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Abstract: Astaxanthin is a carotenoid species with the highest antioxidant capability. Its natural
resource is very rare. The biosynthesis of astaxanthin from β-carotene includes a hydroxylation
step and a ketolation step, for which the corresponding enzymes have been characterized in a few
species. However, the sequence of these two reactions is unclear, and may vary with different
organisms. In this study, we aimed to elucidate this sequence in Synechocystis, which is an ideal
cyanobacterial synthetic biology chassis. We first silenced the endogenous carotene oxygenase gene
SyneCrtO to avoid its possible interference in the carotenoid metabolic network. We then introduced
the β-carotene ketolase gene from Haematococcus pluvialis (HpBKT) and the CrtZ-type carotene β-
hydroxylase gene from Pantoea agglomerans (PaCrtZ) to this δCrtO strain. Our pigment analysis
demonstrated that both the endogenous CrtR-type carotene hydroxylase SyneCrtR and HpBKT have
the preference to use β-carotene as their substrate for hydroxylation and ketolation reactions to
produce zeaxanthin and canthaxanthin, respectively. However, the endogenous SyneCrtR is not
able to further catalyze the 3,3′-hydroxylation of canthaxanthin to generate astaxanthin. From our
results, a higher accumulation of canthaxanthin and a much lower level of astaxanthin, as confirmed
using liquid chromatography–tandem mass spectrometry analysis, were detected in our transgenic
BKT+/CrtZ+/δCrtO cells. Therefore, we proposed that the bottleneck for the heterologous production
of astaxanthin in Synechocystis might exist at the hydroxylation step, which requires a comprehensive
screening or genetic engineering for the corresponding carotene hydroxylase to enable the industrial
production of astaxanthin.

Keywords: astaxanthin; β-carotene ketolase; carotene β-hydroxylase; biosynthesis; cyanobacteria;
Synechocystis sp. PCC6803

1. Introduction

Carotenoids (including vitamin A and pro-vitamin As), tocopherols (vitamin Es),
polyphenols, and vitamin C are major plant antioxidants [1]. They have pivotal functions
in plant acclimation to biotic and abiotic stresses, and are also essential phytonutrients
to human beings [1]. Among these antioxidants, carotenoids are widely distributed in
all photosynthetic organisms (ranging from prokaryotic cyanobacteria to higher plants)
and also some non-photosynthetic bacteria and fungi [2]. In photosynthetic organisms,
carotenoids are the main antioxidants in the chloroplast to scavenge the toxic reactive
oxygen species (ROS) generated by photosynthesis [2]. A variety of carotenoids, such
as lycopene, β-carotene, lutein, and astaxanthin, are critical for human beings, largely
because of their antioxidant activities [3,4]. For example, carotenoids are known to reduce
the risk of a variety of age-related diseases, such as neurological disorders and macular
degeneration [5]. Because our bodies are not able to de novo synthesize carotenoids, human
beings have to acquire them from mostly vegetable diets [6]. Besides their antioxidative
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capabilities, carotenoids also serve as major pigments for the colors of plant leaves, flowers,
and fruits, and impart animal feathers, skin, flesh, and carapace with distinct colors [7].

Carotenoids are lipid-soluble terpenoid pigments. In higher plants, lycopene with a
linear structure is the first carotenoid species with color (pink), and also the first branch-
ing point in the biosynthetic pathway (Figure 1) [8]. From lycopene, two cyclases and
two hydroxylases direct the metabolic flux into two separate branches. In the β,β-branch,
both ends of lycopene are β-cyclized to form β-carotene, which is then β-hydroxylated
on both ends to generate zeaxanthin and further oxygenated into antheraxanthin and
violaxanthin by zeaxanthin epoxidase (ZEP) (Figure 1) [9]. In the β,ε-branch, the two ends
of lycopene are β- and ε-cyclized, individually, into α-carotene, which is then β- and
ε-hydroxylated, respectively, to form lutein. Although carotenoids are widely distributed
in nature, and Viridiplantae organisms generally share a common carotenoid profile, only
zeaxanthin and β-carotene are synthesized in all photosynthetic organisms. Cyanobacteria
and some red algae are not able to synthesize lutein and/or any carotenoid species of
the β,β-branch beyond zeaxanthin [10,11]. Moreover, some special carotenoids are only
synthesized in very limited species. For example, capsanthin and capsorubin are synthe-
sized mainly in chili pepper (Capsicum annuum) [12], and astaxanthin in Adonis aestivalis,
a Ranunculaceae herb which accumulates astaxanthin in its flowers, and the green alga
Haematococcus pluvialis (also named as H. lacustris) that mainly accumulates astaxanthin in
its resting form (cyst) [13–15].
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Figure 1. The carotenoid metabolic pathway in Synechocystis. The black arrows indicate the reactions
catalyzed by endogenous enzymes. The gray arrow indicates the silenced conversion from β-
carotene to echinenone (Ech) in our transgenic strains. Blue arrows and red dashed arrows show
the reactions where we confirmed their function or not, respectively, in this study. The enzymes are
endogenous lycopene β-cyclase (CruA), carotene hydroxylase (CrtR), and carotene oxygenase (CrtO)
from Synechocystis, the transgenic β-carotene ketolase is from Haematococcus pluvialis (HpBKT), and
the β-carotene hydroxylase is from Pantoea agglomerans (PaCrtZ).

Astaxanthin is an oxygenated carotenoid with promising antioxidant activity, which
is estimated to be 100–500 times stronger than α-tocopherol and 5–15 times stronger than
other carotenoids such as β-carotene [16]. Astaxanthin has been used as a neuroprotective,
cardioprotective, and antitumoral chemical for the treatment of a series of diseases, such as
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Alzheimer’s, Parkinson’s, cardiovascular diseases, and cancer [17–19]. Although astaxan-
thin can be chemically synthesized, and the synthetic product dominates the commercial
market, the impurity (e.g., different stereoisomers) largely prevents the usage of astax-
anthin in the cosmetic and pharmaceutical industries [20,21]. Deciphering the metabolic
pathway should shed light on the heterologous production of astaxanthin through synthetic
biological approaches.

Astaxanthin has two β-rings in its molecular structure, and there is no doubt that
β-carotene is a precursor for its biosynthesis [22]. Structurally, there are two modifica-
tions in astaxanthin, i.e., the 3,3′-hydroxyl groups and the 4,4′-keto groups, compared
with β-carotene (Figure 1). The first attempt at elucidating its biosynthetic pathway
in higher plants was achieved in Adonis aestivalis [14]. Two enzymes, a carotenoid β-
ring 4-dehydroxygenase (CBFD) and a 4-hydroxy-β-ring 4-dehydroxygenase (HBFD),
were identified to take part in the three-step conversion from β-carotene to astaxan-
thin, which was proposed to be catalyzed sequentially by CBFD, HBFD, and CBFD
again [14]. In the marine bacterium Paracoccus, carotenoid oxygenase CrtW and hydrox-
ylase CrtZ were proposed to catalyze the ketolation and hydroxylation steps between
β-carotene and astaxanthin, respectively, in an unclear sequence [23,24]. In the green
alga Haematococcus pluvialis, a β-carotene-4-dehydroxygenase, which is also named as
β-carotene ketolase (HpBKT), was earlier identified to catalyze the ketolation reaction
from β-carotene to canthaxanthin [24,25]. However, it is largely unknown what the
preferential intermediates are for the two types of enzymes in the conversion from β-
carotene to astaxanthin, i.e., β-carotene could either be firstly ketolated into echinenone
and canthaxanthin, and then be hydroxylated into astaxanthin, or, in another sequence,
be hydroxylated into β-cryptoxanthin and zeaxanthin first, and then be ketolated into as-
taxanthin (Figure 1) [26]. Recently, the cyanobacterium Synechocystis has been developed
as a platform for identifying genes and enzymes involved in carotenoid metabolism [27].
Similarly, the cyanobacterial chassis was also used for heterologously producing astax-
anthin to a level up to 29.6 mg g−1 dry weight (DW) astaxanthin by introducing both
hydroxylase and ketolase together [28,29]. However, the sequence of the two reactions,
i.e., the ketolation and the hydroxylation, is still unknown.

In cyanobacteria, there are endogenous carotenoid oxygenase (CrtO) and the CrtR-type
carotene hydroxylase [27,30], both of which have the possibility of becoming involved in
the biosynthesis of astaxanthin together with exogenous transgenes. For example, the CrtO
gene from Haematococcus pluvialis was found to facilitate the biosynthesis of astaxanthin in
tobacco flowers, suggesting that the transgenic HpCrtO, not the endogenous cytochrome
P450-type nor the non-heme carotene hydroxylase, is able to carry out the ketolation
reaction [20].

In this study, we tried to elucidate the reaction sequence of the last two metabolic
steps for astaxanthin biosynthesis using Synechocystis by silencing the endogenous CrtO
gene (SyneCrtO) and introducing HpBKT and the CrtZ-type carotene β-hydroxylase gene
from Pantoea agglomerans (PaCrtZ), of which the 3-hydroxylation activity on β-carotene
was recently reported [31]. Compared with green algae and land plants, cyanobacteria
have a very simple carotenoid biosynthetic pathway, which produces only a few carotenoid
constituents. This makes it quite easy to detect and analyze the functions of transgenes
without the interference and/or redundancy from endogenous genes. Benefiting from
the advantages of being able to grow both auto- and heterotrophically, cyanobacterium
does not need an organic carbon source, which is required for the fermentation of bacterial
and yeast cells, but is also able to grow much faster than green algae and land plants.
This makes cyanobacteria an ideal synthetic biology chassis [32]. An elucidation of the
reaction sequence would help to identify the potential bottleneck in the heterologous
synthesis of astaxanthin, and also contribute to its industrial production as a major supply
of this antioxidant.
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2. Materials and Methods
2.1. Strains and Growth Conditions

The cyanobacterial Synechocystis sp. PCC6803 strain was originally obtained from
the Pasteur Culture Collection (Paris, France), and then subcultured in our laboratory at
Nanjing University (Nanjing, China) on BG11 plates or in liquid BG11 medium under
continuous illumination with a light intensity of 30 µmol photons m−2 s−1 at 28 ◦C [27,33].
Cell growth in the liquid culture was monitored at OD750 using a spectrophotometer
(Multiskan Go, Thermo Scientific, Waltham, MA, USA).

2.2. Gene Cloning and Vector Construction

The Escherichia coli strain TOP10 (TaKaRa, Shiga, Japan) was used as a host strain for
gene cloning. For PCR amplification, the high-fidelity PrimeSTAR HS DNA polymerase
(TaKaRa) was used throughout the experiments. All primers used in this study are listed in
Supplemental Table S1.

The design of the constructs is illustrated in Figure 2A. In brief, sequences of HpBKT
(GenBank accession No. BAA08300.1) and PaCrtZ (GenBank accession No. AAA64983.1) were
downloaded from GenBank and directly synthesized by Convenience Biology (Changzhou,
China). The promoters of the genes for Synechocystis Rubisco large subunit (RbcLpro) and
the D1 protein of photosystem II (PsbA2pro) were amplified from a cDNA pool prepared
from Synechocystis using the PrimeScript 1st strand cDNA synthesis kit (TaKaRa) [34,35].
The kanamycin resistance gene KanR driven by an ampicillin resistance gene promoter
(AmpR

pro) was used as a selection marker, as described previously [27]. Different genes
or gene combinations were assembled into pUC19 using a ClonExpress MultiS One-Step
Cloning Kit (Vazyme, Nanjing, China), according to our previous report [27]. Homologous
fragments for transforming Synechocystis through recombination were designed to target
(and thus interrupt) the endogenous SyneCrtO gene [27]. All constructs were sequenced to
confirm their correctness.

2.3. Synechocystis Transformation and Mutant Screening

For Synechocystis transformation, the liquid culture at the logarithmic growth stage
(OD750 = 0.5–0.8) was used. In brief, 10 mL cells were collected using centrifugation at
1107× g for 5 min and resuspended in 5 mL BG11 medium. One mL of suspended cells
was then mixed with 3–5 µg each of the plasmids, followed by an overnight incubation at
28 ◦C in the dark. The incubated cells were then plated on a non-selective BG11 plate for
about 2 d under constant light. The plates were then lifted with a sterilized spatula and
1 mL of kanamycin at 15 µg mL−1 was applied to the bottom of the Petri dishes. Plates
were sealed to avoid drying out and were further incubated under continuous illumination
at a light intensity of 30 µmol photons m−2 s−1 at 28 ◦C [36]. Colonies that appeared after
2 to 3 weeks were picked, further confirmed using PCR, and used for subsequent analysis.
Positive transformants were maintained on BG11 agar plates containing 20 µg mL−1

kanamycin [36].

2.4. Carotenoid Extraction and Analysis

Two mL of the Synechocystis liquid culture at OD750 = 1.0 was centrifuged at 8000× g
for 2 min. Pelleted cells were extracted using 400 µL of a mixture of chloroform and
methanol (2:1, v/v). After centrifugation at 12,000× g for 10 min, the extract was dried
under a nitrogen stream. The concentrated sample was re-dissolved in 200 µL ethyl acetate
and used for further analysis [37].

An Agilent 1260 high-performance liquid chromatography (HPLC) system (Agilent,
Santa Clara, CA, USA) equipped with a diode-array detector was used for pigment analysis.
Pigments were separated on a Spherisorb ODS2 column (4.6 × 250 mm, 5 µm, Waters,
Milford, MA, USA) at 30 ◦C. Samples were eluted with a 45 min linear gradient from
100% mobile phase A (acetonitrile: water: triethylamine = 9:1:0.01) to 100% mobile phase
B (ethyl acetate) at a flow rate of 1 mL min−1. Each constituent’s retention time and
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ultraviolet/visible spectrum were compared with published authentic data to further
confirm the peak identity [8]. At least three replicates were performed for each sample.
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Figure 2. Vector construction and verification. (A) Designs of the constructs. The wild-type (WT)
CrtO gene structure in Synechocystis genome. CrtO-N and CrtO-C indicate the 5′- and 3′-ends
encoding the N- and C-termini of CrtO, respectively, which are the target regions for homologous
recombination. A kanamycin resistance gene (KanR) driven by the promoter of an ampicillin resistance
gene (AmpR

pro) was used as a selection marker in this study to generate the δCrtO strain, from which
the β-carotene ketolase gene from Haematococcus pluvialis (HpBKT) driven by the promoter of Rubisco
large subunit gene (RbcLpro) was further incorporated to generate the BKT+/δCrtO strain. A β-carotene
hydroxylase gene from Pantoea agglomerans (PaCrtZ) after the D1 protein gene promoter (PsbA2pro)
was further introduced to generate the BKT+/CrtZ+/δCrtO strain. (B) PCR amplification confirms the
aforementioned constructs. Primers are the forward (FCrtZ) and reverse (RCrtZ) ones for PaCrtZ, and
the forward (FCrtO) and reverse (RCrtO) ones in the CrtO-N and CrtO-C regions in (A). Genomic DNA
was extracted from the transgenic cyanobacterial cells growing on BG11 plates supplemented with
kanamycin, and then used for PCR amplification using the indicated primer pairs. DL2000 DNA
marker (M) was used to indicate fragment sizes.

For liquid chromatography–tandem mass spectrometry (LC-MS/MS) analysis, the ex-
tracted carotenoid samples were dried and re-dissolved into 90% acetonitrile for HPLC sep-
aration (LC-30AD, Shimadzu, Kyoto, Japan) using a Ultisil AQ-C18 column (2.1 × 100 mm,
3 µm, Welch, West Haven, CT, USA). Mobile phases were 0.1% (v/v) formic acid in 100%
ultrapure water (A) and 100% acetonitrile (B). The eluent flow was set at 0.4 mL min−1.
The gradient started at 90% B and 10% A, changed to 100% B over 10 min, held for 2 min,
and then returned to a mixture of 90% B and 10% A.

The MS/MS detection was performed on a 4600 TripleTOF mass spectrometer (Sciex,
Framingham, MA, USA) using an APCI source, operated in positive ion mode. The
detection range of primary mass spectrometry was 100–1500 m/z, and the scanning range
of secondary mass spectrometry was 100–1250 m/z with a resolving power of 25,000.
The sample injection volume was 1 µL. The ion source temperature was 550 ◦C with the
atomizing and aux gas flow rates at 55 psi and the curtain gas flow rate at 35 psi.
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2.5. Phylogenetic Analysis

Amino acid sequences of SyneCrtO, PaCrtZ, and the CrtZ from Haematococcus pluvialis
(HpCrtZ, GenBank accession No. AKQ20654.1) were used as queries to search GenBank for
their homologs in bacteria, red algae, heterokonts, fungi, and Viridiplantae using the BlastP
algorithm with the cut-off criterion E-value < 0.05 [38,39]. For each search, when there were
more than 250 hits, only the top 250 sequences were used in this study. A multisequence
alignment was conducted with MUSCLE with default settings as implemented in MEGA
11 [40]. The phylogenetic tree was constructed using the IQ-Tree program (http://iqtree.
cibiv.univie.ac.at/, accessed on 14 August 2023) with default settings (Substitution model:
Auto; Bootstrap analysis: Ultrafast; Number of bootstrap alignments: 1000) and manually
edited with MEGA 11 [40,41]. A Newick file, which can be opened with software such
as MEGA 11, of the phylogenetic tree generated with all the sequences is provided as
Supplemental File S1. A fasta file containing sequence information of all the homologs is
provided as Supplemental File S2.

Sequence identity was calculated using the MegAlign program of the Lasergene
package (DNASTAR, Madison, WI, USA).

2.6. Statistical Analysis

GraphPad Prism 7 (GraphPad Software, San Diego, CA, USA) was used for statistical
analysis. To determine statistical significance, we employed Student’s t-test. Differences
were considered significant at p < 0.05. Data are shown as the mean ± SE of at least
three replications.

3. Results and Discussion
3.1. Synechocystis Expressing HpBKT Alone Did Not Synthesize Astaxanthin

Synechocystis is capable of synthesizing zeaxanthin in its cells, and its carotene β-
hydroxylase SyneCrtR is the enzyme that catalyzes the conversion from β-carotene to
zeaxanthin. To test whether HpBKT could utilize zeaxanthin for directly synthesizing
astaxanthin, we first engineered Synechocystis to overexpress HpBKT driven by the pro-
moter of the gene encoding Rubisco large subunit (RbcLpro). The RbcLpro:HpBKT transgene
interrupted the endogenous SyneCrtO gene and introduced the kanamycin resistance as
a selection marker (Figure 2A). The successful transgenic strains (namely BKT+/δCrtO)
were picked from BG11 plates containing kanamycin, and further confirmed using a PCR
(Figure 2B).

The pigment analysis of the transgenic strains showed that the wild-type (WT) Syne-
chocystis was able to synthesize β-carotene, zeaxanthin, myxoxanthophyll, and echinenone
(Figure 3). No canthaxanthin, but only echinenone, was identified in the WT strain cells,
indicating that SyneCrtO was only able to add the keto group to one of the unsubstituted
β-rings of β-carotene (Figures 1 and 3). This is different from the CrtO from Haematococcus
pluvialis, which was reported to facilitate the biosynthesis of astaxanthin with two keto
groups in cyanobacterium [42]. The δCrtO strain could not synthesize echinenone anymore
(Figure 3). This was in line with our previous report that SyneCrtO could be silenced for
simplifying the carotenoid metabolic pathway [27]. The silencing of SyenCrtO also left
SyneCrtR as the only endogenous carotenoid oxygenase (Figure 1).

The BKT+/δCrtO cells growing in the BG11 medium demonstrated that the introduc-
tion of HpBKT resulted in an accumulation of canthaxanthin at the cost of both β-carotene
and zeaxanthin (Figure 3). No astaxanthin was detectable in our study after several at-
tempts with increased cultural volumes and altered growth conditions (Figure 3). Therefore,
there might be two possibilities. First, HpBKT alone, or the combination of HpBKT and the
endogenous SyneCrtR, was insufficient for the production of astaxanthin in Synechocystis.
However, because of the existence of the newly synthesized canthaxanthin, it is obvious
that HpBKT is capable of catalyzing the ketolation of β-carotene to produce canthaxanthin.
This does not exclude the possibility that HpBKT could also use zeaxanthin as its substrate
for astaxanthin production, but the detour of β-carotene for canthaxanthin resulted in a

http://iqtree.cibiv.univie.ac.at/
http://iqtree.cibiv.univie.ac.at/
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decreased level of zeaxanthin for its utilization. This raised the second possibility that Hp-
BKT might possess a stronger preference for using β-carotene, compared with zeaxanthin,
as its substrate. Such a preference is similar to the activity of the capsanthin/capsorubin
synthase (CCS) in chili pepper and tiger lily (Lilium lancifolium Thunb. ‘Splendens’), which
prefers antheraxanthin as its substrate for synthesizing capsanthin, but is also capable of
using the further-oxygenated violaxanthin to synthesize capsorubin [12,43]. Moreover,
our results also indicated that the endogenous carotene hydroxylase SyneCrtR could not
use canthaxanthin as its substrate to synthesize astaxanthin, i.e., β-carotene is the specific
substrate for SyneCrtR (Figure 3).
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Figure 3. Pigment profile of different transgenic Synechocystis strains. (A) Representative cultures
(upper panel) and pigment extracts (lower panel) from different strains growing at the logarithm
stage (OD750 = 1.0). Cells and extracted pigment were placed in a 96-well plate for photography.
(B) Absorption spectra of different carotenoid species (abbreviated as indicated in Figure 1) identified
in this study. (C) HPLC separation profiles of total carotenoids extracted from different strains.
Authentic astaxanthin was analyzed in parallel for comparison. An inset in the profile of the
BKT+/CrtZ+/δCrtO strain shows the peak corresponding to astaxanthin.

3.2. PaCrtZ Complemented the Biosynthesis of Astaxanthin in HpBKT-Transformed Cells

To confirm our postulation that SyneCrtR was not able to hydroxylate canthaxanthin,
we co-expressed HpBKT with an additional CrtZ-type carotene 3,3′-hydroxylase gene from
the bacterium Pantoea agglomerans (PaCrtZ), which was reported to use canthaxanthin as a
substrate [44].
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Similar to the BKT+/δCrtO strain, our transgenic Synechocystis strain overexpressing
both HpBKT and PaCrtZ (namely BKT+/CrtZ+/δCrtO) was also confirmed using PCR
amplification (Figure 2). Pigments were extracted from the mutant and analyzed using
HPLC. Compared with authentic astaxanthin, a small peak sharing an identical retention
time and absorbance spectrum was identified from the elution profile (Figure 3). We
further collected the fraction and subjected the sample to LC-MS/MS detection. The results
again confirmed that astaxanthin was obtained from the BKT+/CrtZ+/δCrtO strain that
co-expressed PaCrtZ with HpBKT (Figure 4). These results also confirmed that PaCrtZ, but
not the endogenous SyneCrtR, is able to catalyze the hydroxylation of canthaxanthin to
generate astaxanthin.
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Figure 4. Identification of astaxanthin using LC-MS/MS. (A,B) Chromatograms (insets) and pri-
mary mass spectra of authentic astaxanthin (A) and the fraction collected from BKT+/CrtZ+/δCrtO
strain extract (B). (C,D) Secondary mass spectra of the standard (C) and the collected fraction (D),
respectively.

3.3. Heterokont CrtZs Might Have Different Catalytic Properties

CrtR and CrtZ are two major classes of carotene hydroxylases identified in photosyn-
thetic organisms, as well as in fungi and bacteria. Because we found that SyneCrtR was
unable to catalyze the hydroxylation of canthaxanthin, we tried to determine the evolu-
tionary divergence of these two classes of hydroxylases. From our sequence search and
phylogenetic analysis (Supplemental Files S1, S2), it was clear that the homologs of PaCrtZ
and HpCrtZ showed a close relationship by forming a mixed clade in the phylogenetic
tree, whereas the homologs of SyneCrtR formed an isolated clade in the tree (Supplemental
File S1). However, we found two CrtZ homologs of heterokonts, Hondaea fermentalgiana of
Bigyra (HfCrtZ) and Chaetoceros tenuissimus of Ochrophyta (CtCrtZ), which stayed within
the CrtR clade in the phylogenetic tree (Supplemental File S1). Sequence comparison
showed that, although both HfCrtZ and CtCrtZ possess the highest sequence identities
with the bacterial PaCrtZ, HfCrtZ also shares a higher identity with SyneCrtR compared
with HpCrtZ and PaCrtZ (Table 1). Considering the complicated evolutionary scenarios,
including horizontal gene transfer events, of heterokonts after the secondary endosymbio-
sis [45], it would be interesting to test whether HfCrtZ and CtCrtZ have different catalytic
activities, which might help to better understand the evolution of heterokonts.
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Table 1. Sequence distances among CrtR and CrtZs 1.

SyneCrtR PaCrtZ HpCrtZ HfCrtZ CtCrtZ

SyneCrtR 100
PaCrtZ 9.7 100
HpCrtZ 12.4 38.4 100
HfCrtZ 15.9 26 26.7 100
CtCrtZ 12.4 19.5 25.6 34.6 100

1 Sequences are CrtR from Synechocystis (SyneCrtR) and CrtZs from the bacterium Pantoea agglomerans (PaCrtZ), the
heterokonts Hondaea fermentalgiana (HfCrtZ) and Chaetoceros tenuissimus (CtCrtZ), and the green alga Haematococcus
pluvialis (HpCrtZ). Sequence distance was calculated using the MegAlign program of the Lasergene package.

3.4. Synechocystis Growth Was Not Affected by Astaxanthin Biosynthesis

Cell growth is a key factor that might affect the heterologous production of natural
products. In order to assess whether the modification of the carotenoid biosynthesis
pathway for astaxanthin production had an impact on the growth of transgenic Synechocystis
cells, we quantified the cell densities of the astaxanthin-producing BKT+/CrtZ+/δCrtO
strain and the δCrtO (as a control) strain. Cells of both strains were cultured in BG11 liquid
medium at 28 ◦C, and OD750 was determined. Our results indicated that these two strains
had similar growth curves with no significant difference from the initiation of the cultivation
to the logarithmic phase (Figure 5). Therefore, it is likely that the supplement of HpBKT
and PaCrtZ to the endogenous carotenoid metabolic pathway, and the accumulation
of canthaxanthin and astaxanthin, did not have a significant impact on the growth of
Synechocystis cells under normal growth conditions.
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Figure 5. Growth of different transgenic Synechocystis strains. (A) Growth curves of the δCrtO and
BKT+/CrtZ+/δCrtO strains during a 12 d course. Cells were cultivated in BG11 liquid medium with
kanamycin at 50 µg mL−1 under normal conditions, and OD750 was measured daily. Error bars
represent the standard error (n = 3). No significant difference (at p < 0.05 level, Student’s t-test)
between the two strains was detected at each time point. (B) Growth of different strains on plates.
Cells at the logarithm stage (OD750 = 0.5) were diluted in a 10 × series and spotted onto BG11 plates
containing kanamycin at 20 µg mL−1. The photograph was taken after 10 d of growth in an incubator
at normal growth conditions.

4. Conclusions

In this study, we clarified the catalytic properties of SyneCrtO, SyneCrtR, and HpBKT
for astaxanthin biosynthesis in the Synechocystis chassis. In summary, our results suggested
that SyneCrtO is only able to introduce a keto group to one ring of β-carotene, that both
SyneCrtR and HpBKT have the preference to use β-carotene as their substrate for hydrox-
ylation and ketolation reactions to produce zeaxanthin and canthaxanthin, respectively,
and that the endogenous CrtR-type carotene β-hydroxylase is not able to catalyze the
3,3′-hydroxylation of canthaxanthin to generate astaxanthin.
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From our results, a higher accumulation of canthaxanthin and a much lower level
of astaxanthin in BKT+/CrtZ+/δCrtO cells indicated that the bottleneck of astaxanthin
biosynthesis exists at the canthaxanthin hydroxylation step. The novel conclusion indicated
that a comprehensive screening or genetic engineering of CrtZs and other classes of carotene
hydroxylases, except for CrtRs, for significantly enhanced catalytic activities should help to
promote astaxanthin productivity in the cyanobacterial chassis. Considering the advantage
of being able to grow both autotrophically and heterotrophically, the industrial production
of astaxanthin in cyanobacteria through a synthetic biology approach could be a novel
source of natural astaxanthin, replacing the cultivation of Haematococcus pluvialis as an
antioxidant for the cosmetic and pharmaceutical markets.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/antiox12101826/s1. Table S1. Primers used in this study. Fil S1.
Phylogenetic tree in Newick format of all CrtR and CrtZ homolog sequences used in this study.
File S2. Sequence information of all homolog sequences in Supplemental File S1 in fasta format.
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