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Abstract: The intestinal tract is a target organ for Deoxynivalenol (DON) absorption and toxicity.
Mitochondrial homeostasis imbalance is the gut toxicity mechanism of DON. Lycopene (LYC) has
intestinal protective effects and can maintain mitochondrial homeostasis in response to various dan-
ger signals. The purpose of this study was to explore the protective effect of LYC on DON-induced
IPEC-J2 cells damage. These results showed that DON exposure induced an increase in the levels
of malondialdehyde and reactive oxygen species (ROS) in IPEC-J2 cells. DON impaired IPEC-J2
cell barrier function and caused mitochondrial dysfunction by inducing mitochondrial permeability
transition pore (MPTP) opening, mitochondrial membrane potential (MMP) reducing, destroying
mitochondrial fission factors, mitochondrial fusion factors, and mitophagy factors expression. How-
ever, adding LYC can reduce the toxic effects of DON-induced IPEC-J2 cells and decrease cellular
oxidative stress, functional damage, mitochondrial dynamics imbalance, and mitophagy processes.
In conclusion, LYC maintains mitochondrial homeostasis to counteract the IPEC-J2 cells’ toxicity
of DON.

Keywords: Deoxynivalenol; mitochondrial homeostasis; Lycopene; IPEC-J2 cells

1. Introduction

The food safety threat caused by mycotoxin contamination in natural grains has at-
tracted wide attention. Deoxynivalenol (DON), produced by Fusarium, also known as
“vomitxin” [1], is widely present in crops, and as one of the most common and harmful
mycotoxins in agriculture, has seriously affected human and animal food security [2]. It
has been found that 60–70% of wheat is contaminated by DON in the world [3]. DON can
accumulate in animal-derived foods via the food chain enrichment effect, seriously endan-
gering human and animal health [2]. DON has toxic effects on the liver, brain, and central
nervous system, which can cause diarrhea, anorexia, vomiting, growth retardation, and
immunotoxicity [4]. Due to the strong toxic effect of DON, the wide range of contamination
has drawn great attention [5].

The intestinal tract, as the first barrier against mycotoxins, is also the main toxic target
of DON [6]. The research focused on the relationship between DON and intestinal health
has been fruitful in recent years. Studies have found that DON can damage intestinal
mucosal epithelium, reduce intestinal villi height, villi height/crypt depth ratio, number of
cup cells and lymphocytes, and further disrupt intestinal microbiota homeostasis [7]. The
DON-contaminated feed can cause damage to the intestinal barrier of piglets and ultimately
lead to growth inhibition [8]. In addition, DON also has extremely strong cytotoxicity,
which can inhibit the formation of proteins and ribosomal nucleotides, induce oxidative
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stress in the endoplasmic reticulum, thus induce cell apoptosis, and ultimately destroy the
homeostasis of the intestinal epithelium [9]. There are reports that DON can not only lead
to inflammation and apoptosis of intestinal epithelial cells but also destroy the integrity
of the intestinal barrier and cause intestinal damage [10]. These results indicated that
DON has severe intestinal toxicity, and it is urgent to find out the key targets of the toxic
mechanism of DON for the development of therapeutic drugs.

Mitochondria are one of the critical organelles that produce energy and coordinate
the metabolism in cells [11]. Mitochondria act as a crucial part of the realization of various
intestinal functions and the protective effect of the intestinal barrier. The tight connec-
tions formation is highly energy-dependent in the gut, so mitochondria are crucial for
facilitating the formation of tight connections [12]. The microvilli structure derived by
intestinal epithelial cell differentiation is very important for nutrient absorption, which is
maintained by mitochondrial biogenesis. Abnormal mitochondrial biogenesis will affect
the differentiation of intestinal epithelial cells, break intestinal homeostasis, and even in-
duce cell death [13]. Mitochondrial oxidative stress has been identified as a key driver of
intestinal diseases [14]. In addition, Studies have found that Aloe vera gel can protect the
intestinal barrier by reducing the excessive accumulation of reactive oxygen species (ROS)
controlled by mitochondria and maintaining mitochondrial function [15]. Mitochondrial
quality control plays a key and important role in preserving intestinal health. Impaired
mitochondrial quality control can lead to disrupted intestinal homeostasis and further
damage to the intestinal barrier permeability [16]. Mitochondrial homeostasis imbalance
has been viewed as the key intestinal dysfunction mechanism induced via DON. Therefore,
further exploring substances that can maintain mitochondrial homeostasis may become an
effective method and potential therapeutic drug for antagonizing the enterotoxicity DON.

Lycopene (LYC) is a carotenoid that is widely found in tomatoes, papaya, watermelon,
pomegranate, pink grapefruit, and other red foods and fruits [17]. Due to the polyunsatu-
rated bond structure of LYC, LYC can alleviate intestinal barrier disorders and maintain
intestinal health via its antioxidant and anti-inflammatory properties [18]. LYC can be
used as an adjunctive medication in the treatment of colorectal cancer and colon can-
cer [19]. Current studies found that LYC can reduce mitochondrial damage by maintaining
mitochondrial redox balance homeostasis, protecting mitochondrial morphological struc-
ture, and regulating mitophagy and mitochondrial quality control system, thus achieving
the therapeutic effect and a promising effect on protecting cell function [20]. However,
whether LYC can decrease mitochondrial damage and maintain mitochondrial homeostasis
to mitigate intestinal toxicity caused by DON is unknown.

In this study, the protective effect of LYC on the mitochondrial dysfunction induced
using DON was further investigated, and the protective mechanism of LYC on IPEC-J2
cells was elucidated, which offered a new direction for the treatment of mycotoxins and the
in-depth study of mitochondrial homeostasis.

2. Materials and Methods
2.1. Cell Culture and Treatment

DMEM, 15% FBS, 1% penicillin-streptomycin, and 1% glutamine were mixed to supply
the culture environment to IPEC-J2 cells. The IPEC-J2 cell, originally isolated from the
mid-jejunum of a neonatal unsuckled piglet, was purchased from Tongpai Biotechnology
Co., Ltd. (Shanghai, China). DON was purchased from Pribolab (MSS1011; Qingdao,
China), and LYC was purchased from Weikeqi Biological Technology Co., Ltd. (502-65-8;
Chengdu, China). DON and LYC were first dissolved in dimethyl sulfoxide (DMSO) and
then further diluted in the cell culture medium. The DMSO amount in the culture medium
did not exceed 0.1% (v/v), a concentration that did not affect the assays (results were similar
to the application of a vehicle-free control medium). Vehicle-free control medium was
used as control. According to the experiment requirement, the cells were incubated in cell
culture dishes and well plates. The cells were inoculated into different sizes of culture
vessels and then cultured in a humidified incubator (37 ◦C, 5% CO2).
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2.2. Cell Viability Assay

Using CCK-8 to detect cell viability and the detailed operation steps were following kit
instructions. For the DON experiment alone, the cells were inoculated into a 96-well plate
with an initial density of 2 × 104 cells per well. Then, the cells were treated with LYC at
concentrations of 0, 10, 20, 30, 40, 50, 60, 70, 80, 90, and 100 µg/mL. The phosphate-buffered
saline (PBS) was filled the hole at the edge to prevent the cell medium from evaporating.
After incubating at 37 ◦C for 24 h, added CCK-8 to each well for 1 h, and then the Infinite
M200 FA plate reader (TECAN, Männedorf, Switzerland) was used to measure cell viability.

For the DON + LYC experiment, the cells with an initial density of 2 × 104 cells per
well were inoculated into a 96-well plate, and then LYC with concentrations of 0, 10, 20,
30, 40, 50, 60, 70, 80, 90, 100 µg/mL was added together with DON to the cells which
concentration was based on a previous study [21]. After 24 h of cell culture, CCK-8 was
added to each wall for 1 h, and then the Infinite M200 FA plate reader was used to measure
cell viability.

2.3. Malondialdehyde (MDA) Assay

The content of MDA in cells was determined according to the Malondialdehyde
Microplate Assay Kit (Solarbio Institute of Biotechnology, Beijing, China). Simply, an initial
density of 2 × 105 cells per well was inoculated into a 6-well plate. Once they reached
about 80 percent confluence, the cells were divided into four groups: CON group (vehicle-
free control medium), DON group (148.16 ng /mL DON), LYC + DON group (30 µg/mL
LYC + 148.16 ng/mL DON), LYC group (30 µg/mL LYC). After 24 h of inoculation, the
cells were centrifuged, and MDA extract solution was added with MDA to obtain MDA
from the cells. Then, the cells were centrifuged again and the supernatant was divided
into two parts. Some to detect the standard protein concentration of the sample, and the
other part was used to detect the MDA content using an MDA detection kit. The standard
protein concentration was measured using the BCA. In addition, it can be seen from the
kit explanation method that under high temperature and acidic conditions, MDA and
thiobarbituric acid (TBA) will produce a red product which has a strong absorption peak at
A532 nm. Then, the absorption value was measured at A532 nm using the Infinite M200 FA
plate reader.

2.4. Reactive Oxygen Species (ROS) Assay

Using Reactive Oxygen Species Assay Kit (Beyotime Institute of Biotechnology, Shang-
hai, China) to measure the content of ROS in cells. In brief, an initial density of 2 × 105 cells
per well was inoculated into a 6-well plate. Once they reached about 80 percent confluence,
the cells were divided into four groups for incubation 24 h. Then, the medium was sucked
out with a pipette gun. After rinsing with PBS, the fluorescence probe DCFH-DA has been
added into the cells, and the cells were incubated in 37 ◦C with dark environment for 1 h.
Finally, fluorescence was measured using EVOS M5000 cell imaging system (AMF5000,
ThermoFisher, Shanghai, China).

2.5. Mitochondrial Membrane Potential (MMP) Assay

Using a mitochondrial membrane potential assay kit with JC-1 (Beyotime Institute of
Biotechnology, Shanghai, China) to measure MMP. Briefly, an initial density of 2 × 105 cells
per well was inoculated into a 6-well plate. Once they reached about 80 percent confluence,
the cells were divided into four groups for incubation. After 24 h, Then, the medium was
sucked out with a pipette gun and the cells were rinsed with PBS, then added the fluorescent
probe JC-1 into the primary cells and incubated in 37 ◦C with dark environment for 20 min.
Then, the labeled cells were observed with inverted fluorescence microscope (n = 3).

2.6. Mitochondrial Permeability Transition Pore (MPTP) Assay

Using MPTP Assay Kit to measure the open state of MPTP. In brief, an initial density
of 2 × 105 cells per well was inoculated into a 6-well plate. Once they reached about
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80 percent confluence, the cells were divided into four groups for incubation. After 24 h,
the medium was sucked out with a pipette gun, and the cells were rinsed with PBS. Added
dye solution and incubated cells at 37 ◦C for 30 min away from light. Then, the labeled
cells were observed with inverted fluorescence microscope (n = 3).

2.7. qRT-PCR Analysis

An initial density of 2 × 105 cells per well was inoculated into a 6-well plate. Once they
reached about 80 percent confluence, the cells were divided into four groups for incubation
24 h. Three replicates were conducted for each group. After rinsing with PBS, an RNA
extraction solution was added to fully lyse the cells. Subsequently, 380 µL of chloroform
was used for phase separation and equivoluminal isopropanol for RNA precipitation.
Subsequently, RNA was eluted in 20 µL RNase-free water after being washed thrice in 75%
ethanol. HiScript III All-in-one RT SuperMix (R232-01, Nanjing Vazyme Biotechnology Co.,
Ltd., Nanjing, China) was used to reverse transcribe it into cDNA. Finally, Polymerase chain
reaction (PCR) amplification and sequencing were analyzed using *qTower 3G (analytik
jena, Jena, Germany). The primer sequence is shown in Table S1 (synthesized by Beijing
Qingdao Biotechnology Co., Ltd. Beijing, China). The results of qRT-PCR were calculated
using 2−∆∆CT formula.

2.8. Western Blot Analysis

IPEC-J2 cells were seeded at 2 × 104 cells/well in 75 cm2 flasks. Three replicates
were conducted for each group. At the end of the treatment, total proteins were extracted
using RIPA buffer (Beyotime Biotechnology) and centrifuged at 12,000 r/min for 10 min,
as previously described. The protein concentration in the supernatant was determined
using BCA assay kit (Beyotime Institute of Biotechnology, Shanghai, China). 30 µg protein
per sample was separated using 12% SDS-PAGE and transferred to the PVDF membrane
(Millipore Corporation, Billerica, MA, USA). Next, the membranes were blocked with
non-fat milk at room temperature, and incubated with primary antibodies (Anti-ZO-1
(diluted 1:1750, WL03419, Wanleibio), Anti-Occludin (diluted 1:1250, WL01996, Wanleibio),
Anti-claudin-1 (diluted 1:1750, WL03073, Wanleibio), Anti-N-cad (diluted 1:1000, A19083,
ABclonal), Anti-Parkin (diluted 1:500, WL02512, Wanleibio), Anti-PINK1 (diluted 1:750,
WL04963, Wanleibio), Anti-Dnm1 (diluted 1:1750, WL03028, Wanleibio); β-actin (diluted
1:2000, GB12001, Servicebio) at 4 ◦C overnight. The secondary antibody (diluted 1:5000,
AS014, ABclonal) was then used to incubate the membrane. Finally, the protein bands
were imaged using the Amersham Imager 600 system with an ECL reagents kit (Applygen,
Beijing, China) and analyzed with Image J software (version 1.8.0).

2.9. Data Statistics and Analysis

All experimental results were collected using at least three independent experiments.
The experimental data were analyzed using GraphPad Prism (version 5.0) and SPSS (version
22.0). The results were calculated with mean ± SEM. All data were analyzed using one-way
analysis of variance (ANOVA); p < 0.05 was considered to be statistically significant.

3. Results
3.1. LYC Alleviated DON Induced IPEC-J2 Cells Damage

CCK-8 kit was used to detect the effect of LYC and/or DON on the cell viability
of IPEC-J2cells. Compared with the control group, with the continuous increase in LYC
concentration, cell viability showed a trend of first increasing and then decreasing. When
the concentration of LYC was in the range of 10–60 µg/mL, the cell activity was enhanced.
30 µg/mL LYC resulted in the highest cell viability of IPEC-J2 cells. However, when the
dose exceeded 80 µg/mL, the cell activity decreased significantly. So, LYC concentration
was used as 30 µg/mL in subsequent experiments (see Figure 1A).
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Figure 1. LYC alleviated the cytotoxicity of IPEC-J2 induced using DON. (A) Changes in cell activity
under different concentrations of LYC (10, 20, 30, 40, 50, 60, 70, 80, 90, and 100 µg/mL). (B) Changes
in cell activity of LYC (10, 20, 30, 40, 50, 60, 70, 80, 90, and 100 µg/mL) combined with DON
(148.16 ng/mL). (C) Cell morphology of IPEC-J2 cells cultured with DON and/or LYC for 24 h,
respectively. Each reported value (n = 5) represents the mean ± SEM. Asterisk (*) for the significance
of differences between the control and another, * p < 0.05, ** p < 0.01: Hashes (#) for the significance of
differences between the DON and LYC + DON, ## p < 0.01.

Our previous study found that DON exposure could significantly reduce IPEC-J2 cell
survival. According to the results above, we chose the DON dose to be 148.16 ng/mL.
To verify the protective effect of LYC on DON cell activity, we treated IPEC-J2 cells with
different concentrations of LYC (10, 20, 30, 40, 50, 60, 70, 80, 90, and 100 µg/mL) and
DON 148.16 ng/mL, respectively. Compared with the control group, the LYC treatment
group alleviated cell damage caused by DON, and cell activity was increased to the highest
level when the LYC concentration was 30 µg/mL (see Figure 1B). Therefore, the optimal
concentration of LYC was selected as 30 µg/mL for subsequent experiments. In addition,
via the observation of cell morphology, it could be obviously seen that DON exposure will
cause flat and sparse cells, and the intervention of LYC could reduce the cytotoxicity of
DON and protect the cell morphology.

3.2. LYC Alleviated DON Induced Intestinal Epithelial Barrier Impairment in IPEC-J2 Cells

To demonstrate the protective effect of LYC- on DON-induced intestinal epithelial
barrier impairment in IPEC-J2 cells, we selected qRT-PCR and Western-blot analysis to
determine the expression of intestinal epithelial barrier-related proteins. Compared with
the control group, the gene and protein expression of Occludin, ZO-1, Claudin-1, and N-cad
in the DON group decreased (see Figure 2). At the same time, LYC treatment can reverse
this trend and restore the expression of intestinal epithelial barrier-related proteins and
genes to a relatively normal level. These results deduced that LYC alleviated DON-induced
intestinal epithelial barrier impairment in IPEC-J2 cells.

3.3. LYC Alleviated DON Induced Oxidative Stress in IPEC-J2 Cells

To analyze the alleviating effect of LYC on the oxidative stress of IPEC-J2 cells induced
using DON, we detected the ROS content in IPEC-J2 cells with a DCFH-DA fluorescent
probe and detected the MDA content in the cells with an MDA detection kit. The result
was shown in Figure 3; the ROS level in the cells of the DON group was clearly increased
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compared with the control group. At the same time, LYC treatment can reverse this trend
and return the ROS level to a relatively normal level (see Figure 3B), which can be intuitively
seen from the fluorescence pictures (see Figure 3A). In addition, MDA content in the DON
group increased visibly, and the trend returned to a nearly normal level after LYC treatment
compared with the control group (see Figure 3C). These results indicated that LYC had a
good therapeutic effect on DON-induced oxidative damage in IPEC-J2 cells.
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Figure 2. LYC alleviated the intestinal barrier damage induced using DON. (A) Western-blot analysis
of Occludin. (B) Western blot analysis of ZO-1 protein. (C) Western-blot analysis of N-cad protein.
(D) Western-blot analysis of Claudin-1 protein. (E) Relative RNA abundance of Occludin. (F) Relative
RNA abundance of ZO-1. (G) The relative RNA abundance of N-cad. (H) Relative RNA abundance of
Claudin-1. IPEC-J2 cells were divided into CON, DON, LYC + DON, and LYC groups. Each reported
value (n = 3) represents the mean ± SEM. Asterisk (*) for the significance of differences between the
control and another, ** p < 0.01: Hashes (#) for the significance of differences between the DON and
LYC + DON, # p < 0.05, ## p < 0.01.
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3.4. LYC Alleviated DON Induced Mitochondrial Impairment in IPEC-J2 Cells

Calcein AM is a non-polar dye that can fluorescently stain living cells. It can easily
penetrate the living cell membrane and be hydrolyzed into Calcein by intracellular esterase,
thus remaining in the cell and stimulating strong green fluorescence. In addition, CoCl2
can quench the green fluorescence of Calcein in the cytoplasm. When MPTP is turned
off, CoCl2 cannot enter the mitochondria. Therefore, Calcein AM staining will cause the
green fluorescence of Calcein. On the contrary, when MPTP is open, CoCl2 will enter
the mitochondria and partially or even completely quench the fluorescence of Calcein.
Eventually, the green fluorescence weakens or even disappears. As shown in Figure 4A, the
MPTP opening was activated, and CoCl2 entered the mitochondria, thereby quenching the
green fluorescence of Calcein in the DON group. However, this phenomenon was alleviated
after LYC treatment. The above results indicated that LYC could reverse DON-induced
abnormal MPTP opening in IPEC-J2 cells.

Antioxidants 2023, 12, x FOR PEER REVIEW 8 of 16 
 

 
Figure 4. LYC alleviated the DON-induced mitochondrial damage. IPEC-J2 cells were divided into 
CON, DON, LYC + DON, and LYC groups. (A) Mitochondrial membrane potential (MMP) in IPEC-
J2 cells. (B) Mitochondrial permeability transition pore (mPTP) opening in IPEC-J2 cells. Scale bar = 
150 µm. 

3.5. LYC Alleviated DON Induced Mitochondrial Dynamics Disturbance in IPEC-J2 Cells 
To explore the alleviating effect of LYC on the disturbance of mitochondrial dynamics 

in IPEC-J2 cells induced using DON, we used Western blot and qRT-PCR to detect the 
expression of proteins and genes related to mitochondrial dynamics. As shown in Figure 
5A, compared with the control group, the expression levels of mitochondrial fusion-re-
lated genes Opa1, Mfn1, and Mfn2 were significantly decreased; meanwhile, mitochon-
drial fission-related genes Mff, Mief1, Fis1, and Dnm1l were significantly increased in 
DON group compared with the control group. However, LYC treatment could well re-
verse this trend to maintain the balance between mitochondrial fission and fusion. The 
PPI network of mitochondrial fission and fusion-related genes was constructed using the 
STRING 10 database. As shown in Figure 5B, Dnm1l is the core protein in the network. 
Furthermore, LYC can also reduce DON-induced overexpression of Dnm1l protein com-
pared with a control group (see Figure 5C). These results deduced that LYC can effectively 
alleviate DON-induced mitochondrial dynamics disorder in IPEC-J2 cells. 
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Scale bar = 150µm.

JC-1 is a permeable membrane cationic fluorescent dye, which is often used in the
detection of MMP. JC-1 exists in two forms: monomer and polymer. When MMP is normal,
JC-1 exists in the form of a polymer, showing red fluorescence. However, when MMP is



Antioxidants 2023, 12, 1958 8 of 15

decreased, JC-1 will be released from the mitochondria. The concentration of JC-1 decreases,
and the fluorescence changes from red to green. As shown in Figure 4B, DON exposure
reduced the red fluorescence and enhanced the green fluorescence. This indicated that DON
has a damaging effect on MMP. However, LYC treatment could reverse this phenomenon
and alleviate the MMP decrease induced using DON.

3.5. LYC Alleviated DON Induced Mitochondrial Dynamics Disturbance in IPEC-J2 Cells

To explore the alleviating effect of LYC on the disturbance of mitochondrial dynamics
in IPEC-J2 cells induced using DON, we used Western blot and qRT-PCR to detect the
expression of proteins and genes related to mitochondrial dynamics. As shown in Figure 5A,
compared with the control group, the expression levels of mitochondrial fusion-related
genes Opa1, Mfn1, and Mfn2 were significantly decreased; meanwhile, mitochondrial
fission-related genes Mff, Mief1, Fis1, and Dnm1l were significantly increased in DON
group compared with the control group. However, LYC treatment could well reverse this
trend to maintain the balance between mitochondrial fission and fusion. The PPI network
of mitochondrial fission and fusion-related genes was constructed using the STRING
10 database. As shown in Figure 5B, Dnm1l is the core protein in the network. Furthermore,
LYC can also reduce DON-induced overexpression of Dnm1l protein compared with a
control group (see Figure 5C). These results deduced that LYC can effectively alleviate
DON-induced mitochondrial dynamics disorder in IPEC-J2 cells.
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Figure 5. LYC alleviated the mitochondrial dynamics disturbance induced using DON. IPEC-J2 cells
were divided into CON, DON, LYC + DON, and LYC groups. (A) The relative RNA abundance
of mitochondrial fission-related genes (Dnm1, Fis1, Mief1, Mff) and the relative RNA abundance
of mitochondrial fusion-related genes (Mfn1, Mfn2, OPA1). (B) The PPI network of mitochondrial
fission and fusion-related genes was constructed using the STRING 10 database. (C) Western blot
analysis of Dnm1 protein. Each reported value (n = 3) represents the mean ± SEM. Asterisk (*) for the
significance of differences between the control and another, ** p < 0.01: Hashes (#) for the significance
of differences between the DON and LYC + DON, ## p < 0.01.
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3.6. LYC Alleviated DON Induced Mitophagy in IPEC-J2 Cell

To verify the protective effect of LYC on DON-induced IPEC-J2 mitophagy, we exam-
ined mRNA and protein levels for markers of mitophagy. Compared with the control group,
the protein expressions of Parkin and PINK1 were increased clearly in the DON group. This
suggested that DON exposure can induce abnormal mitophagy; however, LYC addition
therapy can reverse this trend and restore the expression of autophagy markers to relatively
normal levels (see Figure 6A,B). At the same time, in the DON group, the expressions
of Parkin, PINK1, LC3, and P62 genes were also significantly increased. However, after
LYC treatment, these changes were significantly alleviated (see Figure 6C). In conclusion,
these data indicated that LYC can mitigate the activation of IPEC-J2 cell mitosis after DON
exposure and thus maintain mitophagy balance.
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Figure 6. LYC alleviated the mitophagy imbalance induced using DON. IPEC-J2 cells were di-
vided into CON, DON, LYC + DON, and LYC groups. (A) Western blot analysis of Parkin protein.
(B) Western blot analysis of PINK1 protein. (C) Relative RNA abundance of mitophagy-associated
factors (P62, LC3, Parkin, PINK1). Each reported value (n = 3) represents the mean ± SEM. Asterisk
(*) for the significance of differences between the control and another, * p < 0.05, ** p < 0.01: Hashes
(#) for the significance of differences between the DON and LYC + DON, ## p < 0.01.

3.7. Correlation and PCA Analysis

To further illustrate the protective mechanism of LYC on DON-induced IPEC-J2
cell damage, we conducted correlation and PCA analysis on mitochondrial dynamics,
mitophagy, and tight junction (TJ) related gene expression (see Figure 7). Pearson’s cor-
relation coefficients showed that there were strongly positive correlations between the
mitochondrial dynamics-related factors (Dnm1l and Mief1) and mitophagy-related genes
(p < 0.01). On the contrary, mitochondrial dynamics-related factors (Dnm1l and Mief1) and
mitophagy-related genes (Parkin, PINK1, LC3, and P62) had a strongly negative correlation
with TJ related genes (Occludin, N-cad, and ZO-1) (p < 0.05) (see Figure 7A). In addition,
PCA score plot results showed the distance between the CON group and the LYC + DON
group. Moreover, there was an overlap among the CON, LYC, and LYC + DON groups (see
Figure 7B). Together, these data indicated that LYC alleviated DON-induced IPEC-J2 cell
damage via regulating mitochondrial dynamics and mitophagy-related gene expressions.
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4. Discussion

The gut is the main absorption and target of DON [22]. It has been proven that
mitochondria are the key target of DON intestinal toxicity. Therefore, it is particularly
important to explore drugs that can alleviate the mitochondrial damage induced using
DON. LYC is a fat-soluble carotenoid with a strong mitochondrial protective function.
LYC has a protective effect on mitochondrial and intestinal health [23]. In this study, the
protective mechanism of LYC against mitochondrial damage induced using DON in IPEC-
J2 cells was revealed, and it will offer a new direction for applying drug therapy of LYC on
DON enterotoxicity.

Porcine is sensitive to DON exposure. Hence, the IPEC-J2 cells were used as research
subjects in this study. We treated IPEC-J2 cells with different concentrations of LYC and
cultured them for 24 h to screen suitable concentrations and found that the cell activity was
the highest at 30 µg/mL. Meanwhile, the different concentrations of LYC (10–60 µg/mL) can
effectively alleviate the cytotoxicity by DON (148.16 ng/mL). Hence, 30 µg/mL LYC and
148.16 ng/mL DON were used to uncover the mechanism of LYC alleviating the intestinal
toxicity of DON. The intestinal barrier is mainly composed of a single layer of epithelial cells,
which are closely connected together to maintain the intestinal barrier homeostasis [24].
The intestinal barrier is very vulnerable to damage under various external adverse factors.
It was confirmed that DON had a toxic effect on IPEC-J2 cells by morphological observation,
and DON can induce the increase in intercellular space and the destruction of intercellular
connections. After LYC treatment, the cytotoxicity induced using DON was significantly
alleviated, the cell morphology was restored, the cell space was reduced, and the tight
intercellular connection was protected. The changes in cell morphology demonstrated that
LYC can alleviate cell connection damage caused by DON. TJ protein has a crucial effect on
maintaining intestinal health in intestinal epithelial cells, and the stability of the intestinal
barrier is closely decided by the stable expression of TJ protein. Occludin and Claudin-1 are
the nuclear components of the TJ barrier and are involved in the regulation of ion selectivity
and permeability of paracellular pathways between adherent cells. N-cadherin (N-cad)
is a major transmembrane protein of adhesion, belonging to the classical cadherin family
of Ca2+-dependent adhesion proteins, which is responsible for regulating the formation
and function of adhesion [25]. ZO-1 is a major scaffold protein of TJ, which can interact
with other TJ proteins, such as Occludin and Claudin-1, to form complexes mediating TJ
and signal transmission between cells [26]. Therefore, Claudin-1, Occludin, N-cad, and
ZO-1 levels can reflect the TJ degree of IPEC-J2 cells. In this study, DON could obviously
decrease the expression of TJ protein, which proved that DON can induce intestinal barrier
dysfunction [27]. After the addition of LYC, the expression levels of TJ-related protein and
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gene increased and recovered to nearly normal levels, which indicated that LYC could
reverse intestinal TJ damage caused by DON and recover the function of the intestinal
barrier. Combined with the results of cell activity, cell morphology, and expression of TJ
protein, LYC can effectively alleviate the toxic injury of DON on IPEC-J2 cells.

Mitochondria, as the main producer of ROS, are the toxic effect target of DON [28].
ROS accumulation will result in intestinal inflammatory diseases and eventually lead to ab-
normalities in the intestinal barrier and immune regulation [29]. DON exposure can induce
intestinal oxidative stress damage in mice, reduce the expression of total antioxidant capac-
ity, and eventually lead to intestinal injury [30]. In addition, similar studies have found that
DON exposure could induce liver oxidative stress injury [5]. In this study, DON not only
promoted the production of ROS but caused lipid peroxidation, suggesting that DON can
cause oxidative damage to IPEC-J2 cells. However, LYC can alleviate oxidative damage of
IPEC-J2 cells by reducing the abnormal production of ROS and MDA induced using DON.
Meanwhile, previous study has confirmed that LYC can enhance the activity of antioxidant
enzymes such as glutathione peroxidase (GSH-Px) and glutathione S-transferase (GST)
to reduce the production of peroxides such as MDA and hydrogen peroxide (H2O2) [31].
Therefore, we speculated that LYC can improve the antioxidant capacity to alleviate the
oxidative damage of IPEC-J2 cells induced using DON. In brief, the addition of LYC could
alleviate DON-induced oxidative damage in IPEC-J2 cells. MMP is an important index and
mitochondrial function marker that is involved in mitochondrial oxidative phosphorylation,
reflecting the redox state of cells. Stable MMP is the basis of mitochondrial ATP production
and is used as a sensitive indicator of mitochondrial integrity [32]. MPTP is a channel of the
mitochondrial inner membrane and serves as another indicator of mitochondrial function.
When the mitochondria are under stress conditions, MPTP will open [33]. The abnormal
opening of MPTP will result in the release of mitochondrial matrix contents and finally
initiate the process of cell damage [33]. Our findings confirmed that DON can induce the
decrease in MMP, the abnormal opening of MPTP, and mitochondrial dysfunction, further
aggravating oxidative stress damage. Researchers have discovered that LYC can reduce the
liver toxicity of aflatoxin B1 in broilers by reducing mitochondrial damage, including stim-
ulating mitochondrial antioxidant capacity and maintaining mitochondrial biogenesis [34].
Another study has shown that LYC can reduce lipopolysaccharide (LPS)-stimulated ROS
overproduction and MMP loss, thereby alleviating mitochondrial oxidative damage and
preventing neuroinflammation-related diseases [35]. Our results confirmed that the addi-
tion of LYC can alleviate the mitochondrial dysfunction induced using DON and prevent
the decrease in MMP and the abnormal opening of MPTP. Cell ROS overproduction is
associated with the destruction of MMP and abnormal opening of MPTP [36]. Based on this
evidence, we deduced that LYC alleviated oxidative damage in IPEC-J2 cells by mitigating
mitochondrial damage.

Mitochondria are highly dynamic organelles, and mitochondria function not only
present by the production of ROS, MMP, and MPTP but also by mitophagy, mitochondrial
fission, and fusion stability [37]. In healthy conditions, mitophagy is a self-protective
mechanism of cell mitochondrial homeostasis. Parkin/PINK1 signaling pathway, as the
main regulatory factor of mitophagy, is closely related to mitochondrial quality control,
and Dnm1l is a key regulatory factor of mitochondrial fission [38]. OPA1 is an important
factor in the inner mitochondrial membrane responsible for the regulation of mitochondrial
fusion. In addition, Mfn1/Mfn2 is a factor related to mitochondrial outer membrane fusion.
When the Mfn1/Mfn2 ratio and the mitochondrial fusion/fission are imbalanced, it will
induce retinal degeneration using mitophagy [39]. DON can inhibit mitochondrial fusion
by inducing excessive ROS generation, and increase the expression of mitophagy marker
protein (LC3 and p62) at the gene level, further aggravating mitophagy in spleen lymph
nodes of porcine [40]. When DON is exposed to IPEC-J2 cells, it causes the cell to overstress
and increase mitochondrial fission, thus aggravating mitochondrial damage and eventually
leading to the damage of the IPEC-J2 cell TJ barrier [41]. In this study, DON exposure
caused mitochondrial dynamics disorder and increased the expression of fission-critical
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protein (Dnm1l, Fis1, Mief1, Mff) and mitophagy-related protein (Parkin, PINK1, LC3,
and p62) while decreased the expression of fusion-related genes (OPA1, Mfn1, and Mfn2).
These results suggested that DON exposure led to disruption of mitochondrial dynamics
and initiated mitophagy. At present, there has been a lot of progress in the research on the
mitochondrial dynamics and mitophagy of LYC. Studies have shown that LYC protects
mitochondrial function by maintaining the balance of mitophagy and mitochondrial dy-
namics, thus inhibiting DEHP-induced oxidative stress damage in the heart [42]. However,
at present, the mechanism of whether LYC can alleviate mitochondrial dynamics and au-
tophagy disorders induced using DON has not been fully elucidated, and the relationship
between LYC and mitochondria homeostasis is still unclear. In this study, we found that
LYC can protect against the inhibition of mitochondrial fission and fusion induced using
DON. DON decreased the expression of mitochondrial fusion-related factors, including
Mfn1, Mfn2, and OPA1, while increasing the expression of mitochondrial-fission-related
factors, including Dnm1l, Fis1, Mief1, and Mff. The results of LYC treatment confirmed
that LYC can protect against the imbalanced expression of mitochondrial fission and fu-
sion. The PPI analysis showed that Dnm1l is a dominant molecule in LYC to alleviate
DON-induced mitochondrial dynamics disorder. How LYC regulates Dnm1l to restore mi-
tochondrial homeostasis is worth further attention. At the same time, LYC can also inhibit
the expression of mitophagy-related factors (Parkin, PINK1, LC3, and p62). These results
proved that LYC can relieve mitochondrial dynamic imbalance caused by DON to maintain
mitochondrial homeostasis. The inhibitory effect of LYC on mitophagy may depend on
(1) LYC treatment alleviates mitochondrial damage and maintains mitochondrial home-
ostasis or (2) the over-mitophagy process induced using DON has been controlled. The
role of mitophagy in alleviating DON enterotoxicity in LYC still needs further exploration.

5. Conclusions

DON caused the IPEC-J2 cell damage by inducing mitochondrial dysfunction, which
further led to oxidative stress and mitochondrial dynamics imbalance. The intervention of
LYC protected mitochondrial homeostasis and function, reduced oxidative stress levels,
and alleviated the damage of DON to IPEC-J2 cells (see Figure 8).
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In this study, the mechanism of LYC on DON-induced IPEC-J2 cell mitochondrial
damage was further investigated. LYC can be used as a feed additive to prevent and control
the toxic effect of DON. It is of reference significance for the development of mycotoxin
therapy drugs in the future.
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