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Abstract: Mitochondria are specialized organelles, which serve as the “Power House” to generate
energy for maintaining heart function. These organelles contain various enzymes for the oxidation
of different substrates as well as the electron transport chain in the form of Complexes I to V for
producing ATP through the process of oxidative phosphorylation (OXPHOS). Several studies have
shown depressed OXPHOS activity due to defects in one or more components of the substrate
oxidation and electron transport systems which leads to the depletion of myocardial high-energy
phosphates (both creatine phosphate and ATP). Such changes in the mitochondria appear to be due
to the development of oxidative stress, inflammation, and Ca2+-handling abnormalities in the failing
heart. Although some investigations have failed to detect any changes in the OXPHOS activity in
the failing heart, such results appear to be due to a loss of Ca2+ during the mitochondrial isolation
procedure. There is ample evidence to suggest that mitochondrial Ca2+-overload occurs, which is
associated with impaired mitochondrial OXPHOS activity in the failing heart. The depression in
mitochondrial OXPHOS activity may also be due to the increased level of reactive oxygen species,
which are formed as a consequence of defects in the electron transport complexes in the failing
heart. Various metabolic interventions which promote the generation of ATP have been reported
to be beneficial for the therapy of heart failure. Accordingly, it is suggested that depression in
mitochondrial OXPHOS activity plays an important role in the development of heart failure.

Keywords: oxidative phosphorylation (OXPHOS); mitochondrial Ca2+-overload; mitochondrial
electron transport chain; heart failure; cardiac dysfunction

1. Introduction

The heart is the most active organ in the body and requires a significant amount of
energy in the form of adenosine triphosphate (ATP) to sustain its vital function continuously.
Despite having a limited ATP storage capacity, the heart has a remarkably efficient and
reliable energy production system facilitated by the abundant presence of mitochondria in
cardiomyocytes. Mitochondria, known as the “powerhouse” in the heart, perform a crucial
role in generating ATP through the process of oxidative phosphorylation (OXPHOS) [1–5].
Furthermore, these organelles are involved in the exchange and synthesis of metabolites,
calcium storage, the production of reactive oxygen species (ROS), as well as cell survival
and death signals, all of which are critical for regulating cardiac function in health and
disease. Additionally, mitochondria have been shown to participate in various signaling
pathways associated with the regulation of oxidative stress, inflammation, mitophagy,
calcium handling, and apoptosis, which are fundamental to inducing cardiac dysfunction
under diverse pathophysiological conditions [6–11]. Since mitochondria generate ATP
upon the oxidation of different substrates, their function is dependent upon the type
of substrate availability as well as the status of glycolysis, lipolysis and proteolysis in
cardiomyocytes [12–15]. In particular, these organelles regulate metabolic pathways such
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as the tricarboxylic acid cycle and the beta-oxidation of free fatty acids, which contribute
to the electron transport chain in the OXPHOS complex and impact processes like ROS
production, redox state, and apoptosis [16–19].

Mitochondrial abnormalities associated with cardiac dysfunction include disruption
in the process of energy generation, cation accumulation, ROS production, aldehydic load,
and intracellular signaling. Since mitochondria play a fundamental role in sustaining
cardiac contractility, the impairment of their function has been implicated in several car-
diovascular diseases, in which a decrease in ATP production has been shown to cause a
depletion of cardiac energy stores [19–29]. Risk factors of cardiovascular diseases, such
as ischemia/reperfusion injury, hypertension, ventricular hypertrophy, cardiomyopathies,
atherosclerosis, metabolic syndrome, and diabetic hyperglycemia, have been reported to
produce mitochondrial dysfunction [30–37]. The role of mitochondria in producing ROS is
critical because they function as redox messengers when generated within normal levels,
but excessive ROS production can lead to oxidative stress and ultimately result in cell
death. It has been indicated that oxidative stress, in addition to producing mitochondrial
dysfunction, can cause the increased production of pro-inflammatory cytokines and the
activation of fibroblasts in the extracellular matrix. These alterations result in interstitial
fibrosis and passive stiffness of the myocardium. However, extensive work is required to
establish the exact cause–effect relationship among myocardial oxidative stress, myocardial
inflammation and mitochondrial dysfunction during the development of heart failure.
Nonetheless, mitochondrial oxidative stress has been shown to increase Ca2+-influx, which
worsens cardiomyocyte relaxation and elevates the left ventricle filling pressure, along with
proteolytic damage to the heart [38–42]. The intrinsic compensatory mechanisms such as
the level of intracellular Ca2+ and antioxidant system that typically control the oxidation
of substrates and energy production in mitochondria also fail to offset the depletion of
myocardial energy stores during the development of cardiac dysfunction [43–46].

Considering the high energy demand of the cardiac excitation–contraction and re-
laxation cycle, patients with abnormalities in the mitochondrial OXPHOS are at a higher
risk of developing heart disease [34,35,44,47]. Different defects within the mitochondrial
OXPHOS system, which can arise due to genetic or environmental factors, have been
implicated in various cardiac disorders, including ischemia/reperfusion injury, hyperten-
sion, arrhythmias, cardiac hypertrophy, cardiomyopathies, and heart failure [3,30,35,36].
Thus, impaired OXPHOS plays a significant role in the onset of various cardiovascular
diseases, which can manifest differently depending on the underlying cause and stage of
heart disease [9,48–50]. Although abnormalities in mitochondrial OXPHOS have long been
observed in cases of heart failure and other cardiac pathologies, the underlying causes of
these abnormalities remain poorly understood. It is, therefore, the objective of this article
to provide a comprehensive overview of the impact of impaired mitochondrial OXPHOS
during the development and progression of heart failure as a consequence of various
pathological conditions. Several components of the mitochondrial OXPHOS system as well
as their functions in the heart will be described. In addition, some pharmacological and
metabolic interventions aimed at OXPHOS pathway defects as targets, which prevent or
treat heart failure and enhance patient survival, are also summarized.

2. Function of Mitochondrial OXPHOS in the Heart

Mitochondria are specialized organelles that feature two membranes and their own
DNA system. Their inner membrane, characterized by numerous infoldings (cristae), hosts
several proteins, including enzymes that facilitate mitochondrial OXPHOS. The control-
ling of this metabolic process depends on a variety of factors, including intrinsic kinetic
parameters and the regulation of various enzymes, the architecture network as well as
intermediate substrate concentrations under steady-state conditions [51,52]. OXPHOS
complexes [53,54], namely complex I (NADH/ubiquinone oxidoreductase), complex II
(succinate ubiquinone oxidoreductase), complex III (ubiquinol cytochrome c oxidoreduc-
tase), complex IV (cytochrome c oxidase), and complex V (ATP synthase) are located on the
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inner membrane [55–60]. These complexes, collectively known as the electron transport
chain, transfer electrons from donors generated by the tricarboxylic acid cycle or fatty
acid oxidation [61] for the generation of ATP. The nuclear and mitochondrial genomes
regulate these complexes, with mitochondrial genes playing a major role in assembling
the core complexes within the mitochondria. The cardiac cells need a lot of ATP and have
mitochondria occupying approximately 20–40% of their volume [62]. These organelles pro-
duce about 6 kg of ATP daily through OXPHOS-associated electron transport mechanisms
in the human heart [5]. In a normal heart, fatty acid, glucose, and a ketone body enter
cardiomyocytes and are transported into mitochondria in various forms [14,15,63]. These
are catabolized in the mitochondria to acetyl coenzyme A (acetyl-CoA) for entering the
tricarboxylic cycle and then undergo a series of redox reactions in the electron transport
chain. This process is associated with the production of NADH and FADH2, which are then
oxidized by NADH dehydrogenase and succinate dehydrogenase in the inner membrane.
OXPHOS complex I and complex II receive these electrons from the donors, after which
Coenzyme Q (CoQ) transports them to complex III [57,64,65]. Eventually, the electrons are
transferred to the hydrophilic heme protein cytochrome C and then to complex IV [57]. The
electron transport chain then creates a proton-motive force and, simultaneously, protons
are pumped into the mitochondrial intermembrane space against a concentration gradient
(∆pHm) [49,66].

The movement of electrons in the respiratory chain creates a negative charge inside
the mitochondrial matrix and is termed as mitochondrial membrane potential (∆Ψm) [67].
Protons then re-enter the mitochondrial matrix via complex V due to the proton gradient
to generate ATP from ADP [57]. Phosphocreatine functions as an energy buffer that facili-
tates intracellular ATP transfer, whereas the clusters of mitochondrial electron transport
complexes combine to form supercomplexes, which are crucial in regulating electron flow
within mitochondria [68–70]. It is noteworthy that the inner mitochondrial membrane
is mostly impenetrable to cations and small molecules, thus making proton pumping a
critical step in this conversion process [71]. During the OXPHOS process in mitochondria,
superoxide anions are produced by about 2% of electrons passing through the electron
transport chain in complexes I, II, and III [72,73], but these are rapidly altered or dismutated
by superoxide dismutase (MnSOD and CuZnSOD) to form hydrogen peroxide, which is
then broken down into water by antioxidant enzymes, including catalase, glutathione
peroxidase and peroxiredoxins [74–76]. The ROS signaling molecules are the byproducts
of oxygen metabolism and affect oxygen-sensing mechanisms like gene expression. It is
also pointed out that cardiolipin is a critical phospholipid which is pivotal in stabilizing
mitochondrial OXPHOS complexes and facilitating supercomplexes’ formation within the
electron transport chain and thus precisely regulating ATP production in the mitochon-
dria. The OXPHOS system complexes I-V and molecules like CoQ and cardiolipin work
together to ensure the optimal functioning of the mitochondrial energy-producing sys-
tem [77–80]. However, it is pointed out that in a study concerning the role of mitochondrial
supercomplexes in maintaining OXPHOS activity, Milenkovic and coworkers [81] failed
to demonstrate any change in the mitochondrial bioenergetic capacity under conditions
associated with a major loss of respirasomes.

3. Impact of Impaired OXPHOS in the Pathogenesis of Heart Failure
3.1. Bioenergetics and OXPHOS Capacity

Several studies on both human and animal heart disease models have revealed a
notable decline in the cellular ATP and phosphocreatine content, indicating an altered
energy metabolism in the heart. As a result, different abnormalities observed in heart
disease, including altered nutrient usage, reduced OXPHOS activity, increased oxidative
stress, and aberrant calcium handling and mitochondrial dynamics, lead to alterations
in energy metabolism, which ultimately result in the irreversible deterioration of heart
function [82–90]. An imbalance in the ATP supply triggered by pathological stimuli under
conditions such as left ventricular remodeling, chamber dilation, and hypertrophy can
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worsen the progression of heart disease. Such defects may increase the energy demand
while reducing the energy supply, leading to altered bioenergetics in the diseased heart.
These changes impair OXPHOS and associated activities, including the creatine kinase
energy-transfer mechanism, elevating free adenosine diphosphate (ADP) levels, and de-
creasing the ATP content during the later stages of heart disease [44,45,91,92]. Various
studies have referred to heart failure as an energy-deprived state characterized by a decline
in ATP production and driven mainly by impaired OXPHOS. The appropriate functioning
of the heart relies heavily on the efficient mitochondrial oxidative metabolism to maintain
ATP production. Thus, any malfunction or disruption in the role of OXPHOS electron
transport chain complexes for the production of energy in mitochondria may lead to an
imbalance in cardiac cell metabolism.

In the diseased heart, varying degrees of changes in substrate utilization, a reduc-
tion in the electron transport chain activity, depression in both ATP and phosphocreatine
content, and attenuation in the rate of ATP transfer to phosphocreatine have been ob-
served [93]. Mitochondrial dysfunction enhances ROS levels through electron transport
chain-mediated ROS production due to the defective regeneration of NADPH and the
excessive levels of ROS are known to cause detrimental effects in the myocardium. These
ROS molecules are known to alter proteins, DNA, and lipids, leading to oxidative damage
in the heart [37,72,94–96]. Additionally, an overload of ROS can result in the abnormal
opening of the mPTP, releasing detrimental substances and leading to the swelling of the
mitochondria, ruptured membranes, and triggering inflammation, apoptosis, and cell dam-
age [97,98]. Furthermore, an overabundance of ROS can deplete the intracellular redox pool,
impair cellular Ca2+ handling, cation channel activities, and ROS-mediated redox signaling
pathways [99–101]. Although mitochondrial ROS signaling is important for the regula-
tion of the oxidative metabolism, muscle contraction, and calcium transport [102–105],
an imbalance between the production of ROS and the endogenous antioxidant system
has been shown to produce oxidative stress. In fact, mitochondrial dysfunction increases
oxidative stress through alterations in the tricarboxylic acid cycle and ATP synthase as well
as cardiolipin degradation and mitochondrial electron leakage, which thus is considered
to cause significant damage to the myocardium depending on the type and stage of heart
disease [69]. Furthermore, heightened levels of mitochondrial oxidative stress markers
have been reported to produce increased amount of oxidants in the electron transport chain
at complex I in the diseased heart [106,107].

The extent of mitochondrial damage has been suggested as a key factor when de-
termining myocardial injury due to myocardial infarction during progression to heart
failure [36]. It is pointed out that acute changes such as cardiogenic shock and ischemia-
reperfusion injury in myocardial infarction should be differentiated from chronic alterations
associated with pathological hypertrophy and cardiac remodeling. Ischemia-reperfusion
injury, as a consequence of coronary heart disease, dramatically increases mitochondrial
permeability leading to the dissipation of electron and proton gradients, the dysregulation
of mitochondrial calcium homeostasis, and the release of superoxide radicals which lead
to myocardial cell death [108]. Furthermore, mitochondrial supercomplexes lose their
integrity as the electron transport chain subunits degrade due to ischemia/reperfusion
injury, leading to the impairment of mitochondrial function [109]. It was observed that
a decrease in the complex I subunit and an increase in the complex II subunits occur,
suggesting a redirection of the electron input through complex II [110]. During the reper-
fusion phase of the ischemia-reperfusion injury, an abrupt elevation in ROS levels can
induce myocardial cell damage resulting in cellular death through necrosis [111]. The
overproduction of ROS triggered by ischemia as well as ischemia-reperfusion has also been
considered to initiate apoptosis in cardiac cells, which is a significant contributing factor
for the development of heart failure [112]. It is noteworthy that mitochondrial respiration
is a crucial determinant of the functional status of the OXPHOS system [113–115]. A study
on dogs with chronic heart failure induced by intracoronary embolization revealed that
the mitochondrial state-3 respiration and mitochondrial membrane potential in the failing
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heart were lower than those in the healthy heart. This decline in oxygen consumption by
mitochondria and reductions in the membrane potential were associated with alterations
in the OXPHOS complexes. In fact, dysfunction in the mitochondrial tricarboxylic acid
cycle was observed to be closely linked to heart failure [116,117]. Another study involving
myocardial infarction in mice demonstrated that chronic heart failure causes a decrease
in the mitochondrial OXPHOS capacity due to decreased levels of succinyl-CoA in the
myocardium. Furthermore, administering 5-aminolevulinic acid to infarcted mice was
found to restore the succinyl-CoA levels and OXPHOS capacity by inducing excessive heme
synthesis, potentially attenuating the progression of heart failure [118]. A recent study
with cardiac tissue samples from heart failure patients has also revealed a dysfunction in
succinyl-CoA metabolism [119].

3.2. Genetic Regulation of OXPHOS

It is pointed out that the DNA damage response and RNA polymerase II pausing
pathway are significantly downregulated in failing human hearts, as well as primate and
murine hearts, following myocardial infarction [120]. In a mouse model, the cardiac-specific
inactivation of LARP7 (La ribonucleoprotein domain family member 7) resulted in de-
creased oxidative phosphorylation, mitochondrial biogenesis impairment and elevated
oxidative stress, ultimately leading to heart failure. These irregularities, as well as the
reduced deacetylase activity of SIRT1 (silent mating-type information regulation 2 homolog
1), which is responsible for the transcription of genes related to the mitochondrial OXPHOS
system and energy metabolism, were shown to reduce cardiac function. The restoration of
LARP7 expression in the infarcted heart through adenovirus-mediated LARP7 expression
or by a small molecule ATM inhibitor has been shown to improve the function of the injured
heart [65,121]. Decreased PGC1 (Peroxisomal proliferator-activated receptor gamma coac-
tivator 1)-α levels and reduced nuclear genome-encoded OXPHOS complexes have been
observed in animal models of heart failure [122,123]. Since heart failure with a preserved
ejection fraction (HFpEF) and heart failure with a reduced ejection fraction (HFrEF) are
metabolically distinct, changes in the OXPHOS gene transcripts have been shown to charac-
terize these differences. The transcriptome analysis of ventricular tissue from patients with
HFpEF and HFrEF has revealed the involvement of elevated genes in OXPHOS [124] and
impaired complex1-mediated mitochondrial respiration in permeabilized cardiac fibers in
the HFpEF condition [125]. Furthermore, the degradation of cardiolipin due to oxidative
stress, a significant increase in mitochondrial electron leakage, and reduced levels of CoQ
have been observed in patients and animals with heart failure, indicating malfunction in
the electron transport chain and oxidative phosphorylation’s ability to produce sufficient
ATP in the failing heart [126,127]. A sufficient intake of linoleic acid in heart failure has
been demonstrated to increase cardiolipin levels, improve mitochondrial OXPHOS activity,
and enhance left ventricular function [128].

It may be noted that the OXPHOS complexes are encoded by both the nuclear and
mitochondrial genomes as various studies on gene expression have revealed that individu-
als afflicted with heart disease possess reduced levels of mitochondrial metabolic genes
and proteins. In this regard, mutations in genes regulating mitochondrial proteins were
found to adversely impact energy production, decrease mitochondrial function, increase
ROS production, and result in the development of cardiomyopathy [129]. Patients diag-
nosed with dilated cardiomyopathy also exhibit significant alterations in their metabolic
pathways, specifically, the enzymes related to OXPHOS and the tricarboxylic acid cycle
were down-regulated for complex III at both transcriptional and proteomic levels. Further-
more, the activities of complex III and IV in the left ventricular tissue from these patients
were depressed [129–131]. It has also been shown that dilated hypertrophy influences
energy generation by the mitochondria, which can alter the transcript levels of nuclear
DNA- and mitochondrial DNA (mtDNA)-encoded mitochondrial genes and result in the
reduced production of new mitochondria, impaired mitochondrial OXPHOS, and increased
ROS production [132]. On the other hand, hypertrophic cardiomyopathy was found to
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be associated with cytochrome C deficiency leading to death [132,133]. Mitochondrial
defects in the electron transport chain have also been implicated in the pathogenesis of dia-
betic cardiomyopathy [134]. Since the dilated hypertrophy, hypertrophic cardiomyopathy,
and diabetic cardiomyopathy have different oxidative stress patterns [135,136], it is likely
that differences in the profiles of mitochondrial abnormalities may be a consequence of
differences in ROS production in these pathological conditions.

3.3. Structural Changes in Mitochondrial Network

Alterations in the mitochondrial ultrastructure and function, including reductions in
the activities of respiratory chain enzymes (complexes I to IV) and capacity for OXPHOS,
are commonly observed in patients with heart failure, although these may not manifest
until the later stages of the disease. In this regard, chronic hypertrophy without systolic
dysfunction has been shown to be associated with normal or improved mitochondrial
function in both animals and humans [130,137–141]. On the other hand, impaired OXPHOS
in adverse ventricular remodeling due to volume overload was observed before any signs
of systolic dysfunction or decompensation were detected [142]. Some studies have shown
that OXPHOS rates tend to increase during the early stages of cardiac hypertrophy, but
decline as the condition progresses towards heart failure [26,143]. A diminished expression
of OXPHOS components was reported to result in a decline in mitochondrial respiration in
heart failure and cardiomyopathies [82,144]. These changes in mitochondrial function may
be a consequence of oxidative stress, which in heart failure arises from various sources of
ROS such as the activation of NADPH and monoamine oxidase as well as mitochondrial
complexes I, II, and III, which are considered to play a major role in ROS production.
Compared to healthy hearts, cardiomyocytes exhibit a significant increase in ROS levels
within the mitochondrial matrix in failing hearts [116,117,145]. The interaction between a
small amount of ROS and mitochondrial components leads to mitochondrial dysfunction,
which produces more ROS, and further damages the mitochondria, impairs contractile
dysfunction, and worsens heart failure [146,147]. A marked increase in oxidative stress in
heart failure may also be a consequence of the depletion of different antioxidant enzymes
and antioxidants in the failing heart [148].

Malfunctions in the respiratory chain can initiate oxidative stress and prompt the emer-
gence of cardiac hypertrophy. The loss of mitochondrial ribosomal protein S5 (MRPS5/uS5m)
in the developing heart leads to cardiac defects and embryonic lethality, while postnatal loss
impairs mitochondrial protein translation and OXPHOS during the development of cardiac
hypertrophy and heart failure [149]. Since the structural and functional changes in the
damaged mitochondrial network are critical, both fusion and fission processes are required
in distributing protein and DNA [150,151]. The disruption of these processes can lead to
mitochondrial damage and cell death. It should be pointed out that fusion is necessary
for maintaining OXPHOS and energy levels, protecting against oxidizing molecules, and
preserving the mitochondrial integrity [152,153]. Fusion proteins, Mfn-1, Mfn-2, and OPA-1
are essential for preserving mitochondrial integrity, while their suppression can lead to
dilated cardiomyopathy and contractile abnormalities [154], and increase apoptosis and
the fragmentation of the mitochondria [155–159]. Their deletion in a mouse heart was
observed to result in an abnormal mitochondrial morphology and mitochondrial fragmen-
tation leading to ventricular wall thickening and an increase in cardiac mass, accompanied
by eccentric hypertrophy [160]. On the other hand, excessive fission leads to a loss of
mitochondrial mass, impaired OXPHOS and ATP deficits, permeabilization, cytochrome C
release, and apoptosis [161]. The deficiency of the fission protein, dynamin-related protein
1 (Drp1), which is highly expressed in the heart, exhibited lethal dilated cardiomyopathy
with ventricular wall thinning and a reduced ejection fraction [162].
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4. Stage- and Type-Dependent Changes in OXPHOS in Heart Failure
4.1. General Considerations

Various studies have found that defects in the electron transport complexes and other
components of the mitochondrial OXPHOS system may vary depending on the cause
(type) and severity (stage) of heart failure. When OXPHOS is impaired, it can result in
the irregular production of ROS, which in turn leads to inflammation and oxidative stress,
contributing to a range of cardiac abnormalities, such as cardiac hypertrophy, arrhythmias,
and cardiomyopathy during the development of heart failure [26,27,48,49,163]. Reduced
mitochondrial respiratory rates and changes in the OXPHOS function may signal the be-
ginning of heart failure. These alterations commonly involve complex I-linked respiration,
fatty acid oxidation, and the OXPHOS system in human hearts [113,114]. Further, it has
been revealed that lower ADP-dependent respiratory rates are observed in dilated car-
diomyopathy, pressure overload, or myocardial infarction [82,83,164,165]. It is also pointed
out that some investigators have failed to detect any changes in heart failure [141], whereas
others have demonstrated a depression in the OXPHOS activity at early stages [114]. It
appears that changes in mitochondrial OXPHOS activities are dependent upon the type
and stage of heart failure.

4.2. Cardiomyopathic Hamster Heart Failure

Since the patterns of oxidative stress have been shown to be different with respect
to acute heart failure and chronic heart failure [166,167], it is likely that alterations in
mitochondrial OXPHOS may also be dependent upon the stage of heart failure. In order to
gain some information in this regard, we employed cardiomyopathic hamsters (UM-X7.1)
for determining the mitochondrial function at various stages of heart failure [24,163]. On the
basis of clinical observations and general characteristics such as the amount of abdominal
fluid accumulation, lung and liver congestion, as well as the heart-to-body weight ratio,
different age groups of cardiomyopathic animals were considered at prefailure, early
failure, moderate failure, and severe stages of heart failure [24,163]. It can be seen from
the data in Table 1 that there was a progressive depression in the high-energy phosphates
(both creatine phosphate and ATP) content at early, moderate, and severe stages of heart
failure without any significant change at the prefailure stage. However, when the OXPHOS
activity, by using pyruvate-malate as a substrate, was examined in the mitochondria
isolated from the hearts of cardiomyopathic hamsters at different stages of heart failure,
the phosphorylation rate was depressed (without any changes in ADP/O ratio) only at the
severe stages of heart failure (Figure 1). The depressed OXPHOS activity and respiratory
rate at state 3 in mitochondrial preparations or whole-heart homogenates were also seen by
using glutamate- pyruvate or glutamate alone as substrates at the severe stages of heart
failure [163] in cardiomyopathic hamsters. Mitochondrial Ca2+ uptake activity, unlike
mitochondrial ATPase activity, was also found to be decreased at the severe stage of heart
failure in cardiomyopathic hamsters (Figure 2). Although these observations indicate
a generalized defect in the mitochondrial function at severe stages of heart failure, the
observed depression in the high-energy phosphate stores at early and moderate stages of
heart failure cannot be explained on the basis of such changes in energy production [163].
It should be mentioned that the energy utilization systems due to myofibrillar ATPase and
membrane ATPases at different stages of heart failure were either unaltered or depressed
in this experimental model [24,163].
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Table 1. Creatine phosphate (CP) and adenosine triphosphate (ATP) content in the control and
cardiomyopathic hamster (UM- X7.1) hearts at different stages of heart failure.

Age Group Stage of Heart Failure CP
(µmol Phosphate/g Dry Heart wt)

ATP
(µmol Phosphate/g Dry Heart wt)

90 to 280 days Control 55.4 ± 2.2 22.8 ± 1.8
90 to 100 days Prefailure 50.3 ± 2.0 21.2 ± 1.9

120 to 160 days Early Failure 41.1 ± 1.2 * 18.6 ± 2.0
160 to 200 days Moderate Failure 30.4 ± 1.0 * 16.7 ± 1.5 *
200 to 280 days Severe Failure 9.7 ± 1.4 * 12.6 ± 1.2 *

Each value for cardiomyopathic hamsters is based on the data in our article [24,163] and is a mean ± SE of four to
six experiments, except the values for the corresponding age-matched control batch were grouped together as the
values for these age groups were not significantly different (p > 0.05) from each other. The heart failure stages in
cardiomyopathic hamsters of different age groups were determined on the basis of the formation of ascites, lung
wt, and heart/ body ratios as these parameters were increased progressively, whereas liver wt was significantly
increased in animals at moderate and severe stages of heart failure [24,163]. * Significantly different (p < 0.05)
from corresponding control values.
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Figure 1. Oxidative phosphorylation rate (B) and ADP:O ratio (A) in by heart mitochondria in
cardiomyopathic hamsters (UM-X7.1) at different stages of congestive heart failure. Data are based
on the results in our articles [24,163]. The isolation of mitochondria was carried out using 10 mM
ethylenediaminetetra-acetic acid (EDTA) [163]. Each value is mean of ± SE of four to six experiments.
Mitochondria were isolated by pooling 4 hearts for each experiment. The substrate employed was
1.5 mM pyruvate plus 0.3 nM malate. Different groups of cardimyopathyic hamsters were selected
on the basis of their age: Prefailure (90 to 100 days), Early failure (120 to 160 days), Moderate failure
(160 to 200 days), and Severe failure (200 to 280 days). Age-matched control hamsters were used for
each group. The depression in phosphorylation rate at severe stages of heart failure was due to a
significant decrease in the state 3 respiratory rate without any changes in the state 4 respiration [163].
* p < 0.05. ADP, adenosine diphosphate.
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(UM-X7.1) at different stages of congestive heart failure. Data are based on the results in our
articles [24,163]. It is pointed out that mitochondria were isolated using a medium containing
10 mM ethylenediaminetetra-acetic acid (EDTA) [163]. Each value is mean of ± SE of four to six
experiments. Mitochondria were isolated by pooling 4 hearts for each experiment. Different groups
of cardimyopathyic hamsters were selected on the basis of their age: Prefailure (90 to 100 days), Early
failure (120 to 160 days), Moderate failure (160 to 200 days), and Severe failure (200 to 280 days).
Age-matched control hamsters were used for each group. * p < 0.05.

Our inability to demonstrate depression mitochondrial OXPHOS activity at early and
moderate stages of heart failure was found to be due to a loss of Ca2+ from the mitochondria
during the process of isolation because the medium employed for this procedure contained
ethylenediamine-tetra acetic acid (EDTA). It should also be mentioned that the mitochon-
drial Ca2+ content (About 10 umol/mg protein), in preparations obtained from the failing
hearts were not different from that of the controls [24]. However, when the mitochondria
were prepared using an isolation medium in the absence of EDTA, the mitochondrial
Ca2+ content in the failing hearts were 5 to 7 times higher than that in the control and
mitochondrial OXPHOS activity was significantly depressed at the early, moderate, and
severe stages of heart failure [24]. These results can be seen to explain the variable defects
in mitochondrial OXPHOS activity in heart failure as reported by several investigators.
Furthermore, these observations also support the role of mitochondrial Ca2+-overload in
depressing OXPHOS activity in these organelles [23]. Since ROS are formed due to defects
in mitochondrial electron transport in disease hearts [117,145], it is likely that depressed
OXPHOS activity observed in cardiomyopathic hamsters at severe stages of heart failure
may also be partially due to changes in the electron transport chain complexes. In view
of the findings that oxidative stress, myocardial inflammation, and Ca2+-handling abnor-
malities are generally associated with cardiac dysfunction [86,103,104,137], it is proposed
that these pathogenic factors may serve as mechanisms for inducing mitochondrial Ca2+-
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overload and the subsequent depression of mitochondrial OXPHOS activity during the
development of heart failure (Figure 3). However, it is pointed out that the earliest changes
in the mitochondria may be of a compensatory nature for removing cellular stress due to
cardiac inflammation and alterations in the substrate metabolism whereas delayed changes
including depressed mitochondrial OXPHOS in heart failure may be of an adaptive nature
for lowering the ROS production.

Antioxidants 2023, 12, x FOR PEER REVIEW 11 of 21 

 

 
Figure 3. Mechanisms of mitochondrial dysfunction in the pathogenesis of heart failure. 

5. Mitochondrial Targets for Potential Therapeutic Interventions 
Since the heart depends heavily on mitochondrial OXPHOS, which accounts for 90% 

of cellular ATP production, strategies that target defects in this pathway are essential for 
preserving energy production, enhancing cardiac function, and the survival of heart fail-
ure patients. Several therapeutic approaches in this regard involve targeting the mito-
chondria within the failing heart to modulate the organization of the respiratory com-
plexes into supercomplexes for oxidative phosphorylation [168–176]. In coronary artery 
disease patients, the activities of complexes I, II, and III are depressed in the failing heart, 
despite an upregulation in protein expression, indicating a functional deficit in OXPHOS-
related proteins [177]. Empagliflozin has shown promise as a treatment option to improve 
cardiac function by increasing OXPHOS, enhancing glucose and fatty acid oxidation as 
well as promoting cardiac efficiency [178–180]. Furthermore, elamipretide associated with 
cardiolipin has been observed to restore mitochondrial bioenergetics [181] because mito-
chondrial cardiolipin is essential for the proper assembly and stability of the electron 
transport chain to ensure the function of OXPHOS [182]. Studies in animal models of 
chronic heart failure have shown that elamipretide elicited a normalization of mitochon-
drial function as this agent improved respiration, restored the membrane potential, re-
duced ROS formation, and enhanced the maximum rate of ATP synthesis. Since the mu-
tation of ribosomal protein S5 (MRPS5/uS5m) in the mitochondria has been observed to 
result in impaired mitochondrial protein translation and a depressed level of K1f15 pro-
tein in the OXPHOS pathway, exogenous Klf15 was found to rescue defects and restore 
balance to the cardiac metabolome [149]. The impairment of OXPHOS leads to a decline 
in the function of complexes I, II, and III in individuals with coronary artery disease and 

Figure 3. Mechanisms of mitochondrial dysfunction in the pathogenesis of heart failure.

5. Mitochondrial Targets for Potential Therapeutic Interventions

Since the heart depends heavily on mitochondrial OXPHOS, which accounts for 90%
of cellular ATP production, strategies that target defects in this pathway are essential for
preserving energy production, enhancing cardiac function, and the survival of heart failure
patients. Several therapeutic approaches in this regard involve targeting the mitochondria
within the failing heart to modulate the organization of the respiratory complexes into
supercomplexes for oxidative phosphorylation [168–176]. In coronary artery disease pa-
tients, the activities of complexes I, II, and III are depressed in the failing heart, despite
an upregulation in protein expression, indicating a functional deficit in OXPHOS-related
proteins [177]. Empagliflozin has shown promise as a treatment option to improve cardiac
function by increasing OXPHOS, enhancing glucose and fatty acid oxidation as well as pro-
moting cardiac efficiency [178–180]. Furthermore, elamipretide associated with cardiolipin
has been observed to restore mitochondrial bioenergetics [181] because mitochondrial
cardiolipin is essential for the proper assembly and stability of the electron transport chain
to ensure the function of OXPHOS [182]. Studies in animal models of chronic heart failure
have shown that elamipretide elicited a normalization of mitochondrial function as this
agent improved respiration, restored the membrane potential, reduced ROS formation, and
enhanced the maximum rate of ATP synthesis. Since the mutation of ribosomal protein S5
(MRPS5/uS5m) in the mitochondria has been observed to result in impaired mitochondrial
protein translation and a depressed level of K1f15 protein in the OXPHOS pathway, exoge-
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nous Klf15 was found to rescue defects and restore balance to the cardiac metabolome [149].
The impairment of OXPHOS leads to a decline in the function of complexes I, II, and III
in individuals with coronary artery disease and those with failing hearts [177,183]. The
overexpression of PFK (phosphofructokinase) or the administration of PFKM has been
demonstrated to inhibit doxorubicin-induced cardiotoxicity by enhancing glycolysis and
the OXPHOS system, and thus PFKM may be considered for developing new treatment for
heart failure [184].

There is also experimental evidence to suggest sodium-glucose cotransporter-2 (SGLT2)
inhibitors restore the balance between glycolysis and OXPHOS [180], providing significant
cardiac protection to patients suffering from heart failure [185]. On the other hand, met-
formin, which is known to promote glucose uptake and exert beneficial actions in various
non-diabetic malignant diseases [186,187], did not show conclusive beneficial effects in
non-diabetic patients with coronary heart disease [188]. Nonetheless, it is noteworthy that
the mitochondrial antioxidant system can be selectively activated to prevent or treat mito-
chondrial dysfunction and, in this context, coenzyme Q10, a natural antioxidant, is known
to activate the mitochondrial antioxidant system. It is pointed out that a CoQ10 deficiency
has been linked to electron transport chain dysfunction and oral supplementation has
been reported to reverse this trend [189–192] as CoQ10 supplementation was observed to
improve cardiac function, reduce cardiovascular mortality, and enhance survival rates in
heart failure [193]. MitoQ, a compound that mimics Coenzyme Q10, has also shown to be
highly effective in protecting against oxidative damage. It is capable of preventing lipid
peroxidation and the mitochondrial damage caused by superoxide radicals [194,195]. The
therapeutic benefits of MitoQ have been demonstrated in various animals and humans
with diabetes, hypertension, and inflammation, in addition to offering protection against
oxidative stress and improving the integrity of the cardiac mitochondrial network in heart
failure [196–198]. Thus, it would be worthwhile to undertake a large double-blind clinical
trial to establish the beneficial effects of MitoQ in heart failure. It may also be noted that
the inhibition of Drp1 (dynamin-related protein 1) maintains mitochondrial integrity and
improves OXPHOS, playing a cardioprotective role during cardiac stress circumstances
such as ischemia-reperfusion injury and cardiac arrest in cells by hindering excessive fis-
sion at the onset of reperfusion in animal models [199–202]. Thus, the development of
appropriate inhibitors of Drp1 may prove valuable for preserving mitochondrial function
in heart failure.

6. Conclusions and Perspectives

By virtue of their ability to generate energy as ATP, mitochondria play an important
role in maintaining the cardiac structure and function. These organelles produce ATP upon
the oxidation of different substrates as well as the OXPHOS system, involving a specialized
electron transport chain organized in the form of complexes I to V. While some ATP is
transformed into creatine phosphate for the storage of energy in the myocardium, most
of ATP is utilized for the contraction–relaxation cycle and maintaining cation homeostasis
by myofibrillar ATPase, as well as sarcoplasmic reticulum and sarcolemmal ATPases in
cardiomyocytes, respectively. Thus any abnormality in the process of substrate oxidation or
any component of the mitochondrial OXPHOS system can be seen to decrease high-energy
phosphate stores in the myocardium, resulting in cardiac dysfunction and progression
to heart failure. Such a view is not intended to de-emphasize the contribution of other
subcellular and molecular defects in the pathogenesis for the development of heart failure.

It is noteworthy that mitochondria have a remarkable ability to accumulate Ca2+

and serve as a Ca2+-sink to maintain cellular integrity. However, several studies have
shown that mitochondrial Ca2+-overload is one of the major causative factors for inducing
defects in the OXPHOS system under a wide variety of pathological conditions. In fact,
defects in the sarcoplasmic and sarcolemmal Ca2+-transport systems in the failing hearts
have been shown to elicit mitochondrial Ca2+-overload. Furthermore, it should be noted
that mitochondrial dysfunction is also associated with impaired electron transport for the
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production of ROS due to changes in any one or all of the complexes in the mitochondrial
electron transport chain for the induction of abnormalities in OXPHOS. In addition, the
activation of enzymes such as NADPH and monoamine oxidase by vasoactive hormones,
which become accumulated in the mitochondria during the development of heart failure,
has also been reported to generate ROS. Both mitochondrial Ca2+ and ROS not only depress
the antioxidant reserve within mitochondria and open mitochondrial pores for the leakage
of cytotoxic substances such as cytochrome C, but also provide signals for the development
of apoptosis, cellular damage, and subsequent heart failure.

In view of the role of mitochondrial Ca2+-overload and mitochondrial ROS generation
for depressing the OXPHOS system, it is evident that mitochondrial dysfunction plays a
critical role in the depletion of myocardial high-energy phosphate stores during the devel-
opment of heart failure. Accordingly, several pharmacological and metabolic interventions,
which promote the mitochondrial OXPHOS function, have been reported to produce bene-
ficial effects in heart failure. Likewise, different antioxidants, which prevent the generation
and effectiveness of mitochondrial ROS, have been shown to delay the progression of heart
failure. Thus, there is real challenge to develop specific and safe metabolic and antioxidants
interventions (either alone or in combination) targeting the mitochondrial OXPHOS system
for the improved therapy of heart failure.
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