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Abstract: Drought stress significantly restricts the growth, yield, and quality of peppers. Strigolactone
(SL), a relatively new plant hormone, has shown promise in alleviating drought-related symptoms in
pepper plants. However, there is limited knowledge on how SL affects the gene expression in peppers
when exposed to drought stress (DS) after the foliar application of SL. To explore this, we conducted a
thorough physiological and transcriptome analysis investigation to uncover the mechanisms through
which SL mitigates the effects of DS on pepper seedlings. DS inhibited the growth of pepper
seedlings, altered antioxidant enzyme activity, reduced relative water content (RWC), and caused
oxidative damage. On the contrary, the application of SL significantly enhanced RWC, promoted
root morphology, and increased leaf pigment content. SL also protected pepper seedlings from
drought-induced oxidative damage by reducing MDA and H2O2 levels and maintaining POD, CAT,
and SOD activity. Moreover, transcriptomic analysis revealed that differentially expressed genes
were enriched in ribosomes, ABC transporters, phenylpropanoid biosynthesis, and Auxin/MAPK
signaling pathways in DS and DS + SL treatment. Furthermore, the results of qRT-PCR showed the
up-regulation of AGR7, ABI5, BRI1, and PDR4 and down-regulation of SAPK6, NTF4, PYL6, and
GPX4 in SL treatment compared with drought-only treatment. In particular, the key gene for SL signal
transduction, SMXL6, was down-regulated under drought. These results elucidate the molecular
aspects underlying SL-mediated plant DS tolerance, and provide pivotal strategies for effectively
achieving pepper drought resilience.

Keywords: pepper; drought stress; strigolactone; transcriptome; molecular

1. Introduction

Plants are subjected to various stresses from their surrounding environment through-
out their entire life. Drought stress (DS) is becoming more prominent as an abiotic stress
factor that affects the yield of horticultural crops. In recent decades, drought intensity,
frequency, and severity have posed a severe threat to worldwide agricultural production [1].
However, drought tolerance in plants is a multifaceted characteristic that is significantly
influenced by environmental factors. DS significantly altered the morphological, physiolog-
ical, and metabolic functions in plants [2]. Plant tolerance mechanisms for DS may give
genetic resources to generate drought-resistant crops.

Pepper (Capsicum spp.) is one of the world’s major vegetable crops, and is widely
cultivated due to its exceptional adaptability [3]. Additionally, peppers are rich source
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of vitamins, pigments, carbohydrates, and antioxidants [4]. The continuing deterioration
of the climate, the frequent occurrence of high temperatures, and the shortage of water
during the pepper growth and development period have a major impact on pepper quality
and output. In light of this, it is crucial to understand the physiological and molecular
responses of chili peppers to DS and enhance their capacity for resilience. Strigolactone
(SL) is a novel class of plant hormone, characterized by a diverse array of chemical struc-
tures. It is a sesquiterpenoid lactone that is generated from a tetracyclic carotenoid. Its
primary function is to inhibit plant branching [5,6]. The use of phytohormones in the
agricultural sector suggests its potential for enhancing drought tolerance, increasing crop
production, and regulating plant growth. SL is a promising tool for improving both crop
productivity and resilience in plants [7]. Exogenous SL can alleviate the adverse effects of
DS by regulating stomatal closure, chlorophyll synthesis, and photosynthesis, as well as
activating the antioxidant defense protection mechanism in grapevines [8]. Importantly,
exogenous SL efficiently improved the sensitivity of stomata to abscisic acid (ABA) in a
DS environment [9]. In Arabidopsis, SL acts as a positive regulator in the regulation of the
plant’s response to DS. Comparative transcriptome investigations have demonstrated that
plants effectively integrate several hormone-signaling pathways, such as SL, ABA, and
cytokinin, to cope with environmental stresses [10]. SsMAX2 has been reported to reduce
chlorophyll degradation and water loss, thereby decreasing H2O2 levels in Arabidopsis [11].
Although SL’s regulation of plant stress responses is well documented, its specific impact
on enhancing DS resistance in pepper has received comparatively limited attention. Con-
sequently, there is an urgent need to comprehensively explore SLs and their uses, and
investigate their potential applications in pepper seedlings under DS conditions.

SL has the potential to serve as an effective approach for mitigating the adverse effects
of drought stress on plants. The molecular pathways involved in regulating drought
tolerance via exogenous SL, especially when pepper seedlings are exposed to drought
conditions, have not yet been determined. The investigation of the role of SL in the
mitigation of DS in pepper is an intriguing avenue for research. In order to address these
concerns, we conducted an analysis of the phenotypic, physiological, biochemical, and
molecular pathways of pepper seedlings under DS. Furthermore, we explored the potential
mechanisms of SL in alleviating DS in pepper seedlings and identify genes associated with
DS responses.

2. Materials and Methods
2.1. Plant Materials and Treatments

Capsicum chinense (HNUCC16) was cultivated in growth chambers under control
conditions (16/8 h day/night photoperiod, 26/22 ◦C day/night temperature, and relative
humidity of 75%). At the 6–8 leaf stage, identical seedlings were transferred into plastic
containers containing Hoagland’s nutrient solution (HNS). HNS was replaced every three
days. After a 7-day adaptation period, the plants were separated into different treatment
groups, as follows: (1) control; (2) drought stress (DS), in which plants were placed in
10% (w/v) polyethylene glycol (PEG-6000) to simulate drought conditions; and (3) 3 µM
GR24 pretreatment, in which plants were placed in 10% (w/v) PEG-6000 (SL + DS). Each
treatment group included 15 plants. GR24 (Coolaber, Beijing, China), an SL analog, was
dissolved with acetone and 0.1% Tween 20, and the storage concentration was 10 mM.
Control and DS were then treated with the equivalent amount of distilled water with the
same amount of acetone and Tween 20. SL was applied to the leaves on peppers for three
consecutive days (twice a day). After SL application, seedlings were exposed to drought
stress treatment for three days. After stress treatment, leaf samples were collected for
morphology, physiological, and biochemical assays and RNA sequencing analysis. All
samples were immediately frozen in liquid nitrogen and stored at −80 ◦C. Each treatment
was repeated three times. Pepper seeds were supplied by the School of Tropical Agriculture
and Forestry, Hainan University (Hainan, China). Three biological replicates were used in
each treatment.
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2.2. Measurement of Relative Water Content and Root Morphology

The relative water content (RWC) was measured using a modified protocol described
previously [8]. The pepper leaves were rinsed with distilled water, and leaves were wiped
with absorbent paper and the fresh weight (FW) recorded. The samples were soaked in
distilled water for 24 h at 4 ◦C in darkness, and the turgid weight (TW) was recorded. The
dry weight (DW) was then determined after drying at 85 ◦C for 2 min and 24 h at 60 ◦C.
RWC formula:

RWC (%) = (FW − DW)/(TW − DW) × 100%

Roots’ phenotype was recorded after seven days of DS. To examine the root mor-
phology, four plants of similar size were chosen from each duplicate, and their roots were
taken. Subsequently, the roots were completely cleaned with running tap water. An Image
Scanning Screen (Epson Expression 110000XL, Regent Instruments, Québec, QC, Canada)
was used for root scanning, and WinRHIZO 2003a software was used for root data analysis.

2.3. Scanning Electron Microscopy

The leaf tissue blocks were left in an electron microscopy fixative for 2 h at room
temperature, then transferred to 4 ◦C for preservation and transport. Then, leaf tissue
blocks were treated with 0.1 M PB (pH 7.4). Then, tissue blocks were transferred to
1% OsO4 in 0.1 M PB (pH 7.4). After that, leaf tissue blocks were infused with alcohol and
isoamyl acetate. Dry samples were dried with a dryer, and specimens were attached to
metallic stubs using carbon stickers and sputter coated with gold. Finally, we observed and
captured images with a scanning electron microscope (SU8100, Hitachi, Tokyo, Japan).

2.4. Chlorophyll Content

For the determination of pigment molecules, 0.1 g fresh leaves ground, and placed
in a 10 mL of acetone extracting solution. The sample was centrifuged at 10,000× g for
10 min. The chlorophyll was spectrophotometrically determined in supernatant at 663 and
645 nm, respectively. Determination of chlorophyll content was realized using the formulae
reported by [12].

2.5. Measurement of Antioxidant Enzyme Activity and Related Metabolites

The activities of superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT)
were analyzed based on the modified protocols reported by [12]. Fresh samples (0.1 g)
were ground in 900 µL phosphate buffer (pH 7.8), and the homogenate was centrifuged
at 10,000× g for 10 min. The supernatant was used to determine the activity of antiox-
idant enzymes. The MDA level, H2O2 contents, the Pro concentration, and the soluble
sugar content of the leaves were determined using an assay kit (Jiancheng Bioengineer-
ing Institute, Nanjing, China), following the detailed instructions [12]. The colorimetric
measurements of MDA, H2O2, Pro, and soluble sugar were measured at 530, 405, 520, and
620 nm, respectively.

2.6. Transcriptome Sequencing, Differential Gene Expression, and Enrichment Analysis

We selected explants with normal development for sampling in different treatments,
including control, DS, and SL+DS. Total RNA was isolated with Trizol Reagents (Thermo
Fisher Scientific, Shanghai, China). Nine nondirectional libraries were produced using the
NEBNext® UltraTM RNA Library Prep Kit for Illumina® (NEB, Boston, Massachusetts,
USA) and sequenced on the Illumina Novaseq platform. Clean reads were obtained by
filtering low-quality reads and aligning them with the C. chinense reference genome using
HISAT2 (v.2.0.5) [13]. The methods of Benjamini and Hochberg were used to adjust the
obtained p-value to control the error detection rate. Genes with an adjusted p-value < 0.05
discovered through DESeq2 were assigned as differentially expressed (DEG) [14]. Each
subset of the clustering line graph, where the value of differential genes is the union of
all comparative combinations of differential genes, and the expression level of differential
genes in the FPKM expression matrix of each sample were taken as log2 (fpkm + 1) and
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centralized for correction. The Gene Ontology (GO) of differentially expressed genes
and the statistical enrichment of DEGs in the KEGG pathway were analyzed using the
clusterProfiler R package [15,16].

2.7. Gene Expression by qRT-PCR

Total RNA was reversed transcriptionally using Hiscript Q RT SuperMix for qPCR
(Vazyme Biotech, Nanjing, China), and qPCRs were analyzed using ChamQ SYBR qPCR
Master Mix (Vazyme Biotech, Nanjing, China). The amplification program was based on
the QuantStudioTM 5 Real-Time PCR System (Thermo Fisher Scientific, Waltham, Mas-
sachusetts, USA) [17]. The specific primers of the selected genes are listed in Table S1.

2.8. Statistical Analysis

Statistical analysis was performed using Microsoft Excel (v16.72) and SPSS (v26). The
significance of the difference between the mean values was tested using Duncan’s multiple
range test (p < 0.05). Figures were generated using GraphPad Prism software (v9.5.0),
representing mean values with a standard deviation of three replicates per treatment.

3. Results
3.1. SL Alleviated the Negative Effects of Drought Stress on the Morphology of Pepper

To confirm the possible effects of SL on pepper growth in a DS environment, we
examined the pepper morphology in the control, DS, and DS + SL groups. DS signifi-
cantly inhibited the root growth of pepper seedlings. However, pretreatment with SL
can effectively alleviate the inhibitory effect of DS. Under DS conditions, the root length,
surface area, volume, tips, crossing, and forks of the plant decreased by 49.56%, 59.45%,
65.27%, 32.31%, 55.7%, and 56.62%, respectively, compared with the control treatments.
Furthermore, after SL pretreatment, the reduction was only 20.13%, 35.48%, 35.71%, 15.4%,
29.11%, and 22.63%, respectively, compared to the control group. Importantly, foliar appli-
cation of SL significantly promoted the root architecture system of pepper seedlings in a
DS environment (Figure 1). These findings suggested that SL could maintain normal root
growth and balanced water uptake.
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showed that compared to the control group, the plant stomata were completely closed in 
drought-only treatment (Figure 2B). In SL application along with DS conditions, stomatal 
closure was alleviated, demonstrating that exogenous SL could alter the stomata opening 
in response to DS (Figure 2C). Additionally, compared to the control group, the stomatal 
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Figure 1. Cont.



Antioxidants 2023, 12, 2019 5 of 16

Antioxidants 2023, 12, x FOR PEER REVIEW 5 of 16 
 

 
Figure 1. Phenotypic changes in pepper seedlings. (A) The phenotypic of pepper plants and roots 
under different treatments. (B) Total root length, (C) root surface area, (D) root volume, (E) root tips, 
(F) root crossing, and (G) root forks. Control: under normal control conditions, DS: drought condi-
tions, and DS + SL: drought conditions with SL application. The data are mean values and standard 
errors; the black dot indicates three biological replicates. Different letters indicate significant differ-
ences between different treatments (p < 0.05). 

3.2. The Microscopic Structure of Leaf Tissue 
We evaluated the stomatal characteristics of plants with various treatments to detect 

the effect of SL on their stomatal opening and closing ability under DS (Figure 2). SEM 
showed that compared to the control group, the plant stomata were completely closed in 
drought-only treatment (Figure 2B). In SL application along with DS conditions, stomatal 
closure was alleviated, demonstrating that exogenous SL could alter the stomata opening 
in response to DS (Figure 2C). Additionally, compared to the control group, the stomatal 
area decreased by 98%; however, the stomatal area increased by 57.45% with SL foliar 
application under drought stress (Figure 2D). SL foliar application may promote stomatal 
opening by regulating cell permeability to maintain water levels in leaves. 

Figure 1. Phenotypic changes in pepper seedlings. (A) The phenotypic of pepper plants and roots
under different treatments. (B) Total root length, (C) root surface area, (D) root volume, (E) root
tips, (F) root crossing, and (G) root forks. Control: under normal control conditions, DS: drought
conditions, and DS + SL: drought conditions with SL application. The data are mean values and
standard errors; the black dot indicates three biological replicates. Different letters indicate significant
differences between different treatments (p < 0.05).

3.2. The Microscopic Structure of Leaf Tissue

We evaluated the stomatal characteristics of plants with various treatments to detect
the effect of SL on their stomatal opening and closing ability under DS (Figure 2). SEM
showed that compared to the control group, the plant stomata were completely closed in
drought-only treatment (Figure 2B). In SL application along with DS conditions, stomatal
closure was alleviated, demonstrating that exogenous SL could alter the stomata opening
in response to DS (Figure 2C). Additionally, compared to the control group, the stomatal
area decreased by 98%; however, the stomatal area increased by 57.45% with SL foliar
application under drought stress (Figure 2D). SL foliar application may promote stomatal
opening by regulating cell permeability to maintain water levels in leaves.
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3.3. Relative Water Content and Chlorophyll Content of the Leaves

The drought strongly affected the RWC and chlorophyll content of the pepper seedlings.
Only DS treatment has a lower RWC (76.57%) than the control group (90.61%). Remarkably,
peppers treated with DS + SL have a significantly higher RWC in leaves (86.35%) than those
grown under drought-only conditions (Figure 2E). Drought treatment significantly reduced
the chlorophyll content in the leaves of pepper seedlings. Compared to the control, the
concentrations of total chlorophyll, chlorophyll a, and chlorophyll b in pepper seedlings
were decreased by 28.8%, 26.82%, and 21.91%, respectively. However, DS + SL plants
exhibit considerably higher chlorophyll content, with increases of 23.69%, 22.33%, and
12.78%, respectively, compared to DS treatment plants (Figure 2F–H).

3.4. Measurement of Antioxidant Enzyme Activity and Related Metabolites

Drought + SL treatments significantly affected the antioxidant enzyme (POD, CAT,
and SOD) activity of pepper seedlings. DS had significantly increased POD, CAT, and SOD
activity compared to the control group. However, pretreated SL inhibited enzyme activity
in the leaves of pepper seedlings. For example, the POD, CAT, and SOD activity of DS
was only 180.86%, 93.59%, and 107.02% higher than in the control group. In contrast, the
DS + SL group had lower enzyme activity than the DS-only treatments (Figure 3A–C).
Compared to the control group, the DS-only group presented an extreme increase in proline,
MDA, and H2O2. On the contrary, DS + SL plants presented significantly decreased proline,
MDA, and H2O2 content, with 88.39%, 57.89%, and 61.83%, respectively, compared with the
DS group in pepper seedlings (Figure 3D–F). Under DS, there is an increase in soluble sugar
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content. In addition, no significant differences were seen in DS and DS + SL treatments
(Figure 3G).
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3.5. Assessment of RNA-Seq Data and Differentially Expressed Gene Analysis

A total of 40.32 million raw data were generated from transcriptome sequencing in
three groups, which were filtered for low-quality reads, resulting in 38.69 million clean
reads. It was found that 88.58–93.36% of reads could be successfully assigned to the
C. chinense reference genome, and the unique mapping rate ranged from 85.35–89.02%
(Table S2). Hierarchy analysis showed that different samples at the same treatment clustered
together, and the DS + SL group demonstrated the most significant differences (Figure 4A).
The transcriptome was divided into four clusters of DEGs, and the genes in each cluster
had similar expression patterns, including 95, 1481, 159, and 25, respectively (Figure 4B).
A total of 2097 DEGs were identified among the DS vs. control, DS + SL vs. control, and
DS vs. DS + SL groups. The Venn diagram showed that only two genes were expressed
in all groups, and the specific DEGs were higher than the common DEGs among all three
groups (Figure 4C). Furthermore, there were 410 and 849 DEGs in group DS and DS + SL,
compared with the control group, respectively. Moreover, there were 838 DEGs between
the DS and DS + SL groups (Figure 4D).



Antioxidants 2023, 12, 2019 8 of 16
Antioxidants 2023, 12, x FOR PEER REVIEW 8 of 16 
 

 
Figure 4. DEGs among three groups under different treatments. (A) Heatmap and cluster analysis 
expression of DEGs, (B) magnified regions of 4 subclusters of RNA–seq data. The gray lines repre-
sent the relative corrected gene expression levels of genes and the blue lines indicate consensus on 
relative corrected gene expression levels of all genes, (C) Venn diagram of three groups’ DEGs, and 
(D) number of DEGs. 

3.6. Enrichment Analysis of DEGs 
Comparing DEGs between the control and DS group, galactose metabolism, plant 

hormone signal transduction, photosynthesis, and photosynthesis-antenna proteins were 
enriched in the latter. When control and DS + SL were compared, it was found that the 
biosynthesis of amino acids, brassinosteroid biosynthesis, carotenoid biosynthesis, and 
MAPK signaling were enriched in the latter. Intriguingly, the DS and DS + SL groups ex-
hibited a significant enrichment in the ribosome pathway compared to the control group. 
Phenylpropanoid biosynthesis, terpenoid backbone biosynthesis, flavonoid biosynthesis, 
carotenoid biosynthesis, and MAPK signaling pathways were enriched in the DEGs iden-
tified between treatments with DS and DS + SL (Figures 5 and S1 and Table S3). In addi-
tion, the genes of interest, as described by the molecular and biological functions of GO, 
were classified as molecular function (MF), cellular component (CC), and biological pro-
cess (BP). GO functional annotation was performed to fully understand the roles of DEGs 
among the control, DS, and DS + SL groups (Figure S2). 

Figure 4. DEGs among three groups under different treatments. (A) Heatmap and cluster analysis
expression of DEGs, (B) magnified regions of 4 subclusters of RNA–seq data. The gray lines represent
the relative corrected gene expression levels of genes and the blue lines indicate consensus on
relative corrected gene expression levels of all genes, (C) Venn diagram of three groups’ DEGs, and
(D) number of DEGs.

3.6. Enrichment Analysis of DEGs

Comparing DEGs between the control and DS group, galactose metabolism, plant
hormone signal transduction, photosynthesis, and photosynthesis-antenna proteins were
enriched in the latter. When control and DS + SL were compared, it was found that the
biosynthesis of amino acids, brassinosteroid biosynthesis, carotenoid biosynthesis, and
MAPK signaling were enriched in the latter. Intriguingly, the DS and DS + SL groups
exhibited a significant enrichment in the ribosome pathway compared to the control group.
Phenylpropanoid biosynthesis, terpenoid backbone biosynthesis, flavonoid biosynthesis,
carotenoid biosynthesis, and MAPK signaling pathways were enriched in the DEGs identi-
fied between treatments with DS and DS + SL (Figure 5 and Figure S1 and Table S3). In
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addition, the genes of interest, as described by the molecular and biological functions of
GO, were classified as molecular function (MF), cellular component (CC), and biological
process (BP). GO functional annotation was performed to fully understand the roles of
DEGs among the control, DS, and DS + SL groups (Figure S2).
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3.7. Candidate Genes Involved in Drought and SL Treatment

Based on enrichment analysis, we identified 71 genes whose expression showed sig-
nificant differences among the control, DS, and DS + SL groups, signifying that they
may be responsive to DS or involved in the SL-induced alleviation of DS. Genes as-
sociated with the phenylpropanoid biosynthesis pathway were considerably enriched
between DS alone and the DS + SL group, and 18 differentially expressed genes were iden-
tified. Interestingly, the expression of the genes related to phenylpropanoid biosynthesis
BC332_05436 (cytochrome 84A1) and BC332_01431(peroxidase 15) were notably higher in
DS + SL group than in DS group plants. On the contrary, BC332_25211(4-coumarate--CoA
ligase 2), BC332_33581(caffeoyl-CoA O-methyltransferase), and BC332_34596 (caffeoyl-CoA O-
methyltransferase) show substantially lower expression in DS + SL than in drought-only
treatment. Furthermore, compared with the control group, in plants under DS alone and
DS + SL treatment, genes related to the plant hormone signal transduction and MAPK
pathways were significantly enriched. BC332_22503 (indole-3-acetic acid-induced protein
ARG7) and BC332_09592 (BRI1 kinase inhibitor 1) were distinctly expressed in the DS + SL
group, and had low expression in DS. Additionally, we identified 15 SL biosynthesis-related
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genes from DEGs. The expression profiles of genes involved in SL biosynthesis showed
significant differences among the control, DS, and DS + SL groups. Compared with the DS
group, BC332_23620 (SMAX1-LIKE 6), BC332_15224 (SMAX1-LIKE 7), and BC332_18735
(SMAX1-LIKE 4) were expressed higher in DS + SL. Furthermore, 23 genes were iden-
tified in the ABC transporter pathway. Compared to the control treatment, the genes
BC332_30010, BC332_33666, and BC332_16040 were up-regulated in DS + SL treatment but
down-regulated in DS-treated plants (Figure 6). Furthermore, we acquired mRNA levels of
proline and antioxidant enzyme biosynthetic genes, which further elucidated the candidate
genes at the molecular level (Figure S3).
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3.8. qRT-PCR Validation of Gene Expression

Fifteen candidate genes closely associated with DS were selected for analysis of expres-
sion via RNA-Seq (Table S4). The control group was used as a control, while the DS and DS
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+ SL groups were investigated to validate the reliability of the RNA-seq data obtained in
this study (Figure 7).
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4. Discussion

Drought is well recognized as a primary abiotic stress factor that impedes plant growth
and development [18]. The crucial role of several plant hormones in regulating the response
to plant stress is well recognized [19]. SL has a crucial function in the regulation of plant
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development and the alleviation of environmental stressors [20]. Furthermore, the foliar
application of SL enhances plant growth under DS conditions by improving photosynthetic
characteristics and antioxidant enzyme activity [21]. However, little information about its
effects on pepper abiotic stress responses is available.

DS considerably inhibited plant growth [22]. In this study, the roots and leaves of
pepper seedlings were adversely affected under DS conditions. Pretreatment with SL
can alleviate the drought symptoms of peppers. In the drought-stress treatment, the
young wilted leaves showed signs of drooping and shrinking and most mature leaves had
begun to curl, whereas the leaves of the DS + SL treatment only showed mild symptoms
(Figures 1 and 2E). Hence, the results indicated that the application of SL reduced the
apparent drought damage of pepper seedlings under DS. Chlorophyll content in plants is
a critical indicator of photosynthetic activity, but this characteristic is adversely affected
under stressful conditions [23]. The chlorophyll content significantly reduced by DS [24].
Additionally, SL plays a vital role in regulating plant photosynthetic efficiency [25]. Our
research results show that the exogenous application of SL significantly alleviates the
decrease in chlorophyll content under DS (Figure 2F–H). Consequently, this suggests that
SL is an effective substance with which pepper can cope with DS; similar results have been
reported in grapes [26]. Thus, applying SL is very possibly a method that can be used to
alleviate the adverse effects of DS on pepper seedlings.

Proline is considered an important metabolite synthesized within plant cells under
environmental stress conditions. It is assumed to have a significant impact on the protective
function of plants grown under stress, which is attributed to its ability as an osmotic
protector, membrane stabilizer, and ROS scavenger [27,28]. Previous literature suggested
that proline accumulation may help improve water status and reduce oxidative damage
caused by abiotic stress [18]. Similarly, we observed that DS significantly increased proline
accumulation in pepper plants. In contrast, the application of SL significantly reduced
the proline concentration in pepper seedlings under DS (Figure 3D). This demonstrates
that SL has a potential efficiency effect on osmotic regulation during DS, which may help
plants maintain growth and function. The proline biosynthesis gene (AtP5CS1) is pivotal
in increasing proline biosynthesis under abiotic stress conditions [29]. We found that the
mRNA level of P5CS (BC332_15138) was increased in peppers exposed to drought with or
without SL (Figure S3). Captivatingly, the application of SL resulted in a significant decrease
in proline content, which demonstrated that the up-regulation of P5CS transcription levels
might contribute to an increase in proline concentration. However, the mechanism by
which SL affects proline is not yet clear, and requires further exploration.

Maintaining redox homeostasis is of the utmost importance in mitigating the excessive
generation of ROS and minimizing cellular membrane impairment in plants subjected
to environmental stressors [30]. In the present study, there was a significant increase in
the content of H2O2 and MDA under DS, while SL reversed the oxidative damage in
DS-induced pepper seedlings by inhibiting the accumulation of H2O2 and MDA content
(Figure 3E,F). The SL-mediated drought response may involve a complex interaction in
H2O2 content and stomatal closure [8,31]. It may be necessary for plants to maintain the
expression of some genes to maintain stomatal opening at specific levels, and subsequently
balance CO2 inflow and water loss under water scarcity conditions [32]. We perceived that
the leaf stomata were firmly closed during DS. However, SL application had a remarkable
effect in relieving this stomatal closure (Figure 2C), suggesting that SL plays a crucial role
in regulating the plant’s water balance, leading to the reopening of the stomata under DS.
This is a complex molecular mechanism that still needs further research. To cope with
oxidative damage, plants have developed a proficient antioxidant defense mechanism [33].
It was stated that SL can enhance the activity of antioxidant enzymes for ROS detoxification,
thus endowing crop tolerance [34]. Compared with the DS group, lower levels of POD,
CAT, and SOD activity were detected in the DS + SL group, signifying that SL can improve
ROS clearance efficiency and potentially protect plants from the adverse effects of DS,
consequently alleviating the oxidative stress caused by DS (Figure 3A–C). Furthermore,
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we assessed the expression levels of peroxidase4 (POD4) and peroxidase (POD15), which are
genes involved in the phenylpropane biosynthetic pathway. In drought-exposed seedlings,
the expression of POD15 decreased, whereas SL application significantly increased the
expression levels of these genes, consistent with the transcriptomic results. Conversely,
POD4 showed almost no expression after SL treatment (Figure 7). Whether the transcription
levels of POD genes contribute to improved drought tolerance or hinder drought resistance
warrants further investigation.

SL effectively regulates plant growth in responses to various environmental condi-
tions [35]. The physiological and molecular analysis of Arabidopsis suggests that plant hor-
mone signaling pathways are critical to regulating drought or water-deficit responses [36].
OSRK1 (SAPK6) is an upstream regulatory factor for stress signaling in rice roots, playing a
significant role in ABA and hypertonic stress signaling [37]. Our research found that plants
pretreated with SL exhibited significant gene changes associated with plant hormone signal
transduction and the MAPK signal transduction pathway during DS (Figures 5 and 6).
Specifically, we observed changes in the expression of auxin-responsive proteins from
the Aux/IAA family, that are known to play a key role in plant stress responses [38]. An
increase in ROS concentration exerts a negative regulatory influence on IAA turnover [39].
Interestingly, in this study, the expression level of ARG7 (BC332_22503) was found to be
decreased by 97.9% in the DS group, while it significantly increased in the DS + SL group.
Furthermore, BC332_20130 (SAPK6) encoding kinase was found to be up-regulated in
response to DS without SL treatment, but significantly down-regulated in the group with
SL pretreatment. We hypothesize that these genes may mitigate DS through the action
of SL.

ABC transporters are now recognized to be involved in many physiological processes
that enable plants to adapt environmental changes [40]. Multipotent drug-resistance (PDR)
subfamily ABC proteins are found in many plants, and cope with biotic and abiotic stresses.
A previous study demonstrated that the overexpression of the ABC transporter protein
AtABCG36/AtPDR8 made plants more resistant to drought and salt stress than wild-type
plants. In contrast, knockout lines are more sensitive to DS than wild-type plants [41]. We
identified that BC332_16040 (PDR4) was significantly up-regulated after SL pretreatment
under DS, implying that PDR4 may play a crucial role in the response to DS and SL. Previous
studies have demonstrated that the interaction between MAX2 and DWARF14 triggers
the signal transduction of SL, while SMXL6 (SUPPRESSOR OF MAX1-Like 6) functions as
an inhibitor of SL signal transduction [42,43]. The MAX2 mutant exhibits high sensitivity
to DS [44]. A recent study has discovered that SsMAX2 overexpression in Arabidopsis
significantly enhances resistance to drought, osmotic, and salt stresses [11]. In addition,
SMXL6, SMXL7, and SMXL8 play a negative regulatory role during DS in Arabidopsis [45].
We found that the expression level of BC332_17885 (CcSMAX1) was up-regulated under DS
but down-regulated with SL treatment (Figure 7), indicating its negative regulatory role in
response to DS. On the contrary, the expression of CcSMXL6 showed the opposite trend.
The investigation of the mechanism of action is elusive, necessitating further investigation.

5. Conclusions

In summary, our comprehensive investigation, which includes phenotypic obser-
vations, physiological measurements, and gene expression analysis, demonstrates the
multifaceted positive impact of SL on pepper plants in a DS environment. SL effectively
mitigates the adverse effects of DS and promotes the growth of pepper seedlings under
such challenging conditions. The application of SL is a powerful tool to counteract drought-
induced oxidative damage and enhance tolerance to DS, ultimately facilitating the overall
healthy development of pepper plants. Furthermore, our findings highlight that DEGs
critical to DS responses are predominantly related to the MAPK and plant hormone sig-
nal transduction pathways. These insights contribute to a deeper understanding of the
molecular and physiological mechanisms underlying the ability of pepper to withstand DS
and provide a valuable conceptual framework for elucidating how SL intricately interacts
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with diverse signaling pathways in pepper’s adaptive response to drought stress. This
research lays a solid foundation for future investigations into enhancing crop resilience and
sustainability in the face of environmental challenges (Figure 8).
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