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Abstract: Atherosclerosis remains a leading cause of cardiovascular diseases. Although the mecha-
nism for atherosclerosis is complex and has not been fully understood, inflammation and oxidative
stress play a critical role in the development and progression of atherosclerosis. N-acetylcysteine
(NAC) has been used as a mucolytic agent and an antidote for acetaminophen overdose with a
well-established safety profile. NAC has antioxidant and anti-inflammatory effects through mul-
tiple mechanisms, including an increase in the intracellular glutathione level and an attenuation
of the nuclear factor kappa-B mediated production of inflammatory cytokines like tumor necrosis
factor-alpha and interleukins. Numerous animal studies have demonstrated that NAC significantly
decreases the development and progression of atherosclerosis. However, the data on the outcomes of
clinical studies in patients with atherosclerosis have been limited and inconsistent. The purpose of
this review is to summarize the data on the effect of NAC on atherosclerosis from both pre-clinical
and clinical studies and discuss the potential mechanisms of action of NAC on atherosclerosis, as
well as challenges in the field.
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1. Introduction

Atherosclerosis remains a leading cause of cardiovascular diseases (CVDs) globally
and is considered a chronic inflammatory disease, with increased levels of reactive oxygen
species (ROS) and oxidative stress [1,2]. Antioxidants, which inhibit oxidation, would be
expected to have a favorable impact on patients with atherosclerosis. However, the Heart
Outcomes Prevention Evaluation (HOPE) Study [3], a double-blind and randomized trial
with patients at high risk for cardiovascular events, showed that treatment with antioxidant
vitamin E had no beneficial effect over a mean follow-up of 4.5 years. Although there were
no significant adverse effects of vitamin E, the primary outcome (a composite of myocardial
infarction, stroke, and death from cardiovascular causes) and the secondary outcomes
(including unstable angina, congestive heart failure, revascularization or amputation, death
from any cause, complications of diabetes, and cancer) were the same in patients either
on vitamin E or placebo [3]. Studies with antioxidant β-carotene treatment also failed to
achieve significant clinical benefits in patients with CVDs, including atherosclerosis [4].

N-Acetylcysteine (NAC) is approved by the Food and Drug Administration (FDA)
for the treatment of acetaminophen overdose. Although not approved for use as a dietary
supplement, NAC has been widely used for acute respiratory distress syndrome, bronchitis,
chemotherapy-induced toxicity, human immunodeficiency virus/acquired immune defi-
ciency syndrome, radio-contrast-induced nephropathy, heavy metal toxicity, psychiatric
disorders, and as an over-the-counter nutritional supplement [5,6]. In the cardiovascular
area, NAC has been used off label for doxorubicin-induced cardiotoxicity, stable angina
pectoris, and cardiac ischemia-reperfusion injury [6,7].
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The primary mechanisms for the actions of NAC are considered to relate to its an-
tioxidative effects via increasing intracellular glutathione (GSH) levels (crucial for cellular
redox balance) and its anti-inflammatory effect through suppressing nuclear factor kappa
B (NF-κB)-mediated expression of a variety of inflammatory mediators, including tumor
necrosis factor-alpha (TNF-α) and interleukins (IL-6 and IL-1β) [5]. In this review, we
summarize the data on the effects of NAC on atherosclerosis from both pre-clinical and
clinical studies and discuss the potential mechanisms of the effects of NAC on atheroscle-
rosis development and progression, as well as controversies and challenges concerning
NAC and atherosclerosis. The actions and mechanisms of NAC on the modulation of lipid
metabolism, homocysteine, and vascular endothelial cells will also be discussed.

2. Overview of NAC and Cardiovascular Diseases

As shown in Table 1, the intravenous administration of NAC significantly increases
arterial vascular reactivity during reactive hyperemia in patients with chronic kidney
disease following hemodialysis [8], reduces vasospasm in patients suffering from sub-
arachnoid hemorrhage [9], and prevents ischemia-reperfusion syndrome following aortic
clamping in patients during abdominal aortic aneurysmectomy [10]. NAC has been shown
to decrease the frequency and severity of Raynaud’s phenomenon (RP) attacks and digital
ulcers (DU) in patients with systemic sclerosis (SSc), with a significant reduction in plasma
adrenomedullin concentrations [11–13]. Another study also demonstrated that NAC pro-
tected patients with RP secondary to SSc against DU, although NAC has no significant
vasodilator effect on the microcirculation in hands [14].

Table 1. Clinical studies with NAC in patients with peripheral vascular disease (PVD).

Patient Information Intervention Outcome Ref.

Pts (6 M and 16 F, YOA: 18–75)
with RP secondary to SSc

NAC i.v. starting with a 2 h
loading dose of 150 mg/kg, then

15 mg/kg/h for 5 days

Both frequency and severity
of RP attacks, active ulcers,

and old challenge test mean
recovery time decreased

[11]

Pts (7 M and 43 F; YOA: 35–67)
with RP secondary to SSc

NAC i.v. 15 mg/kg/h for 5 h in
every 14 days for about 3 years

Reduction of DU, RP attacks,
and RP DU ulcer visual

analog scale
[12]

Pts (4 M and 22 F, YOA: 25–68)
with RP secondary to SSc

NAC i.v. 15 mg/kg/h for 5 h,
every 2 weeks for 2 years

Increased global hands
perfusion and decreased
plasma adrenomedullin

concentrations, frequency and
severity of RP attacks

[13]

Pts (42 M, YOA: 32–58) with RP
secondary to SSc NAC oral 600 mg tid for 4 weeks

Decreased DU but no
vasodilator effect on hands’

microcirculation
[14]

Pts (20 M and 4 F, YOA: 56–78)
with stage 5 CKD during

hemolysis

NAC i.v. 5 g in 5% glucose in a
final volume of 50 mL during one

hemodialysis session

Improved arterial vascular
reactivity during reactive

hyperemia with decreased
reflective index

[8]

Pts (total 36, YOA: 56–76, without
or with only minor signs of

preoperative ischemia of the
lower body) undergoing elective

infrarenal AAA

NAC i.v. 150 mg/kg b.m. 30 min
before infrarenal aortic clamping

Prevented elevation of plasma
lipid peroxide, thromboxane,
and prostacyclin levels after
declamping with increased

plasma GSH concentration for
over 12 h

[10]

NAC: N-acetylcysteine; Pts: patients; M: male; F: female; YOA: years of age; RP: Raynaud’s phenomenon;
SSc: systemic sclerosis; mg: milligram; kg: kilogram; h: hour; Ref: references; i.v.: intravenous infusion;
DU: digital ulcer; tid: three times a day; AAA: abdominal aortic aneurysm; b.m.: body mass; b.w.: body weight;
CKD: chronic kidney disease; GSH: glutathione.
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NAC has been reported to protect against coronary artery diseases (CAD), myocardial
infarction (AMI), myocardial injuries, and cardiomyopathy [15–20] (Table 2). In patients
with cardiac surgery, NAC decreases diabetes-associated cardiovascular, cardiopulmonary
bypass, and cardiac surgery complications, including early reperfusion injury, pump-
induced inflammatory response, and myocardial stress [21–23]. However, a systematic re-
view has shown that NAC has no significant efficacy in improving major adverse outcomes,
including mortality, acute renal failure, HF, length of stay and/or outcomes of care in inten-
sive care unit, arrhythmia, and AMI, in patients following cardiac surgery [24]. Multiple
clinical studies have demonstrated that NAC treatment effectively reduces the risk of atrial
fibrillation (AF) (Table 3), a common arrhythmia post cardiac surgery [25–29], although
one study reveals that a high dose of oral NAC treatment had no benefit on postoperative
AF [30]. In addition, NAC has been reported to improve HF [31] however, no beneficial
effect was observed in patients with doxorubicin-induced cardiomyopathy [32,33].

Table 2. Clinical studies with NAC in atrial fibrillation (AF).

Patient Information Intervention Outcome Ref.

Pts (total 150 M and F, YOA: 35–75)
with elective CABG surgery

using CPB

NAC i.v. 50 mg/kg for 30 min on
days 1 and 2 after surgery

Reduced inflammation and
incidence of POAF

after CABG
[25]

Pts (231 M and 28 F, YOA: 53–73)
with CABG or combined CABG and

valve surgery

Carvedilol plus NAC i.v. 50 mg/kg
for 1 h before surgery and at the same

dose for 48 h after the procedure

Reduced oxidative stress and
inflammation which were

associated with POAF
[26]

Pts (231 M and 80 F, YOA: 54–72)
with CABG or combined CABG and

valve surgery

Carvedilol plus NAC i.v.
50 mg/kg/day for 1 h before surgery

and at the same dose for 48 h after
the procedure

Decreased POAF incidence
and duration of
hospitalization

[27]

Pts (44 M and 31 F, YOA: 56–76) with
AF with CABG or valve surgery,

or both

Amiodarone plus NAC i.v.
100 mg/kg 30 min and 25 mg/kg for

48 h

NAC plus amiodarone might
facilitate converting POAF to

SR, decrease the time to
conversion, and lower the

requirement of EC

[28]

Pts (91 M and 24 F, YOA: 25–78) with
CABG or valve surgery, or both

NAC i.v. 50 mg/kg/day for 1 h
before surgery and at the same dose

for 48 h after the procedure

Decreased the incidence of
postoperative AF [29]

Pts (180 M and 60 F, YOA: 40–70) with
CABG, with or without valve surgery

NAC orally 1200 mg bid starting 48 h
before and up to 72 h after surgery

Had no significant effect on
the incidence of POAF,

in-hospital stay, and
postoperative morbidity

or mortality

[30]

NAC: N-acetylcysteine; Pts: patients; M: male; F: female; YOA: years of age; mg: milligram; kg: kilogram;
h: hour; Ref: references; i.v.: intravenous infusion; AF: atrial fibrillation; CABG: coronary artery bypass graft;
CPB: cardiopulmonary bypass; POAF: postoperative AF; SR: sinus rhythm; EC: electrical cardioversion.

Table 3. Clinical studies with NAC in coronary artery disease (CAD).

Patient Information Intervention Outcome Ref.

Pts (47 M and 28 F, YOA: 50–78) with STEMI NAC i.v. 29 g with NTG i.v. 7.2 mg over
2 days

Reduced infarct size in patients
with STEMI undergoing PCI [34]

Pts (total 28 M and F, YOA: ≤ 75) with AMI NAC i.v. 15 g for over 24 h combined with
NTG and streptokinase

Appeared to be safe for the
treatment of evolving AMI and

was associated with significantly
less oxidative stress, a trend

toward more rapid reperfusion,
and better preservation of LV

function

[35]
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Table 3. Cont.

Patient Information Intervention Outcome Ref.

Pts (3 M and 19 F, YOA: 42–66) with AMI NAC i.v. 15 g NAC for over 24 h combined
with streptokinase

Diminished oxidative stress and
improved LV function [36]

Pts (19 M and 11 F, YOA: 55–61) with
LVEF > 40% undergoing CABG

NAC i.v. 50 mg/kg b.w. with cold-blood
cardioplegia

Minimized myocardial injury in
the early hours after and during

cardiac surgery
[37]

Pts (35 M, YOA: 59–63) with normal
myocardial function undergone CABG NAC i.v. 0.04 mol/L with Plegisol

Increased tissue capacity against
oxidative stress and decreased

inflammatory response
[38]

Pts (32 M and 14 F, YOA: 40–73) with severe
unstable angina pectoris unresponsive to

conventional treatment

NAC i.v. 5 g over 15 min after NTG and
repeated every 6 h for 24 h.

Lowered incidence of AMI but
increased symptomatic

hypotension
[39]

NAC: N-acetylcysteine; Pts: patients; M: male; F: female; YOA: year of age; mg: milligram; kg: kilogram;
h: hour; Ref: references; i.v.: intravenous infusion; STEMI: ST elevated myocardial infarction; NTG: nitroglycerin;
PCI: percutaneous coronary intervention; AMI: acute myocardial infarction; LVEF: left ventricular ejection fraction;
b.w.: body weight.

Animal studies have shown that NAC improves peripheral vascular diseases (PVD),
with reduced muscular fatigue [40], restoration of redox balance and calcium retention
capacity, as well as the suppression of reactive oxygen species (ROS) production in mice
with hind limb ischemia [41]. NAC prevented excessive intracellular and extracellular
ROS formation in mice with limb ischemia and enhanced the recovery of ischemic limb
blood flow and function, in association with a selective increase in circulating endothelial
progenitor cell (EPC) numbers (a group of cells critical for endothelial and vascular func-
tion) [42,43]. NAC treatment also attenuated C-reactive protein-induced ROS production
in EPCs and apoptosis in vitro [44]. Animal studies also demonstrated that treating low-
density lipoproteins (LDL) receptor deficient (LDLR KO) mice on a high-fat diet (HFD) with
NAC in drinking water for 4 months significantly decreased ROS production and partially
reversed the effects of hyperlipidemia on EPC populations [45]. Another animal study has
revealed that NAC treatment effectively attenuated atherosclerosis progression following
particulate matter (PM) exposure in LDLR KO mice with HFD, prevented excessive ROS
generation, and reduced the levels of circulating oxidized LDL (ox-LDL) and inflamma-
tory cytokines [46]. Preclinical animal studies have also shown that NAC normalized
serum TNF-α level that was resistant to etanercept or infliximab, and improved HF in
rats with cardiac injury [47–49]. A systematic review has demonstrated that NAC signif-
icantly decreased diabetes-associated cardiovascular complications including ischemia
and non-ischemia cardiac damage through inhibition of oxidative stress in various animal
models [23].

3. NAC and ROS

Excessive ROS plays a critical role in the development and progression of atheroscle-
rosis. Many atherosclerogenic risk factors, including hypertension, diabetes, smoking, and
dyslipidemia, increase ROS production, trigger inflammatory response, alter vascular func-
tion, and promote the growth of vascular smooth muscle [50–52]. NAC has been reported
to prevent atherosclerosis formation in various animal models, as summarized in Table 4.
Treatment of hypercholesterolemic rabbits with NAC significantly decreased the gelatinase
expression, gelatinolytic activity, and matrix metalloproteinases (MMP)-9 expression in
foam cells [53]. Similarly, it has been reported that treating atherosclerotic rabbits with NAC
for 8 weeks significantly attenuated atherosclerotic formation, in association with a reduc-
tion in blood ox-LDL, MMP-9, MMP-2, and expression of MMP mRNA [54]. Using human
THP-1 cells treated with phorbol 12-myristate 13-acetate for 48 h, followed by ox-LDL
incubation for 4 days to induce foam cell formation, NAC treatment significantly reduced
ROS production and ox-LDL uptake, leading to an inhibition of foam cell formation via
a down-regulation of CD36 expression [55]. Another study reports that the treatment of
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apolipoprotein E knockout (ApoE KO) mice with NAC orally for 8 weeks significantly
attenuated the progression of atherosclerosis, with decreased plaque collagen content and
nitrotyrosine expression, probably via a reduction in oxidative stress [56]. In addition, aortic
fatty streak plaque was effectively prevented in ApoE KO mice when treated with NAC
via intraperitoneal injection for 8 weeks, with a reduction in aortic wall superoxide produc-
tion [57]. A study shows that NAC treatment in drinking water for 12 weeks suppressed
atherosclerotic development in ApoE KO mice with streptozotocin-induced type-1 diabetes,
in association with improved GSH-dependent methylglyoxal elimination, decreased oxida-
tive stress, and the restoration of phosphorylated Akt (p-Akt)/phosphorylated endothelial
nitric-oxide synthase (p-eNOS) pathways in aortas [58].

Table 4. Preclinical animal studies on NAC and atherosclerosis.

Animal Model Intervention Outcomes Ref.

Aging mice (M, LDLR KO)
With ND or HFD for 24 mon, with NAC

(1 mg/mL in drinking water) treatment for
3 or 6 mon.

Early and sufficient NAC treatment
reduces inflammation and slows

atherosclerosis progression in aging
LDLR−/− mice without HFD, maintaining

M2 level with increased CD146.

[59]

Mice (M, ApoE KO) With HFD and NAC (i.p. 20 mg/kg/day, 3 times
a week for 8 weeks)

NAC may suppress atherosclerosis via
reducing superoxide production. [57]

Diabetic ApoE KO mice (M) treptozotocin (i.p. for 5 days) and NAC
(2 mmol/L in drinking water for 12 weeks)

NAC attenuates atherosclerosis in diabetic
ApoE KO mice; correcting

glutathione-dependent methylglyoxal
elimination; reducing oxidative stress and

restoring p-Akt/p-eNOS pathways.

[58]

Mice (F, ApoE KO) with chronic
renal failure

NAC (200 mg/kg daily by mouth) or placebo for
8 weeks.

NAC can slow atheroma growth in
uremia-related atherosclerosis in mice,

likely by lowering oxidative stress.
[56]

Mice (M, WT, and LDLR KO)

WT: human native LDL (50µg) or ox-LDL i.v. for
3 days with NAC pretreatment for 3 days

(1 mg/mL in drinking water); LDLR KO: ND or
HFD for 4 months with NAC (same dose) for

2 months.

NAC attenuates native LDL oxidation to
ox-LDL and ROS generation from ox-LDL;

NAC decreases atherosclerotic plaque
formation in hyperlipidemic LDLR KO

mice.

[60]

Mice (M, LDLR KO)
NAC (1 mg/mL in drinking water) with ND or

HFD, plus PM exposure for either 1 week or
6 months

NAC prevents PM-induced atherosclerosis
in association with reductions of ROS
formation, ox-LDL, and inflammatory

cytokines.

[46]

Rabbits (M, LDLR KO) At 10 weeks of age, DiNAC (0.25 and 25 µmol/L
in drinking water for 12 weeks.

DiNAC decreases atherosclerosis, possibly
via immune regulations and antioxidant

properties.
[61]

Mice (M, LDLR KO) On ND or HFD, SNAC (0.51 µmol /kg i.p. for
15 days)

SNAC attenuates plaque development
and improves endothelial cell function [62]

New Zealand white rabbits (M)

Group1: HFD + colchicine (2 mg/kg/day) +
fenofibrate (250 mg/kg/day; group 2: HFD +

colchicine (2 mg/kg/day) plus NAC
(15 mg/kg /day)

Colchicine reduces atherosclerosis,
especially when combined with NAC.

Colchicine blocks NLRP3 inflammasome,
while NAC attenuates IL-6 signaling,

reducing inflammation.

[63]

NAC: N-acetylcysteine; M: male; F: female; LDLR KO: Low-density lipoprotein receptor knockout;
ApoE KO: Apolipoprotein-E knockout; Mon: months; ND: normal diet; HFD: high fat diet; M2: M2
macrophages; p-Akt: phosphorated Akt; eNOS: endothelial nitric-oxide synthase; DiNAC: N,N′-diacetyl-L-cystine;
SNAC: S-nitroso-N-acetylcysteine; NLRP3: NOD-, LRR- and pyrin domain-containing protein 3; IL-6: interleukin 6.

Native LDL per se is not atherogenic, and ox-LDL is one of the key components in
hyperlipidemic states and a potent source of ROS [45,64,65]. NAC could inhibit the in vitro
oxidation of LDL and prevent the depletion of antioxidant vitamins [66]. One study has
shown that NAC treatment also effectively attenuated the in vivo biotransformation of
human native LDL to ox-LDL in a mouse model [60]. In a small study with 10 patients
with CAD and hyperlipidemia, NAC treatment for 7 days significantly decreased the
serum ox-LDL level, while there was no significant change in the serum ox-LDL level in
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patients with placebo [60]. These data suggest that NAC decreases ROS levels through
multiple mechanisms, including an inhibition of the in vivo biotransformation of native
LDL to ox-LDL.

4. NAC, Inflammation, and Macrophages

Inflammation is closely related to the development and progression of CVDs, es-
pecially atherosclerosis. Myeloid cells-mediated innate immune responses significantly
contribute to chronic vascular inflammation [67]. It has been reported that treatment of
human umbilical vein endothelial cells (HUVEC) with NAC effectively blocks the inter-
leukin (IL)-4-induced expression of vascular cell adhesion molecule-1, which stimulates the
adhesion of lymphocytes and monocytes to the surface of the vascular endothelium during
the early phase of atherosclerosis development [68,69]. IL-6 is known to increase inflam-
mation and the development of vascular diseases, including atherosclerosis. NAC treat-
ment inhibits the production of IL-6 in acetoacetate-treated human U937 monocytes [70].
Lysophosphatidylcholine is produced from the hydrolysis of phosphatidylcholine by secre-
tory phospholipase A2 (sPLA2) and has proinflammatory and proatherogenic effects on
the vasculature [71]. NAC treatment significantly reduced TNF-α-induced expressions of
group V sPLA2 (sPLA2-V) mRNA and protein in HUVEC [72]. Intraperitoneal injection
NAC significantly attenuated balloon-induced neointimal formation in the carotid artery in
rats via the inhibition of NF-κB activity in the medial smooth muscle cells [73]. Treatment
of hyperlipidemic rabbits with a combination of the anti-inflammatory drug colchicine
with fenofibrate or NAC for 7 weeks significantly reduced aortic atherosclerotic plaque.
However, the atherosclerotic burden was significantly lower in the hyperlipidemic rabbits
treated with a combination of colchicine with NAC compared with that of colchicine plus
fenofibrate. Serum IL-6 levels were also significantly decreased in animals treated with
colchicine plus NAC [63].

Macrophages are one of the important sources for inflammatory cytokines [74] and
play a critical role in the pathogenesis of atherosclerosis [75]. An increase in macrophage
polarization to proinflammatory macrophages (M1), or a decrease to anti-inflammatory
macrophages (M2), increases the level of inflammation and promotes atherosclerotic pro-
gression [76]. Thus, the M1/M2 ratio is an important determinant for the direction of inflam-
matory response [77]. Macrophages are also important for the stability of atherosclerotic
plaques [78]. The data from a study using aging LDLR−/− mice showed that inflammatory
markers (CRP, MCP-1, and IL-6) were significantly increased, while the anti-inflammatory
cytokine IL-10 was significantly decreased in aging LDLR−/− mice, in association with
a significantly increased aortic ROS level and an increased M1/M2 ratio, largely due to
decreased M2 population in the aorta. Further studies using bone marrow transplants
with GFP-labeled bone marrow cells showed that the increased M1/M2 ratio in the aorta
of aging LDLR−/− mice was predominantly due to decreased M2 polarization, without
a significant change in M1 polarization. NAC treatment effectively prevented changes
in the expressions of pro-inflammatory and anti-inflammatory cytokines, the ROS level,
and macrophage polarization in the aorta of aging LDLR−/− mice. Interestingly, NAC
treatment has no effect on the migration of monocytes from circulation into the aorta in
aging LDLR−/− mice or on M1 population in the aorta [59].

5. NAC and Atherosclerosis and CAD

Atherosclerosis and related CAD are a leading cause of mortality and morbidity in the
world [79]. A multicenter clinical study, NAC in acute MI (NACIAM), with 112 patients, has
shown that a combination of intravenous NAC treatment with a low dose of nitroglycerin
(NTG) significantly shrinks the infarction size in patients with acute ST elevation MI
undergoing primary percutaneous coronary intervention (PCI) [34]. Two more small
studies (28 and 30 patients each) have reported that the combination of NAC with NTG and
streptokinase reduced the levels of oxidative stress and plasma malondialdehyde (MDA),
and improved left-ventricular function in patients with acute MI [35,36]. Similar results
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have been reported when NAC supplemented cold-blood cardioplegia [37] or when NAC
was added to crystalloid cardioplegia in patients with CAD following a coronary artery
bypass graft (CABG) [38]. NAC was also shown to potentiate the effects of NTG on the
treatment of patients with unstable angina pectoris and other CAD patients [39,80]. A
review of data from clinical studies has shown that NAC has cardioprotective effects in
patients who had ischemic heart disease and underwent CABG and PCI [81]. However, a
recent systematic review of 29 clinical trials with 2486 participants and a meta-analysis with
578 patients have demonstrated that NAC treatment does not significantly reduce major
adverse events in patients undergoing cardiac surgery, including AMI and mortality [24,82]
(Table 5).

Table 5. Clinical studies with NAC in other cardiac diseases.

Patient Information Intervention Outcome Ref.

Pts (76 M and 58 F, YOA: 46–78) with
end-stage renal failure NAC orally 600 mg bid for 2 years Reduced composite

cardiovascular end points [16]

Pts (29 M and 11 F, YOA: 58–70) with
stable angina pectoris who

underwent CABG
NAC i.v. 50 mg/kg/day for 3 days

Decreased pump-induced
oxidoinflammatory response

during CPB
[21]

Pts (31 M and 9 F, YOA: 57–75) with
elective or urgent CABG

NAC i.v. 100 mg/kg into
cardiopulmonary bypass prime followed

by infusion at 20 mg/kg/h

Attenuated myocardial
oxidative stress in the hearts

of patients subjected to
cardiopulmonary bypass and

cardioplegic arrest

[22]

Pts (12 M and 2 F, YOA: 20–67) with
severe chronic CHF

NAC i.v. 100 mg/kg body w.t. for over
30 min with 40–120 mg ISDN orally

Activated and potentiated the
action of organic nitrates,

improved CHF
[31]

Pts (14 M and 5 F, YOA: 12–63) with
disease-free soft tissue sarcoma and

doxorubicin-induced
cardiomyopathy

NAC orally 5.5 g/m2 daily for 30 days

Had no effect in reversing
longstanding

doxorubicin-induced
cardiomyopathy

[32]

Pts (YOA: >18) with a suspected, or
confirmed diagnosis of Takotsubo

Syndrome
NAC i.v. 10 g over 24 h

Will evaluate a therapeutic
option in acute attacks of

Takotsubo Syndrome
[83]

NAC: N-acetylcysteine; Pts: patients; M: male; F: female; YOA: years of age; mg: milligram; kg: kilogram; h: hour;
Ref: references; i.v.: intravenous infusion; CABG: coronary artery bypass graft; CPB: cardiopulmonary bypass;
CHF: congestive heart failure: ISDN: isosorbide dinitrate.

Animal studies have shown that the intraperitoneal injection of NAC prevented non-
thyroidal illness syndrome-related thyroid hormone derangement and preserved cardiac
function in male rats with acute ischemic myocardial injury via the restoration of the redox
balance [84]. Intravenous injection of NAC decreased oxidative stress, infarct area, and
apoptosis in a rat cardiac ischemia-reperfusion injury model [85]. However, intracoronary
administration of NAC in a pig model that simulated a catheter-based reperfusion model
for the therapy of acute ST-elevated MI (STEMI) showed no significant effect on reducing
the infarction size [86]. A recent study, using an aging LDLR−/− mouse model with a regu-
lar diet, has demonstrated that NAC treatment significantly decreased aortic ROS levels
and inflammatory cytokines in the serum and aortas of aging LDLR−/− mice. The same
study has also shown that early and adequate NAC treatment could effectively attenuate
atherosclerosis progression in aging LDLR−/− mice without extreme hyperlipidemia [59].

6. NAC and Lipid Metabolism

The disruption of the lipoprotein metabolism plays an important role in the devel-
opment and progression of atherosclerosis [87]. Pretreatment with NAC significantly
inhibited the differentiation of murine 3T3-L1 preadipocytes into adipocytes and decreased
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intracellular fat accumulation and the expressions of obesity-related proteins, including
monoamine oxidase A, heat-shock protein 70, aminoacylase-1, and transketolase [88]. Simi-
larly, NAC attenuates lipid accumulation and mitogen-activated protein kinases phosphory-
lation in murine embryonic fibroblasts during adipogenic differentiation [89]. Lipoprotein
(Lp)(a) binds to apoprotein (a) and is considered an independent risk factor for premature
atherosclerosis [90]. It has been shown that treating the serum from patients with a high
concentration of Lp(a) with a high concentration of NAC (8 mg /mL or above) in vitro
leads to dissociation of Lp(a) from apoprotein [91]. A small and yet significant reduction in
Lp(a) concentration was observed in 12 subjects with a high serum Lp(a) level (87 mg/dL)
following 6 weeks of NAC treatment [91]. However, another small clinical study of seven
subjects with a median Lp(a) concentration of 14.3 mg/dL has demonstrated that NAC
treatment for 6 weeks had no significant effect on plasma Lp(a) levels [91]. Similarly, no
significant effect of NAC treatment on serum Lp(a) levels were found in 11 subjects with
serum Lp(a) levels over 0.3 g/L [92]. An animal study has shown that treating LDLR
KO mice on a HFD with NAC for 2 months or 4 months has no significant effect on the
blood lipid profile, including triglycerides (TG), LDL, high-density lipoprotein (HDL), total
cholesterol (TC), and non-HDL cholesterol [60]. Similarly, no significant effect of NAC
treatment (250 mg/day, twice a day for 1 week) on the lipid profile was observed in human
subjects with CAD and hyperlipidemia [60].

7. NAC and Homocysteine

An increased level of blood homocysteine is arguably considered a risk factor for
atherosclerosis through increased oxidative stress, endothelial dysfunction, and thrombosis
formation [93]. It has been reported that treating human subjects with NAC significantly
reduced blood homocysteine levels by 45% over the placebo control [92]. The NAC treat-
ment of patients with chronic renal failure led to a 16% reduction in plasma homocysteine
levels [94]. Intravenous administration of NAC significantly decreased the level of plasma
homocysteine in healthy subjects [95]. Data from controlled trials in middle-aged male
subjects with unmedicated hyperlipidemia, with or without smoking, has shown that oral
NAC treatment significantly reduced the level of total plasma homocysteine, regardless of
lipid or smoking status [96]. However, Miner and colleagues have reported that treating
cardiac transplant recipients with NAC had no significant impact on plasma homocysteine
levels or brachial endothelial function [97].

8. Effects of NAC on Endothelial Cells

Endothelial dysfunction has been considered the first step of atherosclerosis develop-
ment [98]. It was reported that treating endothelial cells from porcine pulmonary arteries
with NAC significantly increased intracellular glutathione levels and partially prevented
TNF-α-induced endothelial dysfunctions [99]. NAC also attenuated aortic endothelial dam-
age in ApoE KO mice with streptozotocin-induced diabetes and HFD in association with
increased levels of pAkt and -p-eNOS in aorta, as well as NO in serum [58]. Treatment of
human aortic endothelial cells (HAEC) with NAC significantly attenuated TNF-α-induced
ROS production and the DNA-binding activities of activator protein-1 and NF-κB, as
well as p65 Ser276 phosphorylation [100]. Long-term treatment of endothelial cells (EC)
from arterial segments of patients with severe CAD with NAC delayed senescence of
diseased EC via the catalytic subunit of telomerase activation and transient telomere sta-
bilization [101]. Intra-arterial infusion of NAC in healthy human subjects at a rate to
achieve a blood concentration of 1 mM potentiated the effects of NTG on vasodilation
and enhanced the biotransformation to an endothelium-derived relaxing factor equivalent
nitrosothiol [102]. Intracoronary infusion of NAC in patients with or without coronary
atherosclerosis significantly potentiated acetylcholine-induced coronary and femoral va-
sodilation and SNP-induced coronary vasodilation [103].
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9. Mechanisms for the Actions of NAC on Atherosclerosis

The mechanisms for the effects of NAC on ROS generation, inflammation and atheroscle-
rosis are very complex and have not been fully defined. Traditionally, NAC is considered to
function as an antioxidant through a reduction in disulfide bonds or the scavenging of ROS
or replenishing intracellular GSH stores [104]. However, in many settings and situations, the
mechanisms of actions of NAC have remained unclear. Accumulating data has supported the
concept that NAC is more like an anti-inflammatory agent with immunomodulatory properties,
through its ability to attenuate the activation of oxidant-sensitive pathways, including the
NF-κB and p38 mitogen-activated protein kinase (MAPK) signaling pathways, and subsequent
reductions in pro-inflammatory cytokines such as TNF-α, IL-1β, and IL-6 [5,105,106].

Due to the complex nature of atherosclerosis pathogenesis, the mechanisms for the
effects of NAC on atherosclerosis are also complex, including (but not limited to) (1) modi-
fications of lipid metabolism, (2) inhibition of the expressions of gelatinase, MMP-2, and
MMP-9, (3) blocking the in vivo biotransformation of native LDL to ox-LDL, and directly
suppressing ROS production from ox-LDL, (4) increasing intracellular glutathione levels,
and thus protecting endothelial function, (5) attenuation of NF-κB and p38-MAPK signal-
ing, thus decreasing inflammatory cytokine production, (6) the preservation of circulating
endothelial cell progenitor cells, (7) reduction of homocysteine levels, (8) attenuation of en-
dothelial senescence and damage, while enhancing endothelial function through multiple
mechanisms, including activation of Akt signaling and eNOS, and (9) the preservation of
M2 polarization in the hyperlipidemic condition, thus reducing inflammation and oxidative
stress, as shown in Figure 1.
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10. Other Effects of NAC and Mechanisms

Ambient fine PM exposure increases the risk of cardiovascular diseases, includ-
ing atherosclerosis [107,108]. It has been reported that NAC treatment can significantly
inhibit the motorcycle exhaust particulates-induced proliferation of rat aortic vascular
smooth muscle cells (VSMC) through an extracellular signal-regulated kinase 1/2-activated
cyclooxygenase-2 signaling pathway [109]. Another study demonstrated that NAC pre-
vented a PM-mediated reduction in NO production in HAEC [110]. Animal studies have
shown that NAC treatment effectively attenuated the PM exposure-induced production of
intracellular ROS and inflammatory cytokines TNF-α, IL-1β, and IL-6, and preserved EPC
populations in bone marrow and blood in mice with PM exposure [111–113].

Oral NAC treatment has been reported to significantly decrease blood pressure in hu-
man subjects with or without hyperlipidemia [96]. Intravenous NAC administration in mice
promoted arterial thrombolysis that is resistant to recombinant tissue-type plasminogen acti-
vators, direct thrombin inhibitors, and antiplatelet treatments through targeting vWF cross-
link platelets in the thrombi [114]. Co-administration of NAC and a GpIIb/IIIa inhibitor
significantly enhanced the thrombolytic efficacy via accelerating thrombus dissolution and
preventing re-thrombosis without increasing hemorrhagic stroke risk [114]. Interestingly, a
study demonstrated that the combined application of vitamin C and desferrioxamine did
not exhibit significant beneficial effects against myocardial ischemia-reperfusion injury in
pigs [115]. However, another study, using isolated ventricular cardiomyocytes and cardiac
fibroblasts from neonatal rats in a simulated ischemia/reperfusion model, showed that
the combination of vitamin C, desferrioxamine, and NAC protected cardiac fibroblasts
with enhanced survival and improved function [116]. It was also reported that the ad-
ministration of NAC and melatonin effectively preserved the expression of miR-142-3p in
cardiomyocytes in response to endothelin 1 and isoproterenol induced stress [117].

DiNAC is a disulfide dimer of NAC and functions as an immunomodulating drug with
potent anti-atherosclerotic effects [118,119]. It has been reported that a 3-month treatment
of hyperlipidemic rabbits with DiNAC decreased thoracic aortic atherosclerotic lesions by
50% [61]. Endothelial function is also significantly improved after 3 weeks of treatment
with the same dose of DiNAC in hyperlipidemic rabbits [120]. Treatment of hyperlipidemic
male subjects with either 100 or 500 mg/day DiNAC for 24 weeks substantially increased
brachial artery diameters at rest and during hyperemia without affecting blood lipid
levels [121]. The mechanisms for the actions of DiNAC are considered to work mainly
through the immunomodulation and attenuation of TNF-α-induced reduction in NO
production [61,121]. Another new agent, S-Nitroso-N-acetylcysteine (SNAC), is a derivative
of NAC and a water-soluble S-nitrosothiol, and is capable of releasing NO directly for
a variety of vasoactive activities [122]. Treating LDLR KO mice on a HFD with SNAC
decreased murine aortic plaque by 55% through a decrease in constitutive NO synthase
expression but had no effects on vasomotor function, with minor changes in the plasma
lipid profile [62].

11. Tolerability and Potential Toxicity and Side Effects of NAC

NAC can be administered orally, intravenously, or by inhalation [5,123]. The terminal
half-life of NAC is estimated to be between 6 h to 18 h after single- or multiple-dose adminis-
trations intravenously or orally, with oral bioavailability of about 4.0–10% [5,123,124]. Oral
dosage forms of NAC include capsules, granulate and effervescent, fast-dissolving, and
slow-release tablets. Following both single- and multiple-dose administration, the plasma
concentration of NAC increases rapidly and reaches a peak at approximately 1–2 h [5,124].
The maximum plasma concentration is higher after multiple doses than after a single dose,
as expected. Oral NAC treatment has been well-tolerated by patients with a daily dose
as high as 2 g and is associated with very few side effects, with an excellent safety profile
based on multiple clinical studies [13,20,23,125,126].

Although NAC has a well-established safety profile, its toxic/side effects may occur
at extremely high doses or upon overdosing [5]. An in vitro study has demonstrated that
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the viability of human THP-1 cells is significantly decreased when exposed to NAC at a
concentration of 6 mM or higher [55]. Animal studies have shown that symptoms of acute
toxicity including ataxia, hypoactivity, labored respiration, cyanosis, loss of righting reflex,
and convulsions could be apparent following a single intravenous administration of NAC at
a dose of 1000 mg/kg in mice, 2445 mg/kg in rats, 1500 mg/kg in guinea pigs, 1200 mg/kg
in rabbits, and 500 mg/kg in dogs [5]. Although the toxicity of an NAC overdose has not
yet been defined in humans, in a case report, a paracetamol overdose patient was accidently
given a dose of 100 g NAC (instead of 10 g) and in a short period of time developed
hemolysis, thrombocytopenia, acute renal failure, and subsequently died [127]. Potential
side/toxic effects of NAC include anaphylactoid reactions after parenteral administration
(can be more severe or even cause death in patients with asthma); skin rash, urticaria,
pruritus, acute flushing and erythema after intravenous administration; chest tightness,
bronchoconstriction, bronchospasm, and increased airway obstruction after oral inhalation;
and gastrointestinal symptoms after oral administration [5].

12. Other Antioxidants and Atherosclerosis

Many pre-clinical studies have shown that a variety of antioxidants could prevent
atherosclerosis. However, the data on the cardiovascular outcomes from clinical studies
in human subjects have been inconsistent and sometimes controversial [128]. In vitro and
in vivo animal studies have demonstrated that vitamin A could prevent atherosclerosis
through inhibiting VSMC proliferation and inflammation, increasing NO production via
increased eNOS phosphorylation, modulating angiogenesis via vascular endothelial growth
factor production, and downregulating the angiotensin II type 1 receptor [129]. Data
from human studies have revealed that treatment with a combination of Vitamin A with
Vitamin D could attenuate atherosclerosis through a reduction in serum IL-1β levels [130],
downregulation of IL-17 and retinoid-related orphan receptor-c [131], upregulation of
forkhead box protein-3 gene expression, and an increased number of regulatory T cells in
patients with atherosclerosis [132]. The Carotene and Retinol Efficacy Trial with 52 subjects
(2 diabetic and 2 on lipid-lowering medications) has shown that a 5-year supplementation
with β-carotene and vitamin A leads to a small, nonsignificant elevation of serum TG during
treatment and a decrease in serum TG level after discontinuing the treatment, without
changes in serum HDL, LDL or TC levels [133]. Treating patients with vitamin E could
prevent cell aging and LDL oxidation, reduce serum TG level, and increase serum HDL
level in association with enhanced plasma apolipoprotein A1 concentration and decreased
cholesteryl-ester transfer protein activity [134–136]. However, high dose of vitamin E
usage could have adverse effects on the cardiovascular system mainly through impairing
endothelium-dependent vasodilation and potential paradoxical prooxidant effect [129].

Another well-studied antioxidant, vitamin C, has also been reported to decrease the
risk of CVDs by improving endothelial function via enhancing NO generation, preventing
ox-LDL-induced cytotoxicity of VSMC, the expression of cell adhesion molecules, decreas-
ing monocyte adhesion to the endothelium, and enhancing paraoxonase activity with
vitamin E [129]. However, some studies have indicated an inverse relationship between vi-
tamin C and CVDs, and raised concerns that the effects of vitamin C on CVDs in the studies
using fruit and vegetables instead of pure vitamin C might be due to the atheroprotective
effects of other nutrients in vitamin C-rich foods [129].

13. Unanswered Questions on NAC and Atherosclerosis and Challenges for Clinical
Studies in Patients with Atherosclerosis

Abundant data supports the concept that NAC is a potent anti-inflammatory agent
that attenuates the development and progression of atherosclerosis in pre-clinical animal
studies. However, it is unclear if NAC could suppress the progression of atherosclerosis in
humans. Many clinical studies were observational or included a small number of patients
without randomization, with potential significant bias. A recent animal study showed
that NAC treatment did not reverse the existing atherosclerotic lesions, and an extended
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period of treatment (6 months) was needed to show a beneficial effect of NAC on the
progression of atherosclerosis in aging LDLR−/− mice [70]. Thus, it could take years to
demonstrate a significant difference in patients with NAC treatment, since atherosclerotic
lesions usually progress slowly, and NAC treatment only prevents new lesion formation.
Thus, it is very challenging to determine the effect of NAC treatment on the progression of
atherosclerosis in patients without a prolonged period of follow up. In the same study, it
was reported that long-term NAC treatment (6 months) had no effect on atherosclerosis
progression in aging LDLR−/− mice on HFD. No beneficial effect of NAC treatment on
atherosclerosis progression was observed in aging LDLR−/− mice on a normal diet when
advanced atherosclerotic lesions were present [71]. This data strongly suggests that the
timing and duration of NAC treatment, as well as the serum lipid level and disease stage,
are critical factors for NAC therapeutic outcomes on atherosclerosis. NAC treatment was
only effective when applied early, over a long period of time, with a reasonable control of
the serum lipid level.

Inflammatory cytokines and chemokines are important for atherosclerosis develop-
ment and progression. The Cardiovascular Inflammation Reduction Trial (CIRT) has
shown that there were no cardiovascular benefits in patients with MI or type 2 diabetes or
metabolic syndrome when there were no reductions in CRP, IL-1β, or IL-6 levels [137–139].
Consistent with these observations, the data from the CANTOS study has revealed that
the patients with the greatest reductions in IL-6 and hs-CRP levels benefited the most from
canakinumab treatment, with reduced adverse cardiovascular events [140]. Interestingly,
a recent study revealed a positive association between the area of atherosclerotic lesions
and serum levels of CRP and IL-6 in aging LDLR−/− mice. Administration of NAC for six
months effectively attenuated the levels of serum CRP and IL-6 in LDLR−/− mice at the
age of 15 months [71]. Thus, a well-designed clinical study is also needed to determine the
effect of NAC on the serum levels of inflammatory cytokines, especially IL-6, hs-CRP, and
cardiovascular mortality and morbidity in patients with atherosclerosis.

Recently, a new concept in polytherapy has been proposed, namely, to use multiple
antioxidants together as a combined therapy with different antioxidants due to (1) ROS
generation being a very complex process that involves a wide spectrum of sources of
ROS and a variety of enzymes and/or singling pathways, and (2) antioxidants exhibiting
very diverse characteristics chemically, biologically, and pharmacologically [141]. Thus,
the combination therapy of different antioxidants may potentially generate significant
synergistic effects on ROS suppression, leading to a much better clinical outcome. Certainly,
NAC could be an important part of polytherapy in future pre-clinical and clinical studies
to determine the efficacy of combination therapy for disease conditions associated with
excessive ROS, including atherosclerosis.

Accumulating data has shown that many microRNAs (miRNA), including (but not
limited to) miR-126-5p, miR-155, miR-146a, MiR-125a, miR-22, and miR143/145, may
play an important role in the development and progression of atherosclerosis, as nicely
summarized in a recent review [142]. These miRNAs are critically involved in the regulation
of endothelial function, inflammation, macrophage polarization, lipid metabolism, the
function of VSMCs, and plaque stability, as well as vascular calcification, thus significantly
contributing to a variety of pathophysiological events at different stages of atherosclerosis.
In addition, there are extensive interactions between miRNAs and inflammatory cytokines
(including TNF-α, IL-1β, and IL-6) and chemokines (such as CCL5, CCL8, CXCL2, and
CXCL4) [143,144]; thus, they are closely associated with ROS formation and oxidative stress.
It has been reported that NAC treatment significantly decreased the levels of miR146a
and NF-κB p65 signaling in rats [145] and reduced the expression of miR-21 and miR-29b
induced by C. parvum treatment in mice [146]. These data suggest that NAC could attenuate
atherosclerosis by targeting inflammatory miRNAs. Further studies are needed to define
the effect of NAC on the expression profiles of miRNAs in atherosclerosis.
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14. Conclusions

NAC and NAC derivatives (DiNAC and SNAC) seem to be promising therapeutic
options to attenuate the development and progression of atherosclerosis through multiple
mechanisms with a well-established safety profile. The significant beneficial effects of NAC
on CVDs, including atherosclerosis, have been reported in many clinical studies. However,
these studies mostly included a small number of study subjects with short-term treatment
with NAC and short periods of follow up time. Atherosclerosis is a slow and progressive
condition; thus, a large, randomized double-blinded clinical trial with long-term treatment
and follow-up periods is needed to determine the effect of NAC on the development and
progression of atherosclerosis and the clinical outcomes of patients with atherosclerosis.
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