogenic to
largemouth bass.

Firmicutes play roles in physiological processes such as polysaccharide degrada-
tion [52,55]. Smriga et al. [56] found that Firmicutes played a role in host digestion. Studies
have shown that Firmicutes are related to lipid metabolism in animals [57] and can accel-
erate the metabolism of the precursor of MDA: total polyunsaturated fatty acids, which
might decrease MDA contents. Firmicutes abundances did not significantly differ among
groups. However, the abundances of Clostridium_sensu_stricto_1 and Firmicutes_unclassified
were significantly increased under transport stress. Therefore, transport stress likely sig-
nificantly affected only some Firmicutes. Clostridium can enhance glucose metabolism,
promote fish growth [58], and increase energy metabolism levels in fish. Changes in the
ammonia-nitrogen concentration between transportation and recovery can activate osmotic
mechanisms and activate osmotic regulation [59]. KEGG functional analysis also showed
that intestinal microorganisms were mainly enriched in membrane transport, which may
enhance energy metabolism after transport. This may have increased the abundances
of Clostridium_sensu_stricto_1 and Firmicutes_unclassified. When more energy is used to
defend against pathogens and regulate the osmotic balance, glucose metabolism occurs via
glycolysis under hormone regulation, resulting in large amounts of liver glycogen being
stored in the liver and may, therefore, lead to liver cell swelling and vacuolization [28,60].

In this study, the Spirochetes abundance was significantly higher in the control group
than in the 12 h transport and 5 d recovery groups. Spirochetes are endosymbionts with
some arthropods and mollusks and participate in lignocellulose decomposition and ni-
trogen fixation in termite intestines [61]. Spirochetes may play roles in host nutrient
metabolism [62], and decreased Spirochetes abundances may indicate physiological dam-
age in largemouth bass. Cyanophyta is a primitive green autotrophic plant group, and its
physiological functions remain unclear. It can pass into the gut combined with feed, and
showed high abundance in the control group. It may be passed out of the gut with the
increase in fasting time. Whether Cyanophyta plays a role in antioxidant and physiologi-
cal immune functions in largemouth bass requires further study. It is worth noting that
Cyanophyta abundance was markedly lower in the 5 d recovery groups than in the control
group, which may arise from a vitality decrease and eating less after transport stress.

5. Conclusions

Deterioration of water quality caused by transport stress can cause oxidative stress
and activate immune responses in largemouth bass. Changes in the intestinal microbial
community revealed that the gut microbiotas of largemouth bass are involved in adaptation
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to transport stress. These variations manifested as changes in the liver and intestinal
structure. Additionally, juvenile largemouth bass required more than 5 days to recover
after 12 h of transportation due to increased infection susceptibility. These results may
provide a theoretical basis and support for clarifying the transport stress-induced oxidative
and immune mechanisms of juvenile largemouth bass.
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