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Abstract: Berberine (BBR), an isoquinoline alkaloid natural product, is isolated primarily from
Coptis chinensis and other Berberis plants. BBR possesses various bioactivities, including antioxidant,
anti-inflammation, anticancer, immune-regulation, and antimicrobial activities. Growing scientific
evidence underscores BBR’s substantial neuroprotective potential, prompting increased interest
and scrutiny. In this comprehensive review, we elucidate the neuroprotective attributes of BBR,
delineate the underlying molecular mechanisms, and assess its clinical safety and efficacy. The
multifaceted molecular mechanisms responsible for BBR’s neuroprotection encompass the attenuation
of oxidative stress, mitigation of inflammatory responses, inhibition of apoptotic pathways, facilitation
of autophagic processes, and modulation of CYP450 enzyme activities, neurotransmitter levels, and
gut microbiota composition. Furthermore, BBR engages numerous signaling pathways, including the
PI3K/Akt, NF-κB, AMPK, CREB, Nrf2, and MAPK pathways, to confer its neuroprotective effects.
This comprehensive review aims to provide a substantial knowledge base, stimulate broader scientific
discourse, and facilitate advancements in the application of BBR for neuroprotection.
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1. Introduction

Berberine (BBR), a quaternary isoquinoline alkaloid compound, has been identified
in several plants, including Ranunculus canadensis, Berberis vulgaris, Berberis aquifolium,
and Coptis chinensis [1–3]. BBR is a yellow acicular crystal with the molecular formula of
C20H18NO4, and its chemical structure is shown in Figure 1. Its current clinical use is often
in the form of hydrochloride (i.e., BBR hydrochloride) or sulfate (i.e., BBR sulfate). It is
well known that BBR has a series of pharmacological activities, including antimicrobial,
antioxidant, anti-inflammatory, anti-heart failure, anti-arrhythmia, lowering cholesterol,
anticancer, and immunomodulatory activities [4–10]. In China, the China Food and Drug
Administration has approved BBR for treating bacterial-induced intestinal diarrhea in both
humans and livestock. Despite historically limited bioavailability, ongoing preclinical trials
are driving exploration into new potential applications [11,12].

Recent research has revealed BBR’s ability to cross the blood–brain barrier, yielding
positive impacts on brain functions [13–20]. Numerous in vitro and animal studies have
showcased BBR’s capacity to offer neuroprotection against drug- and toxin-induced neu-
rotoxicity, ischemia–reperfusion injury, and chronic neurodegenerative conditions such
as Alzheimer’s, Parkinson’s, and Huntington’s diseases [13–20]. The intricate molecular
mechanisms underlying BBR’s robust neuroprotective effects encompass various biological
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functions, including antioxidative, anti-inflammatory, and antiapoptotic actions [21]. For
this review, the most important articles published from 1 January 2000 to 1 August 2023
relating to the protective effects of BBR on neurological diseases were selected from the
Scopus, PubMed, and Web of Science databases. The keyword combinations used for the
literature search include: ‘berberine and neuroprotection’, ‘berberine and neuroprotection’,
‘berberine and neuroprotective effect’, or ‘berberine and neurodegenerative diseases’. In
addition, some important studies involving the side effects and toxic doses of BBR were
also selected. In this present review, we aimed to summarize the neuroprotective effects,
molecular mechanisms, side effects and toxic dosages, and clinical applications of BBR
while also addressing existing challenges associated with its use as a neuroprotective agent.
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2. An Overview of the Neuroprotective Effects of BBR

BBR possesses a remarkable capacity to cross the blood–brain barrier (BBB) and
confer potent neuroprotection against a spectrum of neurodegenerative conditions,
including Alzheimer’s disease, Parkinson’s disease, cerebral ischemia, mental de-
pression, schizophrenia, and anxiety [5,8,19,22–24]. It has been reported that oral
administration of BBR could effectively treat neurotoxic injury caused by drugs (e.g.,
doxorubicin, and 6-hydroxydopamine [6-OHDA]), environmental toxins (e.g., chlorpyrifos,
mercury, aluminum, cadmium, and fluoride), aging (e.g., amyloid β-induced aging),
ischemia–reperfusion, or stroke (i.e., middle cerebral artery occlusion-induced stroke) both
in vivo and in vitro [15,25–29].

Furthermore, advancements in nanotechnology and nose-to-brain drug delivery
(NBDD) techniques have enhanced BBR’s ability to penetrate the blood–brain barrier
and achieve targeted brain delivery [30–33]. For instance, BBR-loaded nanostructured
lipid carriers coated with chitosan (BBR-CTS-NLCs) have demonstrated improved brain
targeting and enhanced therapeutic efficacy in the treatment of central nervous system
diseases, such as Alzheimer’s disease, through nasal administration [34].

The molecular mechanisms of BBR’s neuroprotection are multifaceted and context-
dependent. Over the past three decades, researchers have demonstrated that the neuropro-
tective mechanisms of BBR involve the inhibition of oxidative stress, mitochondrial dysfunc-
tion, inflammatory response, programmatic cell death (e.g., ferroptosis, necroptosis, and
apoptosis), and the activation of autophagy [8,15,25–29,35,36]. Several signaling pathways,
including phosphoinositide 3-kinase (PI3K)/protein kinase B (Akt), mitogen-activated pro-
tein kinases (MAPKs), AMP-activated protein kinase (AMPK), hypoxia-inducible factor-1
(HIF-1), autophagy, nuclear factor kappa B (NF-κB), peroxisome proliferator-activated
receptors (PPARs), cyclic AMP response element (CRE)-binding protein (CREB), p53, nu-
clear factor-E2-related factor 2 (Nrf2), and mitochondrial apoptotic pathways, were also
involved [8,15,25–29,35,36]. Recent investigations have even indicated that oral BBR sup-
plementation can elevate brain dopamine (DA) levels, ameliorating Parkinson’s disease by
modulating gut microbiota, adding another layer of complexity to its mechanisms of ac-
tion [37]. The detailed mechanistic aspects will be expounded upon in subsequent sections.
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3. Molecular Mechanisms of BBR’s Neuroprotection
3.1. Inhibition of Oxidative Stress, Mitochondrial Dysfunction, and Apoptosis

Growing evidence underscores the pivotal role of oxidative stress in the initiation
and progression of neurodegenerative disorders [38–49]. Excessive production of reactive
oxygen species (ROS) and reactive nitrogen species (RNS) under oxidative stress conditions
can induce lipid peroxidation, protein oxidation, protein nitration, and glycol oxidation,
culminating in membrane damage, cytoskeletal abnormalities, and DNA damage within
neural tissues [38–49]. Consequently, antioxidant supplementation has emerged as an
effective therapeutic strategy for neurodegenerative diseases [50–53].

Numerous studies have shed light on the potent antioxidant properties of BBR, making
it a promising option for treating neurodegenerative diseases [6,8,14,54–67]. In vitro investi-
gations have demonstrated its ability to scavenge peroxynitrite (ONOO−), nitric oxide (NO),
hydroxyl radical (OH•), superoxide anion (O2

•−), and sodium nitroprusside, cisplatin, and
Fe2+-induced lipid peroxidation (LPO) [68]. Using in vitro 2, 2-diphenyl-1-picrylhydrazyl
radical (DPPH) and 2, 2-azinobis (3-ethylbenzothiazoline-6-sulfonate) radical tests
showed that the half-maximal inhibitory concentrations (IC50s) of BBR are both about
0.3 mg/mL [69]. In addition, it was also found that the IC50s of BBR for NO radical
scavenging, Fe2+ chelation, and OH• radical scavenging are 0.17 mg/mL, 0.12 mg/mL,
and 0.11 mg/mL, respectively [69]. Notably, ONOO− is a potent oxidative and nitrating
reagent capable of damaging various intracellular macromolecules, including proteins,
lipids, and DNA. BBR effectively reduces superoxide levels in macrophages mediated
by NADPH oxidase, restoring cellular redox balance by selectively inhibiting gp91phox
expression and enhancing antioxidant enzyme activities, such as superoxide dismutase
(SOD) and catalase (CAT), thereby mitigating oxidative-stress-induced cytotoxicity and
brain injury [55,70]. Animal studies have corroborated these findings, showing that
BBR supplementation significantly reduces malondialdehyde (MDA) levels, enhances
SOD and CAT activities, and inhibits caspase activities in the hippocampus tissues
of rats, thereby attenuating neurodegeneration induced by two-vessel occlusion [61].
Additionally, BBR has been shown to prevent mitochondrial ROS generation by targeting
the N-methyl-D-aspartate-receptor (NMDA)R1/NADPH oxidase 3 (NOX3) pathway,
protecting spiral ganglion cells from cytomegalovirus-induced apoptosis [71].

Mitochondria, being both the main targets and producers of ROS, play a central role
in oxidative-stress-related neurodegeneration [72]. Studies have demonstrated that ROS
production is regulated by various antioxidant defense pathways, including the PI3K/Akt
pathway, Nrf2 pathway, and PPAR pathway [24,73,74]. Nrf2, a key regulator of antioxidant
defense, transcriptionally controls the expression of numerous protective genes in response
to oxidative stress [75]. Although direct interactions between BBR and Nrf2 require fur-
ther investigation, studies have shown that BBR supplementation activates Nrf2 and its
downstream target, heme oxygenase-1 (HO-1), exerting neuroprotective effects [75]. Many
studies have reported that the Nrf2–antioxidant response element axis is a critical target
against oxidative stress in neurodegenerative diseases [76]. Albeit it still lacks the direct
evidence of BBR interaction with Nrf2, some studies have illustrated that BBR supplemen-
tation could activate the expression of Nrf2 and its downstream gene HO-1, exhibiting its
neuroprotective effects [24]. Activation of the Akt signaling pathway by BBR inhibits ROS
production, protecting against oxidative stress induced by various agents [77,78]. Consistently,
it has been reported that BBR supplementation could alleviate rotenone-induced ROS produc-
tion in human neuroblastoma cells (i.e., SH-SY5Y cells) via the inhibition of mitochondrial
dysfunction through activating the PI3K/Akt signaling pathway [66]. Moreover, BBR has been
reported to alleviate rotenone-induced ROS production via the activation of Nrf2 and HO-1
expression, safeguarding against high-glucose-induced cell apoptosis [79]. Hsu et al. demon-
strated that BBR activates Nrf2 nuclear translocation and protects NSC34 motor neuron-like
cells from oxidative damage through the activation of PI3K/Akt-dependent cytoprotective
pathways [80]. Recent findings highlight BBR as a potent ligand of PPARδ, promoting Nrf2
and NQO1 expression and consequently mitigating oxidative stress and brain injury in a
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mouse model of middle cerebral artery occlusion (MCAO) [74]. In short, the antioxidant
defense function of BBR against neurotoxic effects caused by oxidative stress mainly depends
on its free radical scavenging ability and the activation of endogenous antioxidant signaling
pathways, such as the Nrf2, PI3K/Akt, and PPARδ pathways.

Mitochondrial dysfunction, stemming from excessive reactive oxygen species (ROS)
production, triggers a cascade of events, including ATP depletion, the opening of mito-
chondrial permeability transition pores, caspase activation, and cellular apoptosis [81].
The opening of mitochondrial permeability transition pores is regulated by various pro-
teins and signaling networks, including mitochondrial membrane potential, mitochondrial
Ca2+ signals, and members of the Bcl-2 family (e.g., the antiapoptotic B-cell lymphoma-
extra-large [Bcl-XL] and Bcl-2; the proapoptotic members of the family: Bcl-2-associated
X protein [BAX], Bcl-2 antagonist/killer 1 [BAK1], and Bcl-2-associated agonist of cell
death [BAD]) [82]. BBR supplementation has been shown to upregulate mitochondrial
membrane potential and ATP levels, protecting against amyloid-β-induced mitochondrial
dysfunction and cell apoptosis in primary cultured hippocampal neurons [83]. BBR in-
hibits the release of proapoptotic factors like cytochrome c and apoptosis-inducing factors
(AIFs) in response to oxygen–glucose deprivation (OGD), safeguarding against ischemic
brain injury [84]. In a rat model, Singh et al. found that oral BBR supplementation at the
doses of 10 or 20 mg/kg/day for 19 days could significantly improve the mitochondrial
complex (I, II, and IV) activities and inhibit the activation of caspase-3 in brain tissues,
followed by the amelioration of cerebral ischemia-induced brain injury [85]. The neuropro-
tective effect of BBR against ischemia-induced brain injury involves the activation of the
Akt/GSK3β/ERK1/2 signal pathway and the inhiation of the JNK/caspase-3 pathway [18].
In addition, oral BBR supplementation could upregulate the expression of Bcl-2 protein and
downregulate the expression of Bax protein in the brain tissue, inhibiting cell apoptosis and
ameliorating doxorubicin-induced cognitive impairment in rats [26]. Zhang et al. found
that BBR pretreatment attenuated hypoxia condition-induced neuronal cell death or brain
injury through the downregulation of HIF-1α protein, inhibiting caspase-9 and caspase-3
activations and decreasing the Bcl-2/Bax ratio in PC12 cells in a rat model [86].

Taken together, as shown in Figure 2, BBR exerts its neuroprotective effects by in-
hibiting ROS production, mitochondrial apoptotic pathways, and neuronal cell apoptosis
through the activation of various signaling pathways, including PI3K/Akt, PPAR/Nrf2,
NMDAR1/NOX3, JNK, and the regulation of mitochondrial function.
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BBR. PI3K, phosphoinositide 3-kinase; Akt, protein kinase B; GSK3β, glycogen synthase kinase 3β;
ERK1/2, extracellular regulated protein kinases 1/2; PPAR, peroxisome proliferators-activated receptor;
Nrf2, nuclear factor-E2-related factor 2; HO-1, heme oxygenase-1; NQO1, NAD (P)H quinone oxi-
doreductase 1; NMDAR1, N-methyl-d-aspartate receptor 1; NOX3, NADPH oxidase 3; ROS, reactive
oxygen species; JNK, c-Jun N-terminal kinase; ATP, adenosine triphosphate; SOD, superoxide dismu-
tase; GSH-PX, glutathione peroxidase; CAT, catalase; CytC, cytochrome c; AIF, apoptosis-inducing
factor; Bax, Bcl-2-associated X protein; Bcl2, B-cell lymphoma-2; Bcl-XL, B-cell lymphoma-extra-large.

3.2. Blockade of Inflammatory Response and Necroptosis

Previous studies have convincingly established that mitigating neuroinflammation
could mitigate neuronal loss and decrease the morbidity associated with neurodegenera-
tive disorders [35,87–89]. Neuroinflammation, characterized by the chronic activation of
microglia and astrocytes, can result from various factors such as traumatic brain injury,
microbial infection, drugs, neurotoxins, or toxic metabolites [35,87–89]. In the context of
neurodegenerative diseases, the activation of microglia and astrocytes often leads to the
secretion of multiple proinflammatory mediators and neurotoxic cytokines. This, in turn,
fuels a detrimental cycle of neuronal damage and neuroinflammation, ultimately driving
the chronic progression of neurodegenerative conditions [35,87–89].

Berberine (BBR) stands out as a promising agent for combating neuroinflammation,
effectively regulating the inflammatory response triggered by infections, toxins, aging,
or ischemia–reperfusion through multiple signaling pathways [23,90–93]. In an in vitro
model simulating the pathology of Alzheimer’s disease, BBR alleviates neuroinflammatory
response by reducing the production of proinflammatory cytokines in microglia [94]. Fur-
thermore, BBR partially ameliorates cognitive dysfunction induced by lipopolysaccharide
(LPS) by attenuating neuroinflammation [95]. Jia et al. found that BBR supplementation
could inhibit Aβ-induced microglia inflammation by suppressing the activation of the
NF-κB and MAPK signaling pathways [96]. Zhang et al. found that BBR could reduce
ischemic brain injury and neuroinflammatory response via increasing the activation of
the Akt/glycogen synthase kinase (GSK) signaling pathway and inhibiting the NF-κB
pathway [97]. BBR supplementation could reduce TLR4/MyD88/NF-κB signaling trans-
duction and attenuate neuronal death induced by microglial-conditioned media [92]. BBR
effectively inhibits the inflammatory activation of rat brain microglia by inactivating the NF-
κB/iNOS/NO pathway or activating the AMPK pathway [90,98,99]. Additionally, several
studies have reported that BBR directly upregulates the expression of anti-inflammatory
factors (e.g., interleukin (IL)-4 [IL-4] and IL-10) while inhibiting the expression of proin-
flammatory factors (e.g., COX-2, prostaglandin E2 [PGE2]), IL-1β, IL-6, and tumor necrosis
factor-α (TNF-α)), displaying therapeutic effects against neuroinflammatory diseases in
both in vitro and in vivo settings [99–102].

Necroptosis, a regulated form of cell death distinct from apoptosis, is known to induce
marked inflammatory responses and adaptive immunity effects in the body [103]. Previous
studies have indicated that BBR may act as a necroptosis inducer in cancer cells, showcasing
potential anti-tumor effects [104–106]. BBR usually plays a neuroprotective role in the
treatments for neurological diseases and neuronal cells inhibiting necroptosis [107]. Ou
et al. demonstrated that BBR treatment could significantly inhibit the expression of receptor-
interacting protein 1 (RIP1) and RIP3, two key regulators of necroptosis, attenuating the
neuroinflammatory response and cognitive impairment in the hippocampus tissues in rats
exposed to excessive L-arginine [107].

In summary, the inhibitory effects of BBR on inflammatory response and necroptosis
on nerve cells or tissues partly contributed to its neuroprotective properties. These effects
are mediated through the inhibition of the MAPKs, AMPK, NF-κB, TLR4, and NLRP3
pathways, as well as direct modulation of inflammatory factor secretion, as illustrated in
Figure 3.
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Figure 3. Proposed regulated mechanisms for BBR’s neuroprotection against neuroinflammatory
response in nerve cells. NF-κB, nuclear factor kappa B; iNOS, inducible nitric oxide synthase;
NO, nitric oxide; TLR4, toll-like receptor 4; NLRP3, NOD-like receptor protein 3; MAPK, mitogen-
activated protein kinase; Akt, alpha serine/threonine-protein kinase; GSK3, glycogen synthase kinase
3; AMPK, AMP-activated protein kinase; IL-4, interleukin 4; IL-10, interleukin 10; RIP1/3, receptor-
interacting protein 1/3; COX-2, cyclooxygenase 2; PGE2, prostaglandin E2; IL-1β, interleukin 1β;
IL-6, interleukin 6; TNF-α, tumor necrosis factor-α.

3.3. Induction of Autophagy

Berberine (BBR) exhibits neuroprotective qualities by inducing autophagy and facili-
tating the clearance of toxic aggregate proteins [108–110]. BBR has been found to trigger
autophagy in various cell types, including macrophages, lymphoblastic leukemia cells,
retinal cells, and neuronal cells, as well as in various tissues such as the liver, lung, kidney,
stomach, breast, and myocardium [111–127].

One of BBR’s mechanisms of neuroprotection involves promoting autophagy to elimi-
nate misfolded proteins. Several studies have also found that BBR supplementation could
effectively improve the motor dysfunction of mice with Huntingtin’s diseases via promot-
ing the degradation of mutant Huntingtin protein through enhancing cell autophagy [9,109].
This process ultimately alleviates motor dysfunction and extends the survival period in a
mouse model of Huntington’s disease [109]. Similarly, in an APP/tau/PS1 triple-transgenic
mouse model of Alzheimer’s disease, BBR treatment could significantly improve the
cognitive impairment of mice by promoting autophagy while inhibiting the production
of β-amyloid (Aβ) through suppressing β-site APP cleavage enzyme 1 (BACE1) expres-
sion [110]. Moreover, in another study, data showed that BBR reduced the production of Aβ

and the expression of the BACE1 protein by activating AMPK in nerve cells [128]. Interest-
ingly, a great many studies have indicated that autophagy is AMPK-dependent or triggered
via the AMPK/mTOR pathway [4,129]. Consequently, BBR may activate autophagy by the
AMPK signal pathway to clear wrong proteins that cause neurological diseases.

Overall, a summary conferring the molecular mechanisms of BBR’s neuroprotection
via inducing autophagy is shown in Figure 4.
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3.4. Modulation of Neurotransmitters

Neurotransmitters are pivotal in facilitating intraneuronal communication and
neurobehavioral functions [130]. BBR has demonstrated the ability to inhibit the activ-
ity of acetylcholinesterase, butyrylcholinesterase, and monoamine oxidases (MAOs),
which play vital roles in regulating the levels of neurotransmitters [131,132]. For ex-
ample, MAO-A and MAO-B, two isozymes of MAOs, are principally responsible for
the degradation of various amine neurotransmitters, including DA, norepinephrine
(NE), serotonin (5-HT), and epinephrine, all of which are crucial in the development of
neurodegenerative diseases [133,134].

A previous study showed that oral administration of BBR at the final doses of
10 or 20 mg/kg could show a potent antidepressant-like effect in mice via upregulation
of the levels of NA and 5-HT in the hippocampus and frontal cortex [131]. Additionally,
BBR has been reported to significantly enhance DA levels in the brains of mice with Parkin-
son’s disease, attributed to increased gut Enterococcus abundance, thereby ameliorating
Parkinson’s disease symptoms [37]. BBR administration has also been shown to suppress
cholinesterase activity, thereby protecting the cholinergic system, and enhancing memory
function in diabetic rats [67,133]. Glutamate is a primary excitatory neurotransmitter in the
brains of animals and humans. N-methyl-d-aspartate (NMDA) is its receptor. Furthermore,
BBR treatment has been found to protect against MK-801-induced neurodegeneration in
rat brains by enhancing NMDA-mediated activity-dependent cell survival [135]. Similarly,
BBR administration has been shown to significantly reduce the release of glutamate from
rats’ cortical synaptosomes via inhibition of presynaptic Cav2.1 channels as well as the
downregulation of the ERK/synapsin I signaling cascade [136].

Overall, a summary conferring the molecular mechanisms of BBR’s neuroprotection
via regulating neurotransmitter levels in the brain is shown in Figure 5.
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3.5. Modulation of CYP450 Enzyme Activities

Recent studies have underscored the critical role that cytochrome P450 (CYP450)
may play in the development or treatment of neurological diseases based on its effects on
temperature control, maintenance of brain cholesterol homeostasis, neuropeptide release,
and regulation of neurotransmitter levels [137]. It has been reported that BBR has a potent
regulatory effect on CYP450 activities in liver, heart, kidney, and breast tissues [7,138–147].

Earlier investigations revealed that BBR could inhibit the activities of CYP1 enzymes,
including CYP1A1, CYP1A2, and CYP1B1, with a stronger preference for CYP1B1 [148].
CYP1B1 has been reported to make an important contribution in the procession of various
neurological disorders based on its regulated effects on the production of ROS and redox
homeostasis [149]. It has been demonstrated that the deficiency of CYP1B1 could protect
retinal astrocytes against oxidative stress and inflammation [150]. In addition, in a human
clinical trial, researchers found that repeated administration of BBR (oral administration
at a dose of 300 mg, three times daily, for 14 days) decreased CYP2D6, CYP2C9, and
CYP3A4 activities [142,151]. Based on the inhibitory effects of BBR on the activities of the
CYP3A4 enzyme, BBR significantly increases the blood concentration of cyclosporine when
co-administrated [152]. In addition, p-glycoprotein (P-gp)-mediated gut efflux properties
are responsible for the reduced bioavailability of BBR and verapamil, a p-gp inhibitor,
and co-treatment could significantly enhance the neuroprotective effect of BBR against
streptozotocin-induced cognitive dysfunction in a rat model [153].

To date, there is still limited information about the interaction between BBR and
CYP450 enzymes in nerve tissue, and further investigations into the precise molecular
mechanisms are warranted.

3.6. Others

Berberine (BBR) has demonstrated notable neuroprotective potential through various
molecular pathways. Notably, it has been reported that BBR enhances synaptic plasticity by
activating the cAMP response element-binding protein (CREB), leading to the production
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of brain-derived neurotrophic factor (BDNF) through the upregulation of SIRT1. This, in
turn, contributes to the amelioration of cognitive impairment induced by chemotherapy
drugs, such as doxorubicin [26]. In a transient middle cerebral artery occlusion rat model,
BBR administration could induce gut–brain axis signal transmission and stimulate the
vague nerve by inducing the production of intestinal hydrogen through the regulation of
gut microbiota, finally offering neuroprotection [154]. Furthermore, BBR treatment has
also been shown to reduce hippocampus neuronal damage by inhibiting the expression of
the matrix metalloproteinase-9 protein and gelatinase activities and downregulating the
expression of laminin and neuronal nuclei antigen (NeuN) proteins in the hippocampal
CA1 and CA2 areas [155]. These functions also contribute to the therapeutic effects of
BBR against multiple sclerosis disease [156]. Another study by Wu et al. highlights
the neuroprotective potential of BBR by blocking neuronal ATP-sensitive K+ channels
in substantia nigra pars compacta dopaminergic neurons [157]. BBR has also shown
promise in enhancing nerve growth factor (NGF) expression, which promotes Nrf2- and
Akt-related neurite outgrowth and differentiation, thus protecting against oxidative stress
and neuroinflammatory responses [79,158,159].

4. Safety and Toxic Adverse of BBR

A series of studies has confirmed that the toxicity of BBR depends on the route and
duration of administration [160–163]. Animal experiments showed that oral administration
of BBR is safe and intravenous or intraperitoneal injection are toxic. For example, Kheir et al.
showed that the median lethal dosages (LD50) of BBR via oral, intravenous, or intraperi-
toneal administration in mice are >20.8 g/kg, 9.04, and 57.6 mg/kg, respectively [160]. This
difference is mainly dependent on the final concentration of BBR in the blood [160]. It also
suggests that a single oral dose of BBR at 2.97 g/kg of body weight is safe according to the
conversion of body surface area between humans and mice (approximately seven times
between humans and mice) [164].

It has been reported that BBR exhibits potent cytotoxicity in vitro, exhibiting a poten-
tial anticancer effect [165]. BBR has been demonstrated to have potent nucleic-acid-binding
activity, which is a key reason for inhibiting cell differentiation and inducing cycle arrest
and DNA damage [166,167]. In addition, there are similar targets in the anticancer and
neuroprotective effects of BBR, such as Akt, MAPKs, and Bcl-2 proteins, and the main
difference are in the dosage [168]. Consistently, long-term administration and intraperi-
toneal or intravenous injection of berberine could induce multiple toxic effects, including
neurotoxicity, immunotoxicity, phototoxicity, cardiotoxicity, and jaundice, and these toxic
effects are in dose- and time-dependent manners [161,162,169]. This evidence also suggests
that we may need safety measures with BBR, especially when administered intravenously
or intraperitoneally in clinical practices. The toxic mechanisms of BBR may be related to its
ability of directly interacting with DNA or inhibiting the presence of signaling pathways in
cells [161,162,169,170].

In the clinic, it has been reported that oral administration of BBR at a dose of 1.5 g/day
(500 mg per time for three times per day) for 13 weeks could result in potential gastrointesti-
nal toxicity (such as diarrhea, constipation, flatulence, and abdominal complaint) in patients
with type-2 diabetes, but no marked hepatotoxicity nor nephrotoxicity was detected [171].

Rad and colleagues systemically reviewed the toxic effects of BBR and Berberis vulgaris
extract [161]. More information can be found in this review.

5. Clinical Trials and Therapeutic Applications

Accumulated evidence from clinical trials underscores the wide-ranging therapeutic
applications of BBR. Among randomized clinical trials involving BBR and barberry (Berberis
vulgaris) in the treatment of different human diseases, the effects of reducing lipids and
improving insulin resistance are the most studied. Additionally, clinical investigations
have delved into its potential benefits in cardiovascular, anticancer, gastrointestinal, central
nervous system, and endocrine-related contexts. Importantly, oral administration of BBR
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has exhibited low toxicity and minimal side effects at standard doses, with occasional
mild gastrointestinal reactions observed in some patients [10]. A randomized clinical trial
involving 55 patients with acute ischemic stroke found that the effects of BBR combined
with atorvastatin (20 mg/day) were better than that of atorvastatin alone (20 mg/day) [172].
In another clinical trial, oral administration of BBR at a dose of 1 g/day (i.e., 0.5 g per time,
twice a day) for 16 weeks could effectively regulate the structure and function of the human
gut microbiota, and Bifidobacterium probiotics could further enhance the hypoglycemic effect
of BBR [173]. Li et al. found that oral BBR treatment could significantly reduce the serum
intima–media thickness (IMT) and IL-6 levels, reducing the degree of carotid atherosclerosis
to a certain extent and improving the neurological impairment and prognosis of acute
cerebral ischemic stroke (AIS) patients [174]. In a recent study, oral administration of BBR at
a dose of 0.5 g/day for 8 weeks significantly elevated blood DA levels in individuals with
hyperlipidemia, suggesting a potential benefit in treating Parkinson’s disease [37]. While
progress has been made in clinical trials exploring BBR’s potential for treating neurological
diseases, further research remains imperative.

6. Conclusions and Future Directions

Currently, there are multiple studies indicating that oral BBR supplementation could
provide potential neuroprotective effects against chronic neurodegenerative diseases or
acute brain injury caused by ischemia–reperfusion or drugs. However, the oral bioavailabil-
ity of BBR (less than 1%) is very limited [175]. It has been reported that the levels of BBR
in brain tissues are lower than that in other tissues after oral administration [176]. More
and more evidences suggest that gut microbiota may play an important role in various
neurological diseases, and it is also the main mediator of BBR’s neuroprotective effect, but
it still needs more clinical trials.

In conclusion, the published data indicate that the molecular mechanisms of BBR’s
neuroprotective effects may involve multiple targets, including antioxidation, anti-
inflammation, anti-apoptosis, anti-necroptosis, induction of autophagy, and modulation
of CYP450 enzyme activities and gut microbiota. In addition, to overcome the poor
bioavailability of BBR in clinical applications, recent advances in nanodrug delivery
systems, encompassing polymeric-based, graphene-based, silver, lipid-based, dendrimer-
based, magnetic mesoporous silica-based, and gold nanoparticles, have emerged as
pivotal strategies. For example, nasal brain drug delivery technology, driven by nanotech-
nology, is gaining popularity in enhancing the efficacy of BBR in treating neurological
diseases [177,178]. Future clinical studies are anticipated to elucidate the neuroprotective
mechanisms of BBR further while optimizing its clinical efficacy and minimizing potential
side effects. At this moment, while increasing the bioavailability of BBR, we may also need
to consider its safety more. Furthermore, exploring the direct regulatory effects of BBR
on CYP450 enzymes within the brain holds great clinical significance and represents an
important avenue for research in uncovering the neuroprotective mechanisms of BBR.
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