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Abstract: Several plants of the genus Tragia L. have shown antibacterial, fungicidal, and antiprolif-
erative activity, among other types of activities; however, most species of the genus have not been
investigated. Tragia volubilis L. is native to tropical America and Africa, and although it has been
reported as medicinal in the literature, it has not been thoroughly investigated. In this study, the
phytochemical screening, isolation, and identification of compounds and the determination of the
antioxidant activity of the aqueous extract of Tragia volubilis L. and its partitions were carried out.
Ethyl acetate and n-butanol partitions of the extract present high antioxidant activity according to
the Antioxidant Activity Index. Due to their activity, these partitions were tested on RKO cells as
a representative model, both individually and in combination with Doxorubicin. It was found that
the partitions significantly reduced the effect of Doxorubicin, as well as the expression of proteins
involved in DNA damage and cell death. While the reduction of the chemotherapeutic effect of
Doxorubicin on tumor cells may not be a desired outcome in therapeutic settings, the findings of the
study are valuable in revealing the antioxidant potential of Tragia volubilis L. and its partitions. This
highlights the importance of carefully regulating the application of antioxidants, especially in the
context of cancer chemotherapy.
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1. Introduction

In recent years, antioxidants, due to their ability to protect cells from oxidative damage,
have emerged as promising preventive and/or therapeutic agents for acute or chronic
diseases caused by oxidative stress, such as cancer [1,2]. However, despite the evidence of
the benefits that antioxidants promote in human health, their use presents much inconsis-
tencies in the literature [3]. In cancer, where the underlying cause is malignant changes in
cells primarily caused by oxidative damage [4], their use has been suggested to interfere
with the metabolic activation of chemical carcinogens and to either promote the repair of
premalignant lesions or inhibit their development [3]. However, their use is controversial,
as randomized clinical trials have shown that antioxidant supplementation may increase
the incidence and mortality of various types of cancer [5–8]. Furthermore, it has been
suggested that the concomitant use of antioxidants with chemotherapy may have negative

Antioxidants 2023, 12, 2003. https://doi.org/10.3390/antiox12112003 https://www.mdpi.com/journal/antioxidants

https://doi.org/10.3390/antiox12112003
https://doi.org/10.3390/antiox12112003
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/antioxidants
https://www.mdpi.com
https://orcid.org/0000-0003-2754-1328
https://orcid.org/0000-0002-3416-4674
https://orcid.org/0000-0002-0884-6911
https://orcid.org/0000-0002-3403-1484
https://orcid.org/0000-0003-1660-1217
https://doi.org/10.3390/antiox12112003
https://www.mdpi.com/journal/antioxidants
https://www.mdpi.com/article/10.3390/antiox12112003?type=check_update&version=1


Antioxidants 2023, 12, 2003 2 of 16

effects on treatment by interfering with the effectiveness of antineoplastic agents that rely
on generating oxidative stress as their mechanism of action [9]. Currently, there is no
definitive consensus on the use of antioxidants in cancer therapy.

Plants have been an important source of exogenous antioxidants over time, with
an estimated two-thirds of the world’s plant species having medicinal significance and
excellent antioxidant capacity [10]. Phenolic compounds and flavonoids are the most
common secondary metabolites with antioxidant activity in plants [11–13]. They perform
functions such as scavenging free radicals, donating hydrogen atoms or electrons, or
chelating metal cations [14]. In recent years, there has been a growing interest in the
research of these natural antioxidants due to their potential to counteract the harmful
effects of oxidative damage induced by reactive oxygen species (ROS) [15].

Euphorbiaceae is a plant family with many and potent medicinal species [16]. Within
this family, the Tragia genus is traditional in Africa and Asia for a variety of ailments [17],
with its New World species lagging behind in the study of their medicinal properties.
The main activity of Tragia extracts and essential oils is antibacterial, antimycotic, and
antiproliferative. Around one-sixth of the 154 species in the genus are reported as medicinal,
and the bulk of the research centers on four of these species, namely Tragia involucrata Linn.,
Tragia spathulata Benth., Tragia benthamii Baker, and Tragia plukenetii Radcl. The medicinal
use of several more species that have not been well-studied is also documented in the
literature [18,19].

A New World Tragia species that has ample geographical distribution and serves
as the lectotype for the genus is Tragia volubilis L.; it is present not only in inter-tropical
America but also in Africa, where it is considered an introduced species. It is considered
nonspecifically medicinal [20] and is reported as being a diuretic [21] and can be used for
rheumatism and wound healing [22]. The methanolic extract of its aerial parts exhibits
high antioxidant activity, and four flavonoids, namely avicularin, quercitrin, afzelin, and
amentoflavone, were isolated from it [23]. The objective of this study is to characterize
the aqueous extract of the aerial parts of T. volubilis, evaluate its antioxidant activity, and
examine the effect in the cytotoxicity and capacity of the resulting fractions of the extract
against Doxorubicin, one of the most widely used and effective antineoplastic agents for
the treatment of leukemia, lymphoma, and various types of solid tumors [24].

2. Materials and Methods
2.1. Plant Material

The collection of plant material for this study was completed in El Tambo parish, Cata-
mayo canton, in the Loja province in Southern Ecuador (Figure 1). A total of 1987 g of the
aerial parts of Tragia volubilis L. was collected. The species was identified by Fani Tinitana,
PhD, and a voucher specimen number HUTPL7853 was deposited at the Herbarium of
Universidad Técnica Particular de Loja, Ecuador. The specimen was collected under the
Ecuadorian Ministry of Environment, Water, and Ecological Transition registry number
MAE-DNB-CM-2016-0048, dated 20 September 2016.

The collected plant material was held under airflow for seven days at 30 ◦C until dry.

2.2. Extract and Partitions of Tragia volubilis

Once dried, the plant material was extracted with water at room temperature for 72 h
(static maceration). The resulting liquid was lyophilized in a Labconco model 7754047 freeze
drier (Kansas City, MO, USA) to yield the aqueous extract. The extract was sequentially
fractioned with solvents of increasing polarity: hexane, dichloromethane, ethyl acetate,
n-butanol (Merck KGaA, Darmstadt, Germany), and water. Then, 50.1 g of aqueous extract
was dissolved in 1.5 L distilled water and extracted three times with 1500 mL of the solvent,
concentrating the solvent partition by rotary evaporation and reusing the recovered solvent.
The partition was concentrated to dryness and stored at −18 ◦C. In the case of the aqueous
residue, concentration was performed through freeze drying.
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2.3. Phytochemical Screening

Phytochemical screening of the extracts was performed to identify compound families
present in the extract partitions, according to the methodology shown in Mandal et al. [25],
using the assays detailed in Silva-Rivas et al. [26]. The screening tested for the presence
or absence of proteins, carbohydrates, fats, alkaloids, terpenoids, flavonoids, saponins,
quinones, and tannins.

2.4. Isolation of Secondary Metabolites

The ethyl acetate partition of the aqueous extract of T. volubilis was fractioned using
flash chromatography (Buchi Reveleris® PREP, Flawil, Switzerland). Direct phase separa-
tions were performed with 12 g direct silica columns and hexane–ethyl acetate–methanol
elution gradients.

2.5. Characterization and Identification

Once isolated, a secondary metabolite was identified through NMR spectra. The 1H-
and 13C spectra were obtained on a BRUKER Ascend 500 MHz spectrometer (Billerica, MA,
USA), at 298 K, using deuterated methanol as the solvent. The tentative interpretation of
the spectra was compared with published results for confirmation.

2.6. Antioxidant Capacity

The total phenolic content (TPC) of the partitions of the extract was measured using
the Folin–Ciocâlteu method [27]. Samples of the extract were diluted in wells of a 96-well
plate. To 10 µL of those, 50 µL of Folin–Ciocâlteu reagent (Sigma-Aldrich, St. Louis, MO,
USA) was added, followed by 10 min of homogenization. Then, 150 µL of 7.5% w/w
Na2CO3 (Sigma-Aldrich, St. Louis, MO, USA) solution was added, and distilled water
was added to complete 1 mL. Afterward, the wells were homogenized again for 5 min.
Absorbance was read at 760 nm on a Bio Tek Epoch 2 microplate reader (BioTek Instruments
Inc., Winooski, VT, USA), and the values compared to a linear gallic acid calibration curve.
TPC is expressed in gallic acid equivalents (GAEs) per gram of extract.

The antioxidant capacity of the extract and the partitions was measured through
three assays: ABTS (2,2′-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid)), FRAP (ferric
reducing antioxidant power), and DPPH (2,2-diphenyl-1-picrylhydrazyl), all presented as
Trolox (6-hydroxy-2,5,7,8-tetramethylchroman-2-carboxylic acid) equivalents. All results
are expressed as the average ± standard deviation of three repetitions. The Antioxidant
Activity Index (AAI) is a value that is independent of the concentrations of both the sample
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and DPPH [28], and it was calculated as the quotient between the final DPPH concentration
and the IC50 for each sample in order to better ascertain the antioxidant activity.

2.7. Cell Culture

Human colorectal carcinoma RKO (wt p53) (ATCC® CRL-2577™). Cells were grown
at 37 ◦C and in a 5% CO2 atmosphere, in DMEM medium (GIBCO, Grand Island, NY, USA)
supplemented with FBS 10% (Sigma-Aldrich, St. Louis, MO, USA), penicillin 0.1 mg/mL,
streptomycin 100 U/mL, and glutamine 2 mM (GIBCO, Grand Island, NY, USA).

2.8. Viability Assay

Cell viability was analyzed using the MTS metabolic viability assay, which measures
the mitochondrial activity of live cells. In summary, cells were seeded in 96-well culture
plates at a density of 3 × 103 cells in 100 µL per well. After 24 h of incubation, the
medium was changed, and different treatments were added, followed by an additional
48-h incubation period. RKO cells were treated with individual partitions of ethyl acetate
and n-butanol of the aqueous extract at a concentration of 100 µg/mL, as well as in
combination with 0.05 µM Doxorubicin (Dxo, Sigma-Aldrich, St. Louis, MO, USA). The
blank (supplemented medium), negative control, and positive control using 0.05 µM
Dxo were included. Four hours prior to completing the treatment, 20 µL of CellTiter
96® AQueous One Soln. Cell Prol. reagent (Promega, Madison, WI, USA) was added
to each well. The absorbance of each sample was measured using a spectrophotometer
(Epoch 2, BioTek, Santa Clara, CA, USA) at a wavelength of 490 nm. The experiments were
performed in triplicate. Data obtained from untreated cells were used as reference values
(100% viability) to normalize the absorbance of the treated samples [29].

2.9. Morphological Analysis

To determine the effect induced by individual and combined partitions of ethyl acetate
and n-butanol with Dxo on the RKO cell line, 2 × 105 cells were seeded in a 6-well plate.
After 24 h of incubation, the treatments mentioned above for the viability assay were
applied. After 48 h of cell treatment, they were observed and photographed under the Axio
Observer 7 microscope (ZEISS, White Plains, NY, USA) at 400×magnification.

2.10. Western Blot

For the Western blot assay, 1 × 106 RKO cells were seeded in T75 flasks. The cells
were then treated individually with partitions of ethyl acetate and n-butanol at a concentra-
tion of 100 µg/mL, both alone and in combination with 0.05 µM Dxo. The methodology
was applied as described by Bailon-Moscoso et al. [30]. In summary, 30 or 50 µg of total
protein was separated by SDS-PAGE on a 7–15% gel and subsequently transferred to a
polyvinylidene difluoride (PVDF) membrane. After blocking the membrane with 5% (w/v)
skimmed milk, the target proteins were immunodetected using specific antibodies: from
Cell Signaling Technology (H2AX: #7631; γH2AX: #9718; Phospho-p53 (Ser15): #9284, Dan-
vers, MA, USA) and Santa Cruz Biotechnology (p53: sc-126; p21: sc-817; PARP1: sc-53643;
Actin: sc-58673) at the manufacturer-recommended dilution. Following a series of washes,
corresponding secondary antibodies from Santa Cruz Biotechnology (goat anti-rabbit IgG-
HRP: sc-2054; m-IgGκ BP-HRP: sc-516102, Dallas, TX, USA) were applied at a 1:5000
dilution. Immunoreactive bands were visualized using an enhanced chemiluminescence
kit (Millipore/Sigma-Aldrich, St. Louis, MO, USA).

3. Results
3.1. Phytochemical Screening and Compound

The working extract and partitions, as well as the compound families contained, are
detailed in Figure 2. The screening shows the presence of compound classes that correspond
to those of other species in the genus, such as Tragia involucrata L. [31], Tragia pungens
(Forssk.) Müll.Arg. [32], and Tragia benthamii Baker [33], and similar to the methanolic
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extract of the same species [23], with differences such as lesser flavonoid presence and
terpenoid absence in the aqueous extract attributable to the increased solvent polarity.
Differences with other species, such as the absence of flavonoids in T. benthamii, can be
attributed partially to the extraction solvent and procedure followed. Figure 2 shows the
sequence of this work.
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Quercitrin (Figure 3) was isolated and identified from the ethyl acetate partition of
the aqueous extract—chosen for its highest antioxidant activity among the partitions. The
chemical characterization of quercitrin was performed based on the following signals of
1H–NMR (500 MHz, CD3OD, δ ppm, J/Hz): 7.33 (1H, d, 1.8. H-2′), 7.30 (1H, dd, 8.35 1.9,
H-6′), 6.90 (1H, d, 8.35, H-5′), 6.35 (1H, brs, H-8), 6.19 (1H, d, 1.5, H-6), 5.30 (1H d 1.1 H-1′′),
4.19–4.23 (1H, m, H-2′′), 3.74 (1H, dd, 9.5 3.3, H-3′′), 3.39–3.45 (1H, m, H-5′′), 3.33–3.35
(1H, m, H-4′′), and 0.93 (3H, d, 6.2, H-6′′). 13C NMR (CD3OD, δ ppm): 70.5 (2′′), 70.6 (3′′),
70.7 (5′′), 71.8 (4′′), 93.4 (8), 98.5 (6), 104.5 (10), 104.5 (1′′), 115.0 (5′), 115.5 (2′), 121.5 (6′),
121.6 (1′), 134.8 (3), 145.0 (3′), 148.5 (4′), 157.1 (9), 157.9 (2), 161.7 (5), 164.5 (7), and 178.3 (4).
These results were and confirmed via a comparison with published results [34].
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3.2. Antioxidant Activity

The antioxidant activity evaluations were conducted on various partitions of the
aqueous extract of T. volubilis. Several parameters were measured (Table 1). Among them,
the IC50 and AAI values were determined, representing the amount of extract required to
neutralize 50% of the DPPH radical and an Antioxidant Activity Index independent from
the sample and DPPH concentrations.

Table 1. Antioxidant activity of T. volubilis extracts.

Extract/Partition
TPC

mg GAE/g
Extract

ABTS
µmol TE/g

Extract

FRAP
µmol TE/g

Extract

DPPH
µmol TE/g

Extract

IC50
mg Extract/mg

DPPH

AAI
[DPPH]

(µg ml−1)/IC50

TvH2O 87 ± 2 1789 ± 8 1079 ± 24 417 ± 10 1.81 ± 0.06 0.81 ± 0.03
TvH2ODCM 65 ± 3 1494 ± 42 724 ± 17 271 ± 9 2.38 ± 0.14 0.63 ± 0.01

TvH2OAcOEt 345 ± 26 4421 ± 336 4315 ± 35 2107 ± 35 0.42 ± 0.02 3.58 ± 0.10
TvH2OBuOH 222 ± 2 4170 ± 63 3083 ± 47 1252 ± 77 0.64 ± 0.04 2.32 ± 0.07
TvH2OH2O 57 ± 0 1051 ± 5 631 ± 6 177 ± 1 4.83 ± 0.12 0.31 ± 0.01

TvH2OFI 50 ± 1 1005 ± 25 555 ± 10 170 ± 5 7.58 ± 0.62 0.20 ± 0.01

TPC = total phenolic content; GAE = gallic acid equivalent; TE = Trolox equivalent; ABTS = 2,2′-azino-bis
(3-ethylbenzothiazoline-6-sulfonic acid) method; FRAP = ferric reducing antioxidant power; DPPH = 2,2-diphenyl-
1-picrylhydrazyl method; IC50 = half maximal inhibitory concentration; AAI = Antioxidant Activity Index.

Both the aqueous/ethyl acetate (TvH2OAcOEt) and aqueous/n-butanol (TvH2OBuOH)
partitions exhibit very strong antioxidant activity (AAI > 2), greater than that of the
methanolic extract of the species (AAI = 1.14) [23], while both aqueous and aqueous/DCM
extract show moderate activity (AAI > 0.5) [35]. There is a strong linear relationship be-
tween TPC and AAI (R2 = 0.9939) that supports the assumption that most of the antioxidant
capacity of the extracts is attributable to phenolic compounds (Figure 4).
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3.3. The Partitions of Ethyl Acetate and n-Butanol from Aqueous Extract of T. volubilis Protect
RKO Cells from Dxo Cytotoxicity

The partitions with the highest antioxidant activity, namely ethyl acetate (TvH2OAcOEt)
and n-butanol (TvH2OBuOH), both individually and in combination with Dxo, demon-
strated a significant cytoprotective effect on the viability of RKO cells during the evaluation
of growth and viability effects (Figure 5). The cytotoxicity of Dxo was reduced by 12% and
15% with the concomitant administration of TvH2OBuOH and TvH2OAcOEt, respectively.
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Figure 5. Viability of RKO cell line after 48-h treatment with 100 µg/mL of T. volubilis partitions
alone and in combination with Dxo. Cell viability is expressed as a percentage relative to the control
(described as 100%). (−) Absence, (+) Presence. Data represent mean ± SD of three independent
experiments. Statistical analysis was performed using one-way ANOVA, followed by Tukey’s test.
** p < 0.01, *** p < 0.001 vs. control; +++ p < 0.001 vs. Dxo.

Similarly, the morphological analysis showed the cytoprotective effect of TvH2OBuOH
and TvH2OAcOEt on the viability of RKO cells treated with Dxo, with a higher cell
confluence observed in the treatments with the extracts combined with Dxo compared to
cells treated with Dxo alone (Figure 6).



Antioxidants 2023, 12, 2003 8 of 16

Antioxidants 2023, 12, x FOR PEER REVIEW 8 of 17 
 

(described as 100%). (−) Absence, (+) Presence. Data represent mean ± SD of three independent ex-
periments. Statistical analysis was performed using one-way ANOVA, followed by Tukey’s test. ** 
p < 0.01, *** p < 0.001 vs. control; +++ p < 0.001 vs. Dxo. 

Similarly, the morphological analysis showed the cytoprotective effect of 
TvH2OBuOH and TvH2OAcOEt on the viability of RKO cells treated with Dxo, with a 
higher cell confluence observed in the treatments with the extracts combined with Dxo 
compared to cells treated with Dxo alone (Figure 6). 

 
Figure 6. Morphology of RKO cells after 48-hour treatment with 100 µg/mL of T. volubilis partitions 
alone and in combination with Dxo 0.05 µM. 

3.4. The Partitions of Ethyl Acetate and n-butanol from Aqueous Extract of T. volubilis Reduce 
Genotoxic Damage and Cell Death Induced by Dxo in RKO Cells 

The levels of expression of proteins related to genotoxic damage and cell death were 
quantified using the Western blot assay in RKO cell line cells. To determine DNA damage, 
the levels of the DNA damage biomarker γH2AX were evaluated in the treatments of 
TvH2OBuOH and TvH2OAcOEt alone and in combination with Dxo. It was found that the 
treatments with the partitions in combination with Dxo showed the capacity to signifi-
cantly decrease the expression of H2AX and its phosphorylated form γH2AX compared 
to the Dxo treatment, indicating their potential to attenuate genotoxic damage (Figures 7 
and 8). 
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alone and in combination with Dxo 0.05 µM.

3.4. The Partitions of Ethyl Acetate and n-Butanol from Aqueous Extract of T. volubilis Reduce
Genotoxic Damage and Cell Death Induced by Dxo in RKO Cells

The levels of expression of proteins related to genotoxic damage and cell death were
quantified using the Western blot assay in RKO cell line cells. To determine DNA damage,
the levels of the DNA damage biomarker γH2AX were evaluated in the treatments of
TvH2OBuOH and TvH2OAcOEt alone and in combination with Dxo. It was found that the
treatments with the partitions in combination with Dxo showed the capacity to significantly
decrease the expression of H2AX and its phosphorylated form γH2AX compared to the
Dxo treatment, indicating their potential to attenuate genotoxic damage (Figures 7 and 8).

The expressions of proteins controlling cell cycle progression and involved in the
damage of DNA and apoptosis were assessed. The quantitative results of the expression
levels of p53 and p21 in the combined treatments did not show significant changes. How-
ever, upon further examination, a lower expression of the phosphorylated form of p53
(Phospo-p53 (Ser15)) was observed in the combined treatments, with statistically significant
results compared to the Dxo treatment. The results of the expression of PARP-1 (apoptosis
marker) demonstrated a significant decrease in its cleavage in the combined treatments of
TvH2OBuOH and TvH2OAcOEt with Dxo compared to the treatment with Dxo.
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Figure 7. Proteins involved in genotoxic damage and cell death. RKO cells were treated for 48 h with
T. volubilis partitions alone and in combination with Dxo. (−) Absence, (+) Presence. Subsequently,
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expression was quantified using densitometry, with β-actin used as a control.
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4. Discussion

Currently, antioxidants have emerged as preventive or therapeutic agents for diseases
caused by oxidative stress, due to their ability to protect macromolecules from oxidative
damage. Natural antioxidants derived from plants, such as phenolic compounds, have
gained increasing interest for their anticancer properties [36–38]. However, controversy has
arisen in recent years regarding the use of antioxidants, with suggestions that administering
antioxidants during cancer chemotherapy could reduce treatment efficacy. This is because
certain chemotherapeutic agents rely on the production of free radicals and ROS as part
of their mechanism of action [39], and antioxidants may neutralize these radicals and
negatively interfere with treatment by protecting cancer cells during therapy or inducing
the proliferation of residual cancer cells [40]. Currently, there is no definitive consensus
on the use of antioxidants in cancer therapy. Different clinical trials have shown beneficial
effects [41–44]; however, in contrast, other trials [45–49] have indicated a trend toward
worse survival in patients treated with antioxidants while receiving chemotherapy.

In the present study, the results showed that the ethyl acetate (TvH2OAcOEt) and
n-butanol (TvH2OBuOH) fractions obtained from the aqueous extracts of the aerial parts of
T. volubilis have high antioxidant activity and a good correlation with their total phenolic
content. Phytochemical screening tests indicated a low and abundant presence of flavonoids
in TvH2OBuOH and TvH2OAcOEt, respectively, and the glycosylated flavonoid quercitrin
was isolated and identified in TvH2OAcOEt. Other species of the genus Tragia have also
been reported to have potent antioxidant activity [50] and have also been attributed to
phenolic-type compounds [51].

Subsequently, the effects of TvH2OBuOH and TvH2OAcOEt as natural antioxidants in
combination with Doxorubicin were investigated in RKO cells. The results of the viability
assays indicated the potential of the extracts to significantly reduce the cytotoxicity of
Doxorubicin, an anthracycline antibiotic that exerts its mechanism of action on cancer cells
by disrupting DNA repair mediated by topoisomerase II and generating free radicals [52].
Dxo can generate free radicals through two mechanisms: The first is an enzymatic mecha-
nism where Dxo is reduced to its semiquinone by oxidases such as nicotinamide adenine
dinucleotide phosphate (NADPH), and this semiquinone can autoxidize in the presence of
oxygen, producing superoxide radicals [53]. The second mechanism involves the reaction
of Dxo with iron (Fe3+), and this complex can reduce oxygen to hydrogen peroxide (H2O2)
and other free radicals [54]. Consequently, the increase in ROS and free radicals in cells
contributes to nuclear and mitochondrial DNA damage, simultaneously triggering lipid
peroxidation and ultimately inducing cell death [55]. Therefore, antioxidants, due to their
ability to protect cells from oxidative damage, could partially inhibit the cytotoxic activity
of this drug [56,57]. Several studies have shown a protective effect of quercitrin on normal
cells. In this regard, Li et al. [58] described how treatment with quercitrin (10–100 µg/mL)
protected mesenchymal stem cells from oxidative damage by indirectly (Fe2+ chelation)
or directly eliminating ROS. Ham et al. [59] reported a reduction in intracellular ROS,
the inhibition of lipid peroxidation, and apoptosis due to oxidative stress after V79-4
lung cells received pretreatment with quercitrin. Other studies have demonstrated that
quercitrin, due to the plurality of hydroxyl (OH) groups in its structure, has the ability
to eliminate free radicals, sequester metal ions, and form metal ion chelates [60,61]. In
addition, quercetin attenuated the cytotoxic effect of Dxo in H9C2 cardiomyocyte cells,
suggesting that quercetin could eliminate ROS and reduce oxidative damage [62]. Similarly,
numerous in vitro studies have indicated that various types of flavonoids, due to their
antioxidant properties, have cytoprotective effects by reducing cell damage induced by
oxidative stress [63–67] and attenuating the cytotoxicity induced by Dxo [68–70]. Based
on the above considerations, our results indicate that T. volubilis extracts, due to their high
phenolic content and antioxidant activity, exert a cytoprotective effect by reducing oxidative
stress and cell damage induced by Dxo, thereby decreasing the susceptibility of RKO cells
to cell death and, consequently, increasing the survival and viability of tumor cells.
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The cytoprotective effect of TvH2OBuOH and TvH2OAcOEt may be largely related
to the reduction of genotoxic damage, as shown in Western blot assays. The oxidative
stress produced by Dxo induces single-strand breaks (SSBs) and double-strand breaks
(DSBs) [55,71]. In response to DNA damage, the ataxia telangiectasia mutated (ATM) and
ATM and Rad3-related (ATR) kinases cause the variant histone H2A (H2AX) to rapidly
phosphorylate at serine 139 to form γH2AX. γH2AX is considered a sensitive indicator
of genotoxic damage [72]. Our results showed the ability of the extracts to significantly
decrease the expression of H2AX and its phosphorylated form, γH2AX, compared to
the treatment with Dxo. Consistent with our findings, in vitro studies have reported
increased γH2AX expression in response to Dxo treatment and oxidative stress [73,74].
Similarly, numerous in vitro assays have demonstrated the reduction of DNA damage by
various agents and stimuli through the antioxidant activity of phenolic compounds [75–80].
Additionally, they have shown a decrease in γH2AX formation [81–83].

Although no changes were observed in the expression of p53 and p21 proteins, the
phosphorylated form of p53 was observed in the combined treatments. When DNA
damage occurs, rapid and substantial phosphorylation occurs at multiple sites of p53,
initially through the phosphorylation of serine 15 by ATM or ATR, which is activated in
parallel with H2AX phosphorylation. The activation of p53 induces its transcriptional and
pro-apoptotic function [84]. Regarding our results, Ju et al. [85] observed that the induction
and phosphorylation of p53 (Phospho-p53 (Ser15)) in response to Dxo in RKO cells are
mainly controlled at the post-translational level. On the other hand, a study on the HCT-116
cell line suggested that the expression of p21 in response to various stimuli that induce
DNA damage seems to be independent of the increase in p53 phosphorylation [86].

The latest observations showed a significant decrease in PARP-1 cleaved in TvH2OBuOH
and TvH2OAcOEt treatments combined with Dxo compared to Dxo treatment. These
results reinforce the idea that the extracts, due to their antioxidant capacity, inhibit Dxo-
induced cell death by reducing its oxidative damage. According to the literature, the
normal function of PARP-1 is the routine repair of DNA damage by adding poly(ADP-
ribose) polymers in response to various cellular stresses; however, during apoptosis, PARP-1
is cleaved into 89 and 24 kDa fragments by executioner caspases 3 and 7, becoming cleaved
PARP-1, a hallmark of apoptosis [87]. In line with our results, Dong et al. [88] reported
that pretreatment with the flavonoid quercetin decreased the levels of cleaved PARP-1 and
reduced the percentage of apoptosis induced by Dxo (5 µM) in H9C2 cells by reducing
oxidative stress [88]. Therefore, based on our findings, we suggest that the reduction in
cleaved PARP-1 expression is related to the decrease in genotoxic damage, as confirmed by
γH2AX expression and lower p53 phosphorylation, leading to lower levels of pro-apoptotic
proteins and resulting in reduced levels of cleaved PARP-1 and a decrease in the percentage
of cell death.

5. Conclusions

Overall, our results suggest that the TvH2OBuOH and TvH2OAcOEt extracts from
T. volubilis, due to their high antioxidant capacity and phenolic content, provide a significant
viability effect to RKO cells by attenuating the oxidative damage caused by Dxo. This effect
leads to a reduction in genotoxic damage and lower p53 phosphorylation, resulting in lower
levels of pro-apoptotic proteins and, consequently, increasing the survival and viability of
tumor cells. However, it is important to validate these results through additional assays
and different experimental models.

The potential interactions between antioxidants and chemotherapy agents, like Dox-
orubicin, need to be thoroughly understood to avoid any interference with the desired
cytotoxic effects on cancer cells. The improper timing or dosage of antioxidants during
chemotherapy may compromise the efficacy of cancer treatment by reducing the ability of
drugs to target cancer cells effectively.

It is crucial to address the limitations of the study to properly contextualize the findings
and provide a balanced view of the conducted research. In this study, we identified some
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limitations that deserve mentioning. Firstly, the lack of comparison of our results with
other cell lines represents a significant limitation, as it restricts the generalizability of our
findings to a specific context. In future investigations, it is essential to include a variety
of cell lines to evaluate the different extracts and partitions obtained from Tragia volubilis
L., providing a more comprehensive understanding of its biological activity. Furthermore,
although a reduction in the cytotoxic effect of Doxorubicin was observed in the presence of
Tragia volubilis L. partitions, it is important to consider evaluating the activity of the extract
on antioxidant enzymes and ROS/RNS. Additionally, it is crucial to assess the results in an
in vivo environment, where a series of additional biological factors, such as bioavailability,
toxicity, and stability, come into play. Also, from the chemical standpoint, compounds from
the n-butanol partition could not be isolated using the procedure used in this study.

Therefore, future research should focus on elucidating the optimal conditions for the
application of antioxidants during cancer therapy to ensure that their cytoprotective effects
do not interfere with the therapeutic goals of chemotherapy. For a better understanding of
the mechanisms and potential interactions between antioxidants and chemotherapy agents,
more targeted and personalized treatment strategies could be developed to maximize the
benefits of both approaches, while also minimizing potential drawbacks.
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