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Abstract: Microalgae are a renewable and sustainable source of bioactive compounds, such as
essential amino acids, polyunsaturated fatty acids, and antioxidant compounds, that have been
documented to have beneficial effects on nutrition and health. Among these natural products, the
demand for natural antioxidants, as an alternative to synthetic antioxidants, has increased. The
antioxidant activity of microalgae significantly varies between species and depends on growth
conditions. In the last decade, microalgae have been explored in livestock animals as feed additives
with the aim of improving both animals’ health and performance as well as product quality and
the environmental impact of livestock. These findings are highly dependent on the composition of
microalgae strain and their amount in the diet. The use of carbohydrate-active enzymes can increase
nutrient bioavailability as a consequence of recalcitrant microalgae cell wall degradation, making
it a promising strategy for monogastric nutrition for improving livestock productivity. The use of
microalgae as an alternative to conventional feedstuffs is becoming increasingly important due to
food–feed competition, land degradation, water deprivation, and climate change. However, the
cost-effective production and use of microalgae is a major challenge in the near future, and their
cultivation technology should be improved by reducing production costs, thus increasing profitability.

Keywords: animal nutrition; antioxidants; livestock; microalgae; monogastric diet; sustainability

1. Introduction

Over the past ten years, the feed, food, cosmetic, and nutraceutical industries have all
become interested in the natural compounds from microalgae, due to the rising demand
for natural antioxidants as an alternative to synthetic antioxidants [1,2]. Microalgae are
an underutilized resource with the potential to produce antioxidants and novel bioactive
molecules. They are attractive for developing biotechnological applications due to their
high growth rate, simplicity in cultivation, production scalability, potential for genetic
modification, low maintenance costs, and metabolic plasticity that can be directed and
manipulated to produce target compounds by altering culture conditions [3,4]. Due to
all these factors, the demand for algal biomass is expected to increase significantly in the
coming years. It has been estimated that the global algae market will reach a value of USD
6.3 billion by 2028, up from USD 4.5 billion in 2021 [5].
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From Ancient Greece to Icelandic sagas and all over the world, ample evidence sug-
gests that both wild and domesticated animals approached coastal areas to feed on seaweed.
After the intensification of livestock production systems and the consideration of current
emerging issues such as food–feed competition and the hard-to-find arable lands for feed-
stuff production, the usage of algae was redefined. Corn and soybean, the two main
conventional feedstuffs for animal feeding, are unsustainable, and therefore alternatives to
these ingredients are required to maintain livestock performance, especially considering the
latest exponential demands for animal protein [6,7]. Land degradation, water deprivation,
and drastic changes in climate are also significant challenges for the future of the livestock
sector signifying the need to explore highly sustainable alternatives to conventional feed-
stuffs, which are not affected by environmental conditions. The cultivation of microalgae
does not require rainfall, which would decrease competition with areas more suited for
agricultural production or biodiversity conservation [8]. Although until recently, the use
of algae as an alternative to conventional feedstuffs was advocated as a panacea for the
aforementioned challenges, when applied in animal diets, their assessment unveiled two
significant drawbacks. The high production cost of algae limits their inclusion levels in
animal diets since this cost cannot be remunerated by the price of animal products [7]. Ad-
ditionally, their cell walls inhibit nutrient release in the duodenum of monogastric animals
and decrease their digestibility. Considering these issues, in the last decade, seaweeds
and microalgae have been explored in animal nutrition as feed additives (in low inclusion
levels) rich in bioactive compounds for livestock animals and aquaculture with the aim of
improving both animals’ health and performance as well as product quality and livestock
environmental impact.

This review article aims to cover recent research progress on the antioxidant molecules
in microalgae and their role as feed additives for improving both animals’ health and
performance as well as product quality and livestock environmental impact.

2. Microalgal Diversity in Industrial Setting

Microalgae are a large group of organisms that are extremely diverse and heteroge-
neous from evolutionary and ecological viewpoints. Microalgal biomass is an excellent
source of diverse bioactive compounds such as lipids, polysaccharides, carotenoids, vita-
mins, phenolics, and phycobiliproteins [1,2]. The bioactive properties of different industri-
ally produced microalgae vary as a consequence of their physiology and biochemistry. The
diversity of microalgal species gives rise to various antioxidant molecules, which makes
microalgae the richest natural resource for nutritional and bioactive components [9–11].
The list of industrially produced microalgae includes genera spanning different classes,
namely Chlorodendrophyceae (Tetraselmis chui, Tetraselmis striata CTP4); Chlorophyceae
(Haematococcus lacustris, formerly Haematococcus pluvialis); Coccolithophyceae (Tisochrysis
lutea); Bacillariophyceae (Phaeodactylum tricornutum, Skeletonema sp.); Eustigmatophyceae
(Nannochloropsis sp.); Porphyridiophyceae (Porphyridium sp.); and Cyanophyceae (Spirulina).
Among them, there are only a few microalgae that have “Generally Recognized as Safe”
(GRAS) status as recognized by the FDA. These microalgae include Arthrospira platensis (Spir-
ulina, Cyanophyceae), Chlamydomonas reinhardtii, Auxenochlorella protothecoides (Trebouxio-
phyceae), Chlorella vulgaris, Dunaliella salina (formerly Dunaliella bardawil) (Chlorophyceae),
and Euglena gracilis (Euglenophyceae).

3. Antioxidant Compounds in Microalgae

Microalgae live in habitats under high solar irradiation and as a consequence have a
wide range of antioxidant compounds, which protect them from radiation and oxidation
damage. High-value antioxidant compounds produced by microalgae include polyunsat-
urated fatty acids (PUFAs); carotenoids, including astaxanthin and lutein; chlorophylls;
phycobiliproteins; and phenolic compounds [1,2,9–13] (Figure 1a). These compounds have
immunomodulation, anti-inflammatory, neuroprotective, antimicrobial, antiviral, and an-
thelmintic properties, beneficial to animal health [14] (Figure 1b). Antioxidants help to
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prevent oxidative damage, which mostly occurs from oxygen’s reduced states. There are
many types of reactive oxygen species [15]. The antioxidant function can be derived from
two sources: the activity of antioxidant enzymes [12,13] or the production of molecules
that serve as sacrificial scavengers of reactive oxygen species [2]. Additionally, antioxidant
activity can be divided into two major mechanisms of action: limiting reactive oxygen
species in the digestive tract to lessen oxidative stress on the gut microbiome and epithelial
cells or transporting antioxidants into the circulation for distribution throughout the body.
There are still knowledge gaps about the effectiveness of the antioxidant qualities of mi-
croalgal meals at all levels, from species differentiation to effects on the gut microbiota and
movement through the gut lumen to their effects on animal physiology. This will be useful
for further research in the next decade.
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Figure 1. (a) Main antioxidant compounds produced by microalgae; (b) the beneficial properties of
microalgae in animal health.

3.1. Polyunsaturated Fatty Acids (PUFAs)

Polyunsaturated fatty acids (PUFAs) include docosahexaenoic acid (DHA), eicos-
apentaenoic acid (EPA), arachidonic acid (AA), and γ-linolenic acid (GLA), and are well
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known for being advantageous to both animal and human health [16–18]. Several mi-
croalgal species have been recorded as sources of PUFAs, such as Phaeodactylum tricornu-
tum; Monodopsis subterranea (formerly Monodus subterranea) (Xanthophyceae); Porphyridium
purpureum (formerly Porphyridium cruentum) (Porphyridiophyceae); Chaetoceros calcitrans
(Mediophyceae); Nannochloropsis sp. (Eustigmatophyceae); Crypthecodinium cohnii (Dino-
phyceae); Isochrysis galbana (Coccolithophyceae); and Rebecca salina (formerly Pavlova salina)
(Pavlovophyceae) [17–20]. Among the physiologically important fatty acids, docosahex-
aenoic acid is the most sensitive to oxidation, whereas palmitic acid is the least oxidizable.
The oxidation stability of fatty acids is directly connected with the degree of unsaturation.

3.2. Carotenoids

Carotenoids are abundant in microalgae [21,22]. These colorful compounds are well
known for their antioxidant properties [14,23–25]. They are used as natural colorants [26–28]
and as food and feed additives or health supplements. They are divided into two groups:
carotenes and xanthophylls. The former group of compounds are oxygen-free hydro-
carbons, such as α-carotene and β-carotene, while the latter compounds are oxygenated
derivatives of carotenes (including lutein, violaxanthin, zeaxanthin, fucoxanthin, and
astaxanthin) [25,29]. The main sources of carotenoids are microalgae belonging to the
Chlorophyceae. Many microalgae accumulate carotenoids but the dominant species exten-
sively studied are Dunaliella salina; Haematococcus lacustris (Chlorophyceae); Chromochlo-
ris zofingiensis (formerly Chlorella zofingiensis) (Trebouxiophyceae); and Chlorella vulgaris
(Chlrophyceae), especially due to the capability of commercial production in large-scale
cultures [30,31]. These microalgae may generate a variety of pigments, including carotenes
(β-carotene and lycopene) and xanthophylls (astaxanthin, violaxanthin, antheraxanthin,
zeaxanthin, neoxanthin, and lutein). Other microalgae phyla generate other compounds
such as fucoxanthin, diatoxanthin, and diadinoxanthin [23]. Currently, the two pigments
with the highest global market are β-carotene and astaxanthin from the genera Dunaliella
and Haematococcus, respectively [23,32,33]. More specifically, β-carotene is commonly
produced by Tetradesmus almeriensis (formerly Scenedesmus almeriensis), Dunaliella salina
(formerly Dunaliella bardawil), and Dunaliella tertiolecta (Chlorophyceae) [14,19,20,23,34–36];
however, the best source for its production is Dunaliella salina [33,37].

Astaxanthin, a red xanthophyll pigment, is the second most widely used carotenoid [38].
It displays an efficacious antioxidant activity [39–41] and shows about ten times higher
antioxidant activity than other carotenoids [19,23,34,35]. It is produced by several mi-
croalgae such as Chlorella zofingiensis, Chlorococcum sp., and Scenedesmus sp., as well as the
yeast Xanthophyllomyces dendrorhous [14,20,24]. Interestingly, the microalga Haematococcus
lacustris [35,42], under certain cultivation conditions, can accumulate up to 7% astaxanthin
on a dry weight basis [37]. Therefore, Haematococcus lacustris is seen as the most favor-
able species for industrial scale production of natural astaxanthin [33,43]. Astaxanthin is
widely used in aquaculture feed as a dye agent for fish and shellfish flesh due to its red
color [14,35,42]. It is also exploited as an antioxidant supplement to improve the health and
production performance of broiler chicken [44].

Lutein is another important carotenoid [45]. It is used for the pigmentation of animal
tissues and products [46]. It also shows bioactive beneficial properties in chronic diseases,
such as cataracts, atherosclerosis, blindness, or decreased vision [47–49]. Lutein is pro-
duced by several microalgae such as Chlorella sp. [50,51], Muriellopsis sp. [52], Scenedesmus
sp. [53], and Chlamydomonas sp. [54]. It is widely used for the natural coloration of foods,
drugs, and cosmetics [55]. Lutein-producing strains include Muriellopsis sp., Auxenochlorella
protothecoides (formerly Chlorella protothecoides) (Trebouxiophyceae), Chromochloris zofingien-
sis (formerly Chlorella zofingiensis), Pleurastrum insigne (formerly Chlorococcum citriforme),
Neospongiococcum gelatinosum, and Tetradesmus almeriensis (Chlorophyceae) [14,20,56].

Other important carotenoid pigments with high commercial value include lycopene, vi-
olaxanthin, and zeaxanthin [57]. Lycopene is extensively used in cosmetic formulations as a
sunscreen and antiaging compound [20,34]. It also displays anticarcinogenic and antiathero-
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genic properties [20]. Violaxanthin, an orange carotenoid pigment, is well known for its
anti-inflammatory and anticancer properties. It is produced by Chloroidium ellipsoideum (for-
merly Chlorella ellipsoidea) (Trebouxiophyceae) and Dunaliella tertiolecta [19,23] strains. Zeax-
anthin is a yellow carotenoid that has found successful applications in the pharmaceutical,
cosmetic, and food industries. The industrial production of zeaxanthin is mainly achieved
by Tetradesmus almeriensis and Nannochloropsis oculata [20,35]. Other noteworthy carotenoids
include canthaxanthin, β-cryptoxanthin, and fucoxanthin, which have shown significant
tanning, anti-inflammatory, and anticancer properties, respectively [21,22,34,58,59], and
therefore they have been used in the pharmaceutical or cosmetic industries.

3.3. Chlorophylls

Chlorophylls are found in all photosynthetic microalgae [60,61]. Due to their green
pigmentation, they are becoming increasingly important as colorants in the food industry
as well as in the pharmaceutical and cosmetic industries [14,21,24,57]. Chlorophyll a and
chlorophyll b also occur in the form of sodium and copper derivatives. The latter types of
derivatives are mainly used as food additives or in drinks [14]. Microalgae that belong to
the genus Chlorella contain chlorophyll to about 7% of their biomass, five times more than
that of Arthrospira [36,61].

3.4. Phycobiliproteins

Phycobiliproteins are only found in cyanobacteria and some red algae [62–64]. Phyco-
biliprotein, a high-potential molecule, has been utilized commercially as a natural dye and
has a variety of applications in the pharmaceutical industry [63–65]. Due to their powerful
and highly sensitive fluorescent properties, they are used as markers for certain immunolog-
ical methods, such as flow cytometry, microscopy, and DNA tests [14,24,32,35,57,63,64,66].
On an industrial scale, these pigments are produced from the species Porphyridium sp.,
Arthrospira sp., and Aphanizomenon flosaquae (Cyanophyceae) [14,19,20,24,34,35].

The predominant pigment in the phycobiliprotein family is phycocyanin [63,64]. Phy-
cocyanin is a blue protein in cyanobacteria, rhodophytes, and cryptophytes that possesses
the blue tetrapyrrole chromophore, phycocyanobilin, with fluorescent and bioactive proper-
ties (Figure 2). Phycocyanin is a water-soluble, non-toxic, and blue-colored photosynthetic
pigment that have been used in food, cosmetic, and pharmaceutical industries. Over the
years, the biological function of phycocyanin has been extensively studied. For example,
numerous studies have investigated its antioxidative, anti-inflammatory, anticancer, and
antimicrobial activity, as well as its effects on neurodegeneration, diabetes, wound healing,
and hyperpigmentation [67–69]. Extensive studies during the last two decades concerning
purification, biochemical, and structural properties has resulted in a detailed description of
phycocyanin’s architecture, structure, and bioactivity [67,70]. The primary biotechnolog-
ical potential of phycocyanin seems to be its application as a natural pigment, replacing
toxic synthetic dyes. However, a growing number of evidences have demonstrated that
phycocyanin also exhibits bioactive properties related to health benefits such as antiaging,
antioxidant, anticancer, neuroprotective, and anti-inflammatory activities [70].

3.5. Polysaccharides

Polysaccharides are polymers consisting of saccharide units linked with glycosidic
bonds attached to the cell wall or released into the medium (exopolysaccharides) [71].
Polysaccharides isolated from a range of microalgal species (e.g., Arthrospira platensis,
Porphyridium purpureum, Dunaliella salina, Dixoniella grisea [formerly Rhodella reticulata)
(Rhodellophyceae), and Schizochytrium sp.] exhibit in vitro antioxidant properties and
ability to effectively scavenge superoxide radicals, hydroxyl radicals, and hydroxyl per-
oxides [2,43,71,72]. The diverse biological activities of polysaccharides in microalgae are
due to their complex structural features, including molecular weight, composition of sugar
residues, types of glycosidic linkages, nature of monosaccharides, and the presence of
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some sugar-free units (sulfate, methyl, organic acids, amino acids, or amines) in the main
skeleton of polysaccharides [2,71,72].
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3.6. Polyphenols

Polyphenols are a large group of secondary metabolites comprising phenolic acids,
flavonoids, isoflavonoids, stilbenes, lignans, and phenolic polymers [71–74]. Phenolic com-
pounds, especially flavonoids and phenolic acids, exhibit high antioxidant function. The
extraction and purification of polyphenols from microalgae is challenging, and improve-
ments in analytical methodology are needed to facilitate more detailed characterization of
their structure and function. Recently, a study was carried out on polyphenols extracted
from two different microalgal species: Nannochloropsis sp. and Arthrospira/Spirulina sp. [75].

4. Antioxidants and Gut Microbiota

Several studies have investigated the relationship between antioxidants and the gut
microbiota in animals [76–81]. Some studies have suggested that the antioxidants present
in microalgae can influence the composition of the gut microbiota [82]. For example, di-
etary antioxidants like polyphenols and flavonoids found in fruits and vegetables have
been shown to promote the growth of beneficial bacteria like Bifidobacterium and Lacto-
bacillus while reducing the abundance of potentially harmful bacteria [79,82–85]. Some
antioxidants, especially dietary fibers and polyphenols, can serve as substrates for bacterial
fermentation in the gut. This fermentation process produces short-chain fatty acids (SCFAs),
which have beneficial effects on gut health. SCFAs serve as an energy source for gut cells,
regulate inflammation, and support the growth of beneficial bacteria [84,85]. Furthermore,
antioxidants possess anti-inflammatory properties. Inflammation in the gut is associated
with various gastrointestinal disorders. Therefore, by reducing inflammation, microal-
gae may help maintain a healthy gut environment and support the growth of beneficial
gut bacteria [86–88].

Antioxidants may also contribute to the integrity and function of the gut barrier, which
acts as a protective barrier between the gut microbiota and the rest of the body [89]. A
healthy gut barrier prevents the translocation of harmful bacteria or their by-products into
the bloodstream.
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5. The Effect of Microalgae on Animal Performance

As mentioned before, the high production cost of microalgae due to current cultivation
technology, together with their low digestibility in monogastric species, are the limiting
factors for their inclusion in animals’ diets substituting conventional feedstuffs. For this
reason, research has focused on lower dietary supplementation levels with the aim of
improving animal performance by enhancing nutritional physiology pathways. Moreover,
the chemical composition of microalgae (rich in protein or fat content) affects animal per-
formance differently. It has been reported that the dietary inclusion of high-protein species
improved the body condition and average daily gain (ADG) of dairy cows and lambs,
respectively [90,91], while diets containing high-fat microalgae namely Schizochytrium spp.
negatively affected lambs’ performance through a reduction in their dry matter intake
(DMI) [92,93]. Mavrommatis and Tsiplakou (2020) [94] also observed a 30% reduction in
DMI when Schizochytrium spp. included at 3% in goats’ diet. This reduction in DMI is usu-
ally attributed to the fish-like odor of microalgae or to the high-fat content of Schizochytrium
spp., which might impair the hypophagic effect on the brain’s satiety center.

In broilers, the dietary inclusion of Arthrospira sp. in different levels (ranging from
0.5% to 21%) had no effects on performance parameters [95–97]. On the other hand, the
low dietary inclusion of Chlorella sp. (0.00003% to 1%) consistently increased ADG and
overall growth performance in broilers, possibly through beneficial cellular remodeling
owing to microalgal secondary metabolites and bioactive compounds [98,99]. Thus, both
nutrients’ complementarity and the digestibility of microalgae, especially in the higher
inclusion levels, might explain these results. Moreover, the dietary inclusion of fat-rich
microalgae Schizochytrium spp. (3.7–7.4%) increased broilers’ DMI and consequently their
productive performance from 21 to 35 days old [100,101]. These findings indicate that not
only the dietary inclusion level but also the chemical composition of microalgae needs to
be taken into consideration in diet formulation.

In pigs, negligible improvement in growth performance was observed when fed with
diets containing Arthrospira platensis (0.2–2%) [102]. In fattening pigs, the inclusion of
0.2% Arthrospira platensis (Spirulina) significantly increased ADG without affecting back
fat thickness [103]. However, the combined dietary inclusion of Spirulina with Chlorella
vulgaris at 1% on weaned piglets for only 14 days did not affect ADG even though a potential
effect on intestinal development through the regulation of a mild digestive disorder was
reported [104]. Thus, it could be hypothesized that the trial interval of the previous study
was limited in order for substantial changes in animal performances to be unveiled. No
effect on ADG, final body weight, and carcass traits of female pigs was observed either
when 0.1% Chlorella spp. was included in their diet [105]. The low supplementation level of
microalgae might be the reason for the absence of any significant effect. Indeed, variable
dietary inclusion levels of Schizochytrium spp. (1.10% to 5.51% from day 79 to 106 and
0.39% to 1.94% from day 107 to 120) increased ADG and FCR without affecting DMI [106],
while lower inclusion levels of the same microalgae (0.25–0.50%) did not change the growth
performance of finishing pigs [107]. The former experimental trials in pigs signify once
again the importance of supplementation levels and the duration of administration.

6. The Effect of Microalgae on Animal Health

The biochemical profiles of microalgal species (Spirulina, Chlorella sp., Nannochloropsis
granulat, Schizochytrium, and Tetraselmis chui) commonly used for formulating animal feed
include essential amino acids and polyunsaturated fatty acids (PUFAs) such as eicosapen-
taenoic acid (EPA), docosapentaenoic acid (DPA), and docosahexaenoic acid (DHA) that
are not synthesized in animals’ organism, as well as antioxidant compounds (such as
carotenoids and flavonoids, trace elements, minerals, and vitamins). Extensive scientific
evidence has been documented highlighting the impact of these molecules on animal health.
However, microalgae also represent a source of unexploited bioactive compounds, which
may have exceptional properties and significant applications, including, but not limited to,
lipoproteins, sterols, and alkaloids [108].
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Amongst the biomolecules present in microalgae, PUFAs have gained significant inter-
est since these vital nutrients have been correlated with human health benefits [109]. The
advantage of microalgae regarding PUFA formation and accumulation lies in an efficient
elongase–desaturase network that is common in many algal species [110,111]. Indeed, long-
chain polyunsaturated fatty acids (LCPUFAs) could regulate animals’ pro-inflammatory
response induced by farming conditions, especially in high-yielding individuals, through
the production of eicosanoids with much less pro-inflammatory power or by inhibiting pro-
inflammatory cytokines, resulting in the suppression of low-grade inflammation and stress.
In this light, in a recent study by Mavrommatis et al. (2021) [112], the dietary supplementa-
tion with 20, 40, and 60 g Schizochytrium spp. downregulated the transcriptional profile of
the TLR4 pathway in goats’ blood monocytes. The former induced a cascade of downregula-
tions in pro-inflammatory cytokines (IFNG, IL1B, IL2, IL8, and TNF) and chemokines (CCL5
and CXCL16) in both blood monocytes and neutrophils. The mechanism that underlies
this pro-inflammatory suppression may be attributed to the immunomodulatory effects of
both DHA andω6-DPA fatty acids contained in Schizochytrium biomass on immune cells’
intramembrane receptors such as Toll-like receptors (TLRs) and G protein-coupled receptor
120 (GPR120) [112]. Another possible mode of action may be related to the metabolism of
LCPUFAs in immune cells and their utilization to synthesize immunomodulatory media-
tors (eicosanoids). To further investigate these speculations, Kyriakaki et al. (2023) [113]
assessed the expression of genes involved in eicosanoid production in monocytes and
neutrophils of goats fed with Schizochytrium spp. and found a significant decrease in the
expression of genes that regulate both cyclooxygenase (COX2) and lipoxygenase (5-LOX)
pathways, indicating an overall suppression of pro-inflammatory response. These lines
of evidence may have significant implications for dairy ruminants’ resilience toward com-
mercial farming since a low-grade pro-inflammatory response that activates the immune
system can lead to severe competition for nutrient availability [114]. More specifically,
animals’ energy and nutrient requirements for maintenance and production can often be
overlooked with regard to their role in immune function demands. It has been estimated
that the activation of the immune system requires as much as 10–30% of metabolizable
energy [114]. These energetic demands are supported by studies that have reported the
utilization of 1 kg of glucose (within a 12 h period) for the immune system’s activation
in both cattle and swine [114]. Considering the topic of inflammation, Caroprese et al.
(2012) [115] reported that a mixture of phytosterols from Dunaliella tertiolecta reduced the
cytokine production in a sheep model of inflammation. Moreover, Chlorella sorokiniana
suppressed the peripheral blood mononuclear cell proliferation and pro-inflammatory
cytokine levels in sheep in vitro [116].

The bioactive compounds of microalgae possess several health benefits such as boost-
ing the immune system, which will eventually reduce antibiotic dependence in livestock
farming [108]. Indeed, Amaro et al. (2011) [117] summarized the potential antibacte-
rial properties of microalgae, reporting that specific fatty acids, organic acids, and extra-
metabolites could effectively counteract MRSA, E. coli, Vibrio, Salmonella, Pseudomonas, etc.
Fries-Craft et al. (2021) [118] assessed the inclusion of 0.175% of a mixture consisting of
Spirulina and Chlorella in the broilers’ diet. Microalgae maintained intestinal integrity
during the coccidiosis challenge and protected jejunal villus height. During the Eimeria
challenge, splenic T cells in microalgae-fed broilers did not provide evidence of recruitment
to peripheral tissues. These outcomes suggest that the ingredients in microalgae modified
the immune response in a manner that reduced recruitment from secondary lymphoid
organs in addition to protecting intestinal physiology. Dietary supplementation with 1%
Spirulina or Chlorella microalgae as an alternative to antibiotic use was studied by Furbeyre
et al. (2017) [104]. Diarrhea incidence was reduced in Chlorella-fed pigs compared with
the control, Spirulina, and antibiotic (colistin) groups. Villus height at the jejunum was
greater in microalgae-fed pigs compared with the control and antibiotic-fed pigs. This
study reported a potential effect of both Spirulina and Chlorella supplementation on in-
testinal development and further advantages of Chlorella supplementation to manage mild
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digestive disorders. Similarly, the inclusion of 0.1% fermented Chlorella in growing pigs’
diet improved growth performance, nutrient digestibility, and fecal microbial structure
(higher Lactobacillus and lower E. coli), and decreased fecal noxious gas emission [119].
These sets of evidence demonstrate that microalgae and their derivatives could be useful
ingredients in animal feed for minimizing the dependence on antibiotics, aiming to control
antibiotic resistance and support animal health using natural bioactive compounds.

Besides its antibacterial, antiviral, and anthelmintic properties, microalgal biomass can
be considered as a multi-component antioxidant system that in general is more effective
through the interactions between the different antioxidant components. In this context,
El-Bahr et al. (2020) [120] observed lower values of malondialdehydes (MDAs) and protein
carbonyls (PCs) in the breast muscle of broilers, while the activity of superoxide dismutase
(SOD) was increased due to dietary supplementation with microalgal species (Arthrospira
platensis, Chlorella vulgaris, and Halamphora coffeiformis (formerly Amphora coffeiformis)).
Remarkably, the dietary supplementation with microalgae-based antioxidants minimized
the detrimental effect of mycotoxin-contaminated feed and partially improved the feed
conversion ratio (FCR) in both heat-stressed and unstressed broiler chickens [121]. A
recent study conducted by Christodoulou et al. (2022) [122] reported that the dietary
supplementation with Spirulina significantly increased the antioxidant defense of sheep
organisms through the higher activity of SOD, catalase (CAT), and glutathione peroxidase
(GSH-Px), while the protein oxidative index (PC) was decreased. Interestingly, Spirulina
used in the former study was derived through secondary sorting (no competition with the
food and cosmetic industry), thus opening new valorization directions in the feed industry.

Even though microalgae and their bioactive compounds have been associated with
many beneficial properties on animal health, the first principle of toxicology is that “all
things are poisonous, and it is the dose that distinguishes between a drug and a poison”
(Paracelsus C15th). More specifically, in an effort to fortify animal products with PUFAs
through the supplementation of microalgae, the high propensity of PUFAs to oxidation
could lead to a severe immune-oxidative burst. Dietary PUFA overload can activate cellular
superoxide anion generators like xanthine and NADPH oxidases, resulting in superoxide
anion formation and launching a cascade of pro-oxidant incidences [123]. Indeed, the high
supplementation levels of Schizochytrium spp. (40 and 60 g/day) in goats’ diet increased
the activity of NADPH oxidase in blood plasma [124] and the mRNA levels of NOX1 and
NOX2 in their monocytes and neutrophils [113], while a lower supplementation level (20
g) did not. Similarly, the dietary inclusion of Schizochytrium spp. significantly impaired
sheep’s oxidative system as reflected by the higher levels of MDAs and PCs. Another risk of
incorporating microalgae into the human food chain is related to their ability to accumulate
toxic metals. In semi-arid regions where the availability of fresh water is scarce, water
wastes such as those obtained by mines are frequently used. Therefore, careful attention
must be given before use as animal feed [125].

7. The Effect of Microalgae on Animal Product Quality

Even if the current cultivation technology does not allow for the substantial substitu-
tion of conventional feedstuffs by microalgae, and their inclusion in low levels in animal
diets does not significantly improve animal performance, their application as feed additives
for the promotion of animal product quality has been well documented with promising
outcomes [110,126].

Laying hens fed with diets supplemented with Microchloropsis gaditana (formerly Nan-
nochloropsis gaditana), containing ω-3 LCPUFAs such as EPA and DHA, resulted in the
accumulation of these ω-3 FAs in the egg yolk [127]. Interestingly, a higher proportion
of DHA than EPA accumulated in eggs when Nannochloropsis oculata was fed to laying
hens, even though this microalga is richer in EPA [108]. In addition to the enrichment of
eggs with beneficial LCPUFAs, the inclusion of 20% Nannochloropsis oculata in laying hens’
diet increased the lutein and zeaxanthin content to 1.3 mg/egg [128]. In this context, the
accumulation of carotenoids in egg yolk results in a darker orange color, which increases
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consumer acceptance [129]. Another important aspect of bioactive compounds in microal-
gae is related to their bioavailability. More specifically, it has been reported that lutein
contained in Chlorella is incorporated more efficiently in eggs than synthetic carotenoids,
also resulting in improved oxidative stability of yolk lipids [130]. Nevertheless, it should be
mentioned that high levels of LCPUFAs in hens’ diet can decrease tocopherol availability
for proper egg yolk formation and induce pro-oxidant incidences with a further impact
on birds’ health and homeostasis [131]. Hence, the importance of supplementation levels
should not be overlooked.

Considering the effect of dietary supplementation with microalgae on poultry and
pigs’ meat quality, the study of Martins et al. (2022) [126] has comprehensively sum-
marized the latest insights. The dietary inclusion of Spirulina (4% or 8%) increased the
yellow appearance of broilers’ muscles, skin, fat, and liver, which increased the commer-
cial value of the meat and consequently the consumers’ acceptance [132]. Similarly, a
high inclusion level (10%) of Chlorella vulgaris increased tenderness, yellowness, and to-
tal carotenoids in the breast and thigh meat of broilers [133]. Additionally, the dietary
inclusion of Schizochytrium spp. rich in DHA increased theω-3 content in the breast and
thigh of broilers in numerous studies investigating a wide range of levels from 0.1% to
7.4% [100,101,119,134–137]. However, it should be highlighted that the higher dietary
supplementation levels of Schizochytrium spp. also increased the concentration of lipid per-
oxidation metabolites [100,101]. In terms of pigs’ meat quality, the effects of Schizochytrium
spp. are quite similar to those observed in poultry [126]. Moreover, regarding the supple-
mentation of protein-rich microalgae, the inclusion of Chlorella vulgaris at 5% increased the
total carotenoid content in meat in weaned piglets and grower pigs [126,138].

In ruminants, the concept of enriching meat and milk with marine-origin fatty acids is
more complicated. Due to the symbiotic microbiome colonizing the rumen, about 70–100%
of PUFAs present in the feed are biohydrogenated, resulting in the formation of saturated
fatty acids, mainly stearic acid, which is transferred to tissues and milk. However, there is
another ruminal biochemical procedure that can be manipulated through dietary marine
fatty acids, aiming to enrich products with PUFAs. The increased flow of LCPUFAs into
the rumen changes biohydrogenation pathways, resulting in the accumulation of vaccenic
acid due to the procedure’s incompleteness. Vaccenic acid is desaturated through the
activity of ∆9 desaturase to conjugated linoleic acid (CLA), a fatty acid with significant
health benefits that humans receive through the consumption of milk and meat [139]. Thus,
although the transfer efficiency of EPA, DPA, and DHA is quite low in ruminants due to
their biohydrogenation [94,140], another important biomolecule can be formed. In this
context, dietary supplementation with Schizochytrium spp., rich in ω6-DPA and DHA,
enriched ovine [141] and caprine [94,142] milk with DHA, ω6-DPA, and CLA resulting in
a two-fold increase in total milk PUFA content. More specifically, microalgae-fed goats
and sheep produced milk fortified with up to four- and six-fold increased proportions
of CLA, respectively. Additionally, in both goat and sheep milk, the ω6/ω3 ratio, the
health-promoting index, and the atherogenic index were significantly improved, setting
new horizons for the development of functional dairy products enriched with beneficial
fatty acids for human health. The former constitutes an important aspect of the industry
since ruminants’ milk has been criticized for its high proportion of saturated fatty acids,
which have been correlated with a high risk for human cardiovascular diseases [139].

On the contrary, the high accumulation of PUFAs in milk and dairy products increases
their propensity to oxidation [124]. Indeed, the high inclusion level of Schizochytrium spp.
in goats’ diet impaired milk oxidative status through the accumulation of toxic aldehydes
such as MDAs and protein oxidation products (PCs) [124,142]. Dairy sheep were found
to be more prone to oxidation since MDAs in milk were increased even in the lowest
supplementation level [141]. Nevertheless, Christodoulou et al. (2022) [122] reported that
Spirulina supplementation in dairy sheep diet significantly increased the activity of antioxi-
dant enzymes, namely SOD, CAT, and GSH-Px, in milk and its total antioxidant capacity.
The former constitutes an important aspect since raw milk is frequently oxidized during
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its transportation to the industry; thus, receiving milk with a more stabilized oxidative
status can improve its overall life span. The holistic consideration of the abovementioned
trials allows us to highlight the potential benefits of combining microalgae rich in PUFAs
and antioxidant compounds simultaneously, formulating feed additives aiming to fortify
milk and dairy products with beneficial fatty acids for human health while concurrently
controlling any side effects related to PUFAs’ oxidation.

8. Microalgae in Monogastric Diets: The Use of Carbohydrate-Active Enzymes

The digestibility of microalgal biomass can be impaired by the complicated cellulosic
cell walls of most microalgal species, distantly related to the architecture of plant cell walls.
Little is known of the exact nature of the cell walls of microalgae in general. Most relevant
studies are conducted in commonly used model organisms, such as Chlorella [143,144] and
Nanochloropsis [145], but they are often contradictory, due to the significant variety observed
depending on the species, the growth stage, and often the cultivation medium [146]. A
relatively simple and straightforward method to determine the composition of algal cell
walls is the hydrolysis of the material in harsh conditions and the compositional analysis
of the resulting monomers (sugars or amino acids for example), as an indirect way to
predict the polymers present and their proportions. Using this approach, Spain and Funk
(2022) [143] characterized the composition of several Nordic species of microalgae, includ-
ing Chlorella vulgaris, Scenedesmus sp., Haematococcus lacustris, and Coelastrella sp., and their
changes according to growth phase. While for all strains, the same monosaccharides were
present (arabinose, rhamnose, fucose, xylose, mannose, galactose, glucose, galacturonic,
and glucuronic acids), the glucose content was found to considerably vary for Coelastrella
sp. and Scenedesmus sp. in different growth phases. Accordingly, glycine, glutamic acid,
aspartic acid, threonine, and alanine were found to be the most abundant amino acids in
all strains, but the proportion between polar and non-polar amino acids shifted throughout
the course of cultivation for Scenedesmus sp. Moreover, the protein-to-carbohydrate ratio
also shifted during growth for all strains. Similarly, Weber et al. (2022) [144] studied the
cell wall composition of C. vulgaris using alkaline or acidic extraction. Alkali extracts
mainly contained glucosamine, indicating the presence of a chitin-like polymer, while
acidic extracts mainly consisted of glucose, indicating the presence of cellulose or starch.
Galactose, mannose, rhamnose, and uronic acids were also present, indicating the presence
of pectin- and galactan-like polysaccharides, together with glycoproteins.

Nonetheless, most studies confirm that microalgal cells are enveloped in a thick and
recalcitrant cell wall, containing various carbohydrate polymers, such as pectin, chitin, cel-
lulose, β-glucan, β-galactan, mannan, and other hemicelluloses, as well as hydroxyproline-
rich glycoproteins, but most importantly algaenan, a highly recalcitrant aliphatic lignin-like
polymer consisting of long mono- or di-unsaturated fatty acids, connected with ester and
ether bonds and substituted with amide and pyrrole groups [147]. Algaenan is considered
an indigestible polymer and a major constituent of organic matter sediments in soil and
marine environments [145].

Due to the complexity of the material, efficient treatment methodologies must be
developed. Mechanical treatments have been previously applied, but the energy cost and
the almost complete destruction of the algal cells are significant drawbacks of such methods,
prohibiting their industrial use [148]. Enzyme treatment seems to be the optimal approach
to improve the digestibility of algal biomass since it is an environmentally friendly alter-
native, it does not require the use of organic solvents, and most enzymes used in feed
production are approved for animal consumption. To this end, there is a significant number
of experimental studies targeting the formulation of optimal enzyme mixtures for increas-
ing the digestibility of microalgae, but due to the complexity and heterogeneity of the
material, the results are often contradictory. For example, Gerken et al. (2013) [149] studied
the viability of microalgal cells after different enzymatic treatments, in Nannochloropsis,
Nannochloris, and Chlorella strains. Their results revealed that no single enzyme, except
lysozyme to a certain extent, impaired the viability of all the tested microalgae, but the appli-
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cation of enzyme mixtures achieved this effect. For Chlorella, the combination of lysozyme
and sulfatase or trypsin resulted in almost complete cell permeability. However, chitinase,
chitosanase, cellulase, pectinase, and phospholipase also induced an altered morphology of
the cell wall. The necessity for combined enzyme action for the efficient extraction of fatty
acids was also evident in the work of Liang et al. (2012) [150], where among the various
proteases tested, as well as cellulose-acting enzymes, the best combination was found to
be trypsin together with snailase, an enzyme mixture containing cellulase, hemicellulase,
pectinase, and β-glucuronidase. The group of Zuorro et al. also studied the extraction of
fatty acids from C. sorokiniana, testing commercial enzyme preparations including cellulase,
pectinase, lysozyme, and hemicellulases [151]. The optimal enzyme mixture contained
β-1,4-xylanase and β-1,4-mannanase, resulting in over 70% lipid recovery, highlighting the
necessity of complementary enzyme specificities working in synergy to achieve optimal
results. The disruption of algal cell walls of C. zofingiensis was studied using crude enzyme
mixtures from several bacterial strains grown in wheat bran as an enzyme inducer [152].
The crude enzyme extracts were found to contain cellulase, xylanase, and laccase activities,
and they significantly disrupted the algal cell wall, resulting in increased reducing sugars
in the supernatant, as well as lipid extraction efficiency.

Regarding the enzymatic digestion of Chlorella cell walls, the group of Coelho et al.
tested more than 200 carbohydrate-acting enzymes and sulfatases on C. vulgaris biomass,
revealing 29 of them with a certain degree of activity [153]. The most effective candidates,
including an exo-β-glucosaminidase, an alginate lyase, a peptidoglycan deacetylase, and a
lysozyme, were tested as ternary mixtures for the optimization of reducing sugar release,
leading up to 8-fold higher release of reducing sugars and 23-fold higher protein release,
while the release of fatty acids was marginally improved. The same group used this
approach to study the degradation of the cell walls of the microalga Arthrospira platensis,
resulting in an efficient enzyme mixture containing only two enzymes, lysozyme and α-
amylase [154]. The two-enzyme mixture resulted in 7-fold higher reducing sugars, 1.15-fold
higher release in chlorophyl α, while the release of fatty acids was also facilitated.

Nannochloropsis is another microalgal species with significant potential as animal feed.
The group of Lavecchia et al. have studied the enzymatic pretreatment of the biomass
from this species in detail. The tested enzymes included cellulase, mannanase, glucanase,
galactanase, xylanase, esterase, and lysozyme, and they all resulted in increased lipid
recovery. The most effective enzymes were found to be cellulase, mannanase, glucanase,
and galactanase, which were further studied in binary and ternary combinations in order
to design an efficient enzyme cocktail for this strain, resulting in a maximum of 37.2 g of
lipids per 100 g of biomass [155]. In a follow-up study, the same authors achieved over 70%
of lipid extraction yield from the same strain, with the synergistic effect of cellulase and
mannanase. Moreover, they showed that the crystallinity of cellulose was increased in the
cell walls, indicating the degradation of amorphous cellulose [156].

Overall, it is evident that the cost-effective treatment of microalgal biomass for im-
proving its digestibility can be ideally implemented with combinations of enzymes with
different specificities, targeting the various constituents of the cell wall. However, signifi-
cant research effort is required for the design of tailored enzymatic cocktails depending
on the available material, since the heterogeneity of the microalgal biomass hinders the
application of universally efficient enzyme formulations.

9. Environmental Aspects of Using Microalgae in Animal Nutrition

The Paris Agreement’s aim of limiting the increase in global temperature to 1.5 ◦C
above preindustrial levels demands rapid and ambitious mitigation strategies aiming to
reduce global greenhouse gas (GHG) emissions while simultaneously attaining a significant
reduction in the amount of methane (CH4) produced by the agricultural sector [157].
Ruminants produce a significant amount of methane emitted through eructation as a
normal biochemical function for the neutralization of CO2 and H2 formed in the rumen
due to the microbial fermentation of the feed.
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Green, brown, and red seaweeds are key marine habitats rich in bioactive compounds
such as bromoform (CHBr3), which inhibits methanogenesis. It is believed that CHBr3,
along with other halogenated volatile organic compounds (VOCs), competitively bind
to the enzymes and reductases that facilitate the final steps of reducing CO2 and H2 by
methanogens (Archaea) into CH4. Bromoform is found within many seaweed species in
low concentrations but has been found to accumulate in higher levels in the red seaweed
Asparagopsis taxiformis [158]. Indeed, the inclusion of A. taxiformis (0.25% of organic matter
(OM)) in beef diets reduced methane emission by 51 g/kg DMI, while a higher inclusion
level (0.50% of OM) further reduced methane by 75 g/kg DMI [159]. Although A. taxiformis
constitutes an important ally of ruminants against their high criticism as environmental
polluters, dietary supplementation with this seaweed is negatively associated with one-
health concept concerns mainly due to its bromoform content, a compound with potential
carcinogenic properties.

Bromoform has been associated with ongoing health and environmental concerns
even when included at low doses: The daily consumption of 67 g A. taxiformis (84.42 µg
bromoform) resulted in rumenitis and residues in both urine and milk (10 and 9.1 µg
bromoform, respectively) of cows [160]. The health and residue issues of bromoform should
be considered with caution, as there are still very few studies published that define the
long-term effects of feeding bromoform-rich seaweed on animal productivity, animal health,
and residue deposition in milk and/or meat. Thus, Roskam et al. (2022) [161] investigated
the antimethanogenic potential of bromoform-free brown and green seaweeds (Pelvetia
canaliculata, Ericaria selaginoides (formerly Cystoseira tamariscifolia), Bifurcaria bifurcata, Fucus
vesiculosus, Himanthalia elongata, Ascophyllum nodosum, and Ulva intestinalis) in vitro. The
results showed that only Fucus vesiculosus reduced CH4%; however, the absolute methane
production was not significantly reduced. Notably, it is the bromoform content that
effectively disrupts methanogen’s function, while other bromoform-free seaweeds rich in
tannins and phenolic compounds are incapable of mitigating methane formation before
impairing the overall rumen habitat.

On the other hand, studies have also provided insights into methane mitigation
properties in PUFA-rich microalgae involving a different mode of action. In the study of
Mavrommatis et al. (2021) [162], the inclusion of Schizochytrium spp. in goats’ diet de-
creased the abundance of total archaea and methanogens in the rumen particle-associated
microbiota. Moreover, in the rumen liquid fraction the Methanobrevibacter spp., a dominant
archaeon of the hydrogenotrophic pathway was significantly decreased [163]. The mode of
action that resulted in the former changes is related to LCPUFAs contained in Schizochytrium
spp. [164]. More specifically, it has been proposed that double bonds alter the shape of
the molecule, such that kinked unsaturated fatty acids disrupt the bacterial lipid bilayer
structure, resulting in chemiosmotic issues and imbalances in acyl CoA metabolism [165].
Nevertheless, recent evidence subverts the aforementioned assumptions, indicating that
unsaturated fatty acids did not considerably affect bacterial growth of both Gram-negative
and Gram-positive strains [166], while unsaturated fatty acids are involved in the preven-
tion of biofilm formation in Gram-positive bacteria, even at very low levels [166]. Hence,
rumen bacterial populations could return to a planktonic lifestyle if the biofilm is dispersed,
making them prone to abiotic factors. In addition to methanogen suppression by marine
fatty acids (EPA, DPA, and DHA), as reflected by their DNA footprint, methane mitigation
was observed in an in vitro study [167].

10. Conclusions

Microalgae have the potential to revolutionize biotechnology in a number of areas,
including feed, nutrition, pharmaceuticals, cosmeceuticals, and biofuels. The biological and
chemical diversity of the microalgae has been the source of unique antioxidant molecules
with the potential for industrial development as feed nutritional supplements. Microalgal
biomass is an attractive alternative to traditional forms of biomass for the production of
high value-added antioxidants due to high productivity, the ability to be cultivated on
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marginal lands, and the potential to utilize carbon dioxide. Since microalgal biomass is
still largely unexplored, it represents a rich source for discovery in both academic and
industrial sectors. Further research should be performed aiming to assess the potential of
microalgae in substituting synthetic antioxidants (e.g., vitamin E) in animal feed since the
synthetic ones have been linked with severe concerns for human health [168]. To bridge
this scientific gap, targeted experimental trials should be designed in order to validate the
equivalent of vitamin E antioxidant activity of specific microalgae in vivo. Additionally,
although extensive evidence supports the antimicrobial potency of microalgae, scarce
information exists about the in vivo antibacterial, antiprotozoal, and antihelminthic effects
of biomolecules present in microalgae. This perspective should not only be investigated
under pilot conditions but also should be validated at a commercial level, where the effect
of other cofactors (e.g., pathogens, thermal stress, oxidative stress, social stress, welfare
issues, etc.) are also concerned.

In addition to the direct effect of microalgae on improving both animals’ health
and performance, there are indirect aspects of their usage in livestock. Microalgae are
sustainable natural bioresources that do not compete with terrestrial plants for arable
land, freshwater, pesticides, fertilizers, and insecticides to grow, and yet they have high
productivity [169]. Thus, substituting synthetic feed additives with microalgae could result
in positive environmental outcomes in the livestock sector with higher-quality nutritional
products [170–174].
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