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Abstract: Exposure to traffic-related air pollution (TRAP) generates oxidative stress, with downstream
effects at the metabolic level. Human studies of traffic density and metabolomic markers, however,
are rare. The main objective of this study was to evaluate the cross-sectional association between
traffic density in the street of residence with oxidative stress and metabolomic profiles measured in a
population-based sample from Spain. We also explored in silico the potential biological implications
of the findings. Secondarily, we assessed the contribution of oxidative stress to the association between
exposure to traffic density and variation in plasma metabolite levels. Traffic density was defined as
the average daily traffic volume over an entire year within a buffer of 50 m around the participants’
residence. Plasma metabolomic profiles and urine oxidative stress biomarkers were measured in
samples from 1181 Hortega Study participants by nuclear magnetic resonance spectroscopy and high-
performance liquid chromatography, respectively. Traffic density was associated with 7 (out of 49)
plasma metabolites, including amino acids, fatty acids, products of bacterial and energy metabolism
and fluid balance metabolites. Regarding urine oxidative stress biomarkers, traffic associations were
positive for GSSG/GSH% and negative for MDA. A total of 12 KEGG pathways were linked to
traffic-related metabolites. In a protein network from genes included in over-represented pathways
and 63 redox-related candidate genes, we observed relevant proteins from the glutathione cycle.
GSSG/GSH% and MDA accounted for 14.6% and 12.2% of changes in isobutyrate and the CH2CH2CO
fatty acid moiety, respectively, which is attributable to traffic exposure. At the population level,
exposure to traffic density was associated with specific urine oxidative stress and plasma metabolites.
Although our results support a role of oxidative stress as a biological intermediary of traffic-related
metabolic alterations, with potential implications for the co-bacterial and lipid metabolism, additional
mechanistic and prospective studies are needed to confirm our findings.
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1. Introduction

Traffic-related air pollution (TRAP) from motorized vehicles (passenger cars, motor-
bikes, heavy-duty vehicles) is a major source of air pollutant constituents, such as nitrogen
oxides (NOx) and primary particulate matter (PM2.5), including black carbon [1–3]. TRAP
has been associated with several detrimental health outcomes, including asthma onset
and mortality endpoints (circulatory, ischemic heart disease and lung cancer) [4]. Some
studies have reported a potential link of exposure to air pollution with alterations in
specific metabolic pathways, including amino acids, purines, lipids and redox-related
pathways [5,6]. In mechanistic studies, TRAP exposure consistently causes damage at the
molecular level as well, such as generating reactive oxygen species (ROS) and directly
altering the levels of metabolites such as fatty acids, amino acids and others, including
glycine, serine, alanine and threonine and metabolites from the glycolysis and gluconeoge-
nesis cycles [7,8]. Moreover, the presence of ROS in an organism can independently lead to
additional metabolic alterations [9–11].

However, the negative health impacts of road traffic are not only attributable to expo-
sure to air pollutants. Road-related traffic noise and the absence of green and blue spaces
have been associated with metabolically unhealthy lifestyles (less physical activity, obesity)
and an increased risk of certain diseases, such as type 2 diabetes [12–14]. Thus, population-
based mechanistic studies on potential metabolic and redox effects from integrative traffic
intensity measures are needed.

The main objective of this study was to evaluate the cross-sectional association be-
tween traffic density on the street of residence and urine oxidative stress biomarkers and
plasma metabolomic profiles. We were also interested in exploring the potential biological
implications of the findings through an in silico bioinformatic analysis (over-representation
and network analysis of relevant metabolite pathways and redox-related candidate genes).
Secondarily, we assessed whether oxidative stress could explain the association between ex-
posure to traffic and plasma metabolite levels (i.e., the amount of change in traffic-associated
metabolite levels that can be attributed to oxidative stress).

2. Methodology
2.1. Study Population

The Hortega Study cohort is a representative sample of the general population of
Valladolid, Spain, obtained through a multi-stage complex sampling study. The study
population consisted of beneficiaries from the universal public health system correspond-
ing to the catchment area of the University Hospital Rio Hortega (Valladolid, Spain). In
2001–2003, the Hortega Study participants were examined and interviewed and provided
biological samples. Details of the study design and data collection have been previously
reported [15]. Among the 1502 recruited participants, we excluded 310 participants with
insufficient plasma sample for metabolomic determinations, 40 participants missing BMI,
11 participants missing urine cotinine, 6 participants missing tobacco smoking variables,
3 participants missing education level and 2 participants missing oxidative stress markers,
leaving 1181 subjects for the final analysis. The Ethics Committee of the Rio Hortega Uni-
versity Hospital approved the research protocol, and every participant provided informed
consent.

2.2. Traffic Density

To assess the effect of traffic exposure on oxidative stress and metabolite levels, we
used the traffic density of the closest roads to the home address. For this, we first merged the
Navteq cartography with the official cartography from the Ministry of Transport, Mobility
and Urban Agenda [16], which provides data on the total volume of vehicles circulating
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every Spanish road or street. We subsequently estimated individual exposure to traffic in
the residence road by creating a 50 m buffer around the geographic coordinates of each
participant’s home address. Finally, we computed the traffic density within the buffer as
the total number of vehicles passing through the buffer over a year divided into 365.25 days
(continuous variable expressed in vehicles per day) [17], which is a proxy reflecting how
active a road is. For the descriptive analysis, we categorized traffic density into three groups
using tertiles (<20.71 (low), 20.71–45.71 (moderate) and >45.71 (high)) cars/day.

2.3. Plasma Metabolite Levels

Metabolomic profile was determined by nuclear magnetic resonance (NMR) spec-
troscopy in non-fasting plasma. An amount of 82 µL of D2O was added to 418 µL of
blood plasma and placed in a 5 mm NMR tube. NMR spectra were recorded using a
Bruker Avance DRX 600 spectrometer (Bruker GmbH, Berlin, Germany). A single-pulse
pre-saturation experiment was conducted in all samples, which were kept at 37 ◦C. To
reference the spectra, the doublet of alanine at 1478 ppm was used. To eliminate differences
in metabolite total concentration, the spectra were binned into 0.01 buckets and normalized
to total aliphatic spectral area. Signals belonging to selected metabolites were quantified
using semi-automated in-house MATLAB 6.5 (The MathWorks Inc., Natick, MA, USA) inte-
gration and peak-fitting routines. Chenomx NMR Suite V.4.5 software and two-dimensional
(2D) NMR methods including homonuclear correlation spectroscopy and heteronuclear
single-quantum correlation spectroscopy were used to identify and subsequently confirm
the results [18].

In addition, an extended lipoprotein profile was assessed using the Liposcale® meth-
ods for NMR spectra analysis. An amount of 500 µL of blood plasma samples was shipped
on dry ice to the Biosfer Teslab (Reus, Spain) to determine lipoprotein lipid composition,
size and the particle concentration of their respective subclasses (large, medium and small).
Particle concentrations and lipoprotein subtypes were determined using the distinctive
signals of the lipid methyl group. The size of a given subtype was evaluated by its diffusion
coefficient. Common conversion factors were used to convert concentration units into
volume units. The particle numbers of each lipoprotein subtype were estimated dividing
the lipid volume by the particle volume of a given class.

All metabolites were adjusted by fasting time (hours) using linear regression. We then
recalibrated the distribution of resulting metabolite residuals to metabolite-specific mean
levels observed in the subset of individuals reporting fasting condition.

2.4. Oxidative Stress Biomarkers

The percentage ratio of oxidized (GSSG) to reduced (GSH) glutathione (GSSG/GSH%)
and malondialdehyde (MDA) and the presence of the damaged base 8-oxo-7,8-dihydro-2′-
deoxy-guanine (8-oxo-dG) were measured in urine. Analysis of GSSG and GSH levels was
performed using high-performance liquid chromatography (HPLC) [19,20]. Additionally,
MDA was quantified through spectrophotometric measurement at 532 nm following the
MDA-thiobarbituric acid method [21]. Detection of 8-oxo-dG was achieved using high-
performance liquid chromatography with electrochemical detection (HPLC-EC) [22,23]. To
account for urine dilution, oxidative stress biomarker data were divided by urine creatinine
levels and reported in nanomoles per millimole of creatinine. The measurement of urine
creatinine was carried out using the modified kinetic Jaffé method. The coefficients of
variation for GSSG, GSH, MDA and 8-oxo-dG were recorded at 11.4%, 4.7%, 5.5% and
11.9%, respectively.

2.5. Other Relevant Variables

Participants were interviewed by qualified staff to collect information on sociodemo-
graphic data, lifestyle habits and cardiovascular risk factors. Alcohol intake and smoking
were classified as never, former and current status based on self-report. Physical activity
was estimated in metabolic equivalents (METs) per minute/week based on standardized
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intensity scores [24] using reported type of activity and amount of time dedicated to each
activity per week. Body mass index (BMI) was calculated using measured weight (kilo-
grams) by height (meters) squared. Obesity was defined as a BMI equal or higher than
30 kg/m2. Urine cotinine was measured with an enzyme-linked immunosorbent assay
(ELISA) (“Analysis DRI® Cotinine” Kit, Ref. 0395 Microgenics laboratories). Concentrations
below the lower limit (34 ng/mL) were detected in 77% of participants. Urine and serum
creatinine were measured by the modified kinetic Jaffé method by isotope dilution mass
spectrometry on a Hitachi 917 analyzer (Roche Boehringer). Urine albumin was measured
by automated nephelometric immunochemistry (Behring, Germany). Renal function was
assessed by the glomerular filtration rate, as estimated using the CKD-EPI equation [25].

2.6. Statistical Analysis

Descriptive and association analysis. Statistical analyses were conducted with the “sur-
vey” package of the R software (version 4.1.14) to account for the complex sampling. We
reported participant characteristics and the median and interquartile range (IQR) of plasma
metabolites overall and by tertiles of traffic density to compare moderate and high-to-
low exposure levels. We conducted linear regression models to evaluate the association
between traffic density exposure (continuous independent variable) and oxidative stress
biomarkers and plasma metabolite level (dependent variables in separate models). The
resultant regression coefficients were re-scaled to compare the 80th and the 20th percentiles
of traffic density. All models were adjusted for sex (men, women), age (years), BMI (kg/m2),
high education (no/yes), smoking status (never, former, current), cumulative smoking
(number of pack-years), drinking status (never, former, current), glomerular filtration rate
(mL/min/1.73 m2), physical activity (METs min/week) and urine cotinine level (mg/dL).
For all the association analyses, we established a p-value threshold (α) of 0.05 as the
statistical significance level.

Bioinformatic exploration of potential biological implications of the findings. For statistically
significant metabolites from the association analysis, we ran Metabolite Set Enrichment
Analysis (MSEA) to explore over-represented metabolites within pre-specified metabolite
sets from the KEGG database [26] with MetaboAnalyst 5.0 [27]. MetaboAnalyst conducts
a hypergeometric test to yield p-values that are interpreted as the probability of having a
particular metabolite represented within a given set more than expected by chance. Subse-
quently, we constructed a protein interaction network. For this, we first extracted genes
from the KEGG pathways with suggestively over-represented traffic-related metabolites
(nominal p-value < 0.10). We further extended the in silico characterization of interconnec-
tions with oxidative stress by selecting additional candidate genes associated with redox
balance from a published review [28]. Finally, we obtained protein–protein and protein–
compound interaction networks (i.e., the interactions of proteins encoded by these genes
and metabolites compounds from the IntAct database Release 243 [29] built-in feature of
Cytoscape v3.9 [30]). The resulting network was filtered by removing self-loops, networks
with fewer than three nodes and selecting only interactions with a Mutual Information
score (MI score) of at least 0.5. Only nodes corresponding to human proteins or molecules
associated with chemical functions were kept.

Mediation analysis. In secondary analysis, we formally tested the potential mediating
role of oxidative stress as an intermediary variable in the association between traffic density
with relevant metabolomic markers. Our conceptual mediation model can be found in the
Supplementary File S1, Supplementary Methods. To assess natural indirect (i.e., mediated)
effects, we used a counterfactual mediation framework as implemented by the multimediate
R package [31]. The multimediate algorithm is able to conduct mediation analysis using the
counterfactuals method. In this setting, our mediator models were separate linear models
in which relevant oxidative stress biomarkers were entered as the dependent variable and
traffic density (exposure) was entered as the independent variable. The outcome linear
model included relevant metabolites (i.e., statistically significant in previous analysis) as the
dependent variable in separate models, traffic density as the exposure and oxidative stress
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biomarkers as mediators. Both outcome and mediator models were adjusted for age, sex,
education, BMI, smoking status, accumulated smoking (packs-year), alcohol intake, urine
cotinine levels, physical activity (METs/week), triglycerides and lipid-lowering medication.

As result, absolute mediated effects (i.e., natural indirect effects) were reported as the
mean difference in changes in traffic-related metabolite levels attributed to differences in
oxidative stress. The direct effect was reported as the mean difference in changes in traffic-
related metabolite levels not attributable to differences in oxidative stress. The total effect
corresponds to the sum of the direct and the indirect effect. The relative mediated effect was
calculated as the ratio between the indirect and the total effect. Confidence intervals were
calculated using a resampling method based on simulations from a multivariate normal
distribution [31].

3. Results

Descriptive and association analysis. Table 1 shows the crude (unadjusted) characteristics
of our study population according to traffic density levels (low, moderate, high). The
mean age was 52.74 years and 49.78% were women. The group exposed to the highest
traffic density had higher accumulated smoking (pack-years) and was more physically
active compared to less exposed subjects. Participants with higher exposure to traffic
density showed lower levels of amino acids (cysteine, proline, tryptophan), products of
bacterial co-metabolism (phenylpropionate) and energy metabolism (acetate) metabolite
subclasses, and higher levels of cholesterol, triglycerides (LDL and IDL triglycerides),
lipoprotein particle subclasses (large and medium LDL and HDL) and the oxidative stress
marker GSSG/GSH% (Supplementary File S1, Supplementary Table S1). The association of
traffic density (per 80th to 20th percentiles of traffic distribution comparison) with NMR
metabolites (unitless) was positive for some of the measured fatty acid moieties, including
CH2CH2CO and CH2N (MD [95% CI] was 0.155 [0.033, 0.276] and 1.744 [0.277, 3.211],
respectively). Alternatively, the association of traffic density was inverse for the amino acid
cysteine (MD [95% CI] −0.010 [−0.020, −0.001]); the fatty acid isobutyrate (MD [95% CI]
−0.042 [−0.077, −0.007]); some products of bacterial co-metabolism, such as trimethy-
lamines (MD [95% CI] −0.065 [−0.113, −0.018]); acetate, a product of energy metabolism
(MD [95% CI] −0.030 [−0.058, −0.002]); and the fluid-balance-associated metabolite al-
bumin (MD [95% CI] −0.073 [−0.135, −0.011]). Regarding the association with oxidative
stress biomarkers, traffic exposure was positively associated with urine GSSG/GSH (%)
(3.142 [0.049, 6.236]) but inversely associated with MDA levels (nmol/mmol creatinine)
(−0.097 [−0.170, −0.023]) (Table 2). All the traffic-related oxidative stress biomarkers
(independent variable) were also associated with the traffic-related metabolites (depen-
dent variables), except for the association of isobutyrate with GSSG/GSH% and that
of CH2N and acetate, and possibly cysteine, trimethylamine and albumin, with MDA
(Supplementary File S1, Supplementary Table S2).

Table 1. Age- and gender-adjusted baseline characteristics based on traffic density (N = 1181). Mean,
overall and by tertiles of traffic density.

Traffic Density at Home Address (Cars per Day)

Overall Low Traffic Density Moderate Traffic Density High Traffic Density

Age, years; mean 52.74 51.90 51.66 54.59

Women; % 49.78 49.21 46.23 53.72

BMI, kg/m2; mean 26.36 26.67 26.06 26.36
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Table 1. Cont.

Traffic Density at Home Address (Cars per Day)

Overall Low Traffic Density Moderate Traffic Density High Traffic Density

Smoking status

Never; % 47.23 47.40 44.15 49.75

Former; % 29.53 28.39 32.71 28.50

Current; % 23.22 24.19 22.34 21.75

Cumulative smoking,
pack-year; mean 9.08 8.05 9.59 9.59

Urine cotinine, mg/dL

<12 mg/dL 77.3 95.52 77.95 78.40

12–500 mg/dL 4.73 6.05 5.1 3.08

>500 mg/dL 17.97 18.42 16.93 18.51

Alcohol intake status

Never; % 39.26 44.73 32.79 40.10

Former; % 8.41 8.42 8.06 8.74

Current; % 52.32 46.84 56.55 51.15

eGFR, mL/min/1.73 m2 90.84 91.7 92.13 88.77

High education; % 72.92 69.21 78.19 72.00

Physical activity, METs
min/week; mean 3135.94 3110.10 3050.08 3242.95

Table 2. Mean difference (95% CI) * of NMR-metabolites and oxidative stress markers when compar-
ing the 80th and 20th percentiles of traffic density distribution in the Hortega Study (N = 1181).

Group Metabolite MD (95% CI) p-Value

Lipoprotein profile Cholesterol, mg/dL 1.430 (−2.340, 5.201) 0.457

VLDL cholesterol, mg/dL 0.638 (−0.130, 1.407) 0.104

LDL cholesterol, mg/dL 1.833 (−2.232, 5.898) 0.377

HDL cholesterol, mg/dL −0.832 (−2.664, 1.001) 0.374

IDL cholesterol, mg/dL 0.487 (−0.067, 1.042) 0.085

Total VLDL, nmol/L 0.796 (−1.492, 3.083) 0.496

Large VLDL, nmol/L −0.015 (−0.084, 0.054) 0.496

Medium VLDL, nmol/L 0.002 (−0.459, 0.463) 0.994

Small VLDL, nmol/L 0.808 (−1.252, 2.869) 0.442

Total LDL, nmol/L 17.08 (−22.022, 56.182) 0.392

Large LDL, nmol/L 2.497 (−3.041, 8.035) 0.377

Medium LDL, nmol/L 11.853 (−6.439, 30.146) 0.204

Small LDL, nmol/L 2.830 (−17.158, 22.819) 0.781

Total HDL, nmol/L −0.311 (−1.207, 0.524) 0.440

Large HDL, µmol/L 0.002 (−0.006, 0.010) 0.695

Medium HDL, µmol/L 0.004 (−0.301, 0.309) 0.979

Small HDL, µmol/L −0.347 (−0.966, 0.271) 0.271
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Table 2. Cont.

Group Metabolite MD (95% CI) p-Value

Amino acids Alanine 0.013 (−0.058, 0.084) 0.718

Creatine phosphate −0.008 (−0.021, 0.004) 0.187

Creatine −0.010 (−0.021, 0.002) 0.090

Cysteine −0.010 (−0.020, −0.001) 0.038

Glutamine −0.008 (−0.063, 0.047) 0.772

Proline 0.017 (−0.044, 0.078) 0.595

Tryptophan 0.017 (−0.026, 0.060) 0.432

Tyrosine −0.014 (−0.036, 0.007) 0.198

Isoleucine 0.004 (−0.042, 0.049) 0.875

Leucine −0.002 (−0.040, 0.036) 0.909

Valine −0.038 (−0.083, 0.006) 0.093

Inflamation marker N-acetylglutamine −0.031 (−0.068, 0.007) 0.109

Fatty acids

CH2CH2CO 0.155 (0.033, 0.276) 0.013

CH2CH3 0.121 (−0.033, 0.274) 0.123

CH2N 1.744 (0.277, 3.211) 0.020

CH3 0.063 (−0.358, 0.483) 0.770

CHCH2CH 0.005 (−0.095, 0.105) 0.919

Isobutyrate −0.042 (−0.077, −0.007) 0.020

Products of bacterial
co-metabolism

Ethanol −0.004 (−0.196, 0.187) 0.964

Isopropanol −0.041 (−0.087, 0.006) 0.087

Methanol −0.012 (−0.024, 0.001) 0.065

Trimethylamines −0.065 (−0.113, −0.018) 0.008

Phenylpropionate 0.030 (−0.039, 0.098) 0.395

O-phosphoethanolamine −0.036 (−0.079, 0.008) 0.111

Energy metabolism Glycolisis

Citrate −0.024 (−0.060, 0.013) 0.208

Lactate 0.299 (−0.065, 0.663) 0.108

Pyruvate 0.001 (−0.013, 0.014) 0.905

Ketone bodies

Acetate −0.030 (−0.058, −0.002) 0.034

Acetone 0.062 (−0.002, 0.127) 0.057

3-Hydroxybutyrate −0.006 (−0.063, 0.050) 0.822

Fluid balance Albumin −0.073 (−0.135, −0.011) 0.022

Creatinine −0.006 (−0.027, 0.015) 0.572

Oxidative stress markers

GSSG/GSH,% 3.142 (0.049, 6.236) 0.047

Malondialdehyde (MDA), nmol/mmol creatinine −0.097 (−0.170, −0.023) 0.010

8-oxo-7,8-dihydroguanine (8-oxo-dG),
nmol/mmol creatinine 0.116 (−0.068, 0.300) 0.216

Models were adjusted for age, sex, education, BMI, smoking status, cigarette packages per year, alcohol intake,
urine cotinine levels, physical activity per week, triglycerides and lipid-lowering medication. * We normalized
the spectral vector to the total spectral area, excluding residual water signals to minimize the effects of variable
dilution of the sample. The metabolic content is therefore expressed in relative metabolic content (unitless), unless
other units are indicated.
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Bioinformatic exploration of potential biological implications of the findings. Table 3 shows
the results for the Metabolite Set Enrichment Analysis (MSEA). Valine and cysteine were
the most over-represented metabolites, followed by acetate. At the p-value threshold of
0.10, out of the 84 KEGG-based metabolite sets included in the MSEA, 12 included over-
represented statistically significant metabolites from our association analysis. These path-
ways were mainly associated with amino acids, carbohydrates and co-factors metabolism.
The three most enriched pathways were “Pantothenate and CoA biosynthesis” (hsa00770),
“Glycine, serine and threonine metabolism” (hsa00260) and “Aminoacyl-tRNA biosynthe-
sis” (hsa00970) (Supplementary File S1, Supplementary Figure S1). Figure 1 shows the
protein–protein interaction network resulting from displaying IntAct-based interactions
from the list of proteins encoded by our redox-related candidate genes with proteins en-
coded by genes within the metabolite sets with over-represented metabolites from our
association analysis (Supplementary File S2, Supplementary Sheet S1). The initial network
had 1330 nodes and 4503 interactions (Supplementary File S2, Supplementary Sheet S2).
We excluded 143 nodes not corresponding to human proteins or molecules associated
with chemical molecules, 628 nodes with an MI score below 0.5 and 17 nodes with self-
loops without identifiable ID (Supplementary File S2, Supplementary Sheet S3). Finally,
the resulting protein network after filtering (Figure 1) retained a total of 468 unique pro-
teins and 493 interactions (Supplementary File S2, Supplementary Sheet S4). Among the
enriched pathways and the oxidative-stress-related proteins, 10 common proteins were
found, most of which are associated with the glutathione metabolism (GPX1 to 7, GSR
and TXNDC12), while CAT encodes another key enzyme involved in redox balance. Nev-
ertheless, after filtering the interaction network, only the glutathione peroxidase GPX7,
an endoplasmic catalase involved in the cellular response to oxidative stress, remained
(Figure 1). Furthermore, only one direct interaction between a protein in a KEGG pathway
with over-represented metabolites, MAT2A and an oxidative stress-related protein, MT2A,
prevailed. The proteins FARS2, GLYCTK, ALPP and ALAS1 are some of the largest nodes as
they have the greatest number of interactions.

Table 3. Metabolite Enrichment Analysis results for the significant metabolites associated with
traffic density.

KEGG-Based Pathways Total Expected Hits
Enrich. Raw Holm FDR

Metabolites
Ratio p-Value p-Value p-Value

Pantothenate and CoA biosynthesis 19 0.050 2 40.404 0.001 0.072 0.072 Cysteine,
Valine

Glycine, serine and
threonine metabolism 33 0.086 2 23.283 0.003 0.217 0.110 Creatine,

Cysteine

Aminoacyl-tRNA biosynthesis 48 0.125 2 16.000 0.006 0.452 0.154 Cysteine,
Valine

Thiamine metabolism 7 0.018 1 54.945 0.018 1 0.290 Cysteine

Valine, leucine and
isoleucine biosynthesis 8 0.021 1 48.077 0.021 1 0.290 Valine

Taurine and hypotaurine metabolism 8 0.021 1 48.077 0.021 1 0.290 Cysteine

Pyruvate metabolism 22 0.057 1 17.452 0.056 1 0.636 Acetate

Glycolysis/gluconeogenesis 26 0.068 1 14.771 0.066 1 0.636 Acetate

Glutathione metabolism 28 0.073 1 13.717 0.071 1 0.636 Cysteine

Glyoxylate and
dicarboxylate metabolism 32 0.083 1 12.005 0.081 1 0.636 Acetate

Cysteine and methionine metabolism 33 0.086 1 11.641 0.083 1 0.636 Cysteine

Arginine and proline metabolism 38 0.099 1 10.101 0.095 1 0.648 Creatine

Total is the total number of compounds in the pathway; Expected is the number of matched compounds expected
by chance given the pathway size; Hits is the number of matched compounds from the data; Enrichment Ratio
is the number of hits divided by the expected number of hits. Raw p-value calculated from the enrichment
analysis; Holm p-value was adjusted using the Holm–Bonferroni method; FDR p-value was adjusted using
False Discovery Rate (FDR); metabolites showed over-represented statistically significant metabolites from the
association analysis.
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Figure 1. Protein interaction network generated using IntAct by redox-related proteins and pathways
with over-represented traffic-exposure-associated metabolites (468 proteins connected by 493 edges).
Nodes are colored according to protein data origin: oxidative-stress-related proteins are blue, proteins
identified by the enrichment analysis are yellow, and IntAct-identified proteins are purple. Proteins
circled in red are, at least, second-degree neighbors between the proteins of interest. Proteins circled
in blue interact with a GPX protein (see Supplemental File S2, Supplemental Sheet S5).

Contribution of oxidative stress to traffic-density-related NMR-metabolites. MDA accounted
for 21.88 (0.19, 59.24) and 20.48 (2.26, 83.97) % of the traffic-related isobutyrate and
CH2CH2CO fatty acid moiety variation, respectively. In absolute terms, of the
0.139 (0.018, 0.256) CH2CH2CO fatty acid moiety units and −0.038 (−0.0727, −0.005)
isobutyrate units, according to an 80th versus the 20th percentile comparison in traffic
density, 0.014 (0.003, 0.032) and −0.006 (−0.012, −0.002) were attributable to variations in
MDA, respectively (Supplementary File S1, Supplementary Table S3).

4. Discussion

In our cross-sectional study, traffic density was positively associated with fatty acid
moieties (CH2N, CH2CH2CO) and with markers of oxidative stress, such as GSSG/GSH
in urine. On the other hand, traffic exposure was inversely associated with the amino
acid cysteine and fatty acids such as isobutyrate, with products of bacterial co-metabolism
(trimethylamines), energy metabolism (acetate), fluid balance metabolites (albumin) and
the oxidative stress biomarker malondialdehyde (MDA). The association of traffic density
with cysteine, acetate and albumin was partly explained by oxidative stress biomarkers,
supporting the idea that oxidative stress is a biological intermediary in traffic-related
disease. The statistical models accounted for known oxidative stress determinants, such as
alcohol consumption and smoking status.

Traffic density and metabolomics. Evidence has shown over the years that traffic-
associated air pollution (TRAP) is a known risk factor for the development of health
conditions such as cardiovascular disease [32], metabolic disorders [33] and respiratory
diseases, including lung cancer and asthma [34,35]. A study conducted by the University of
Bari showed that exposure to TRAP produces neutrophilic airway inflammation [36].
However, the mechanisms by which TRAP causes adverse health effects still remain
poorly understood, and little is known regarding the potential role of traffic exposure
as a determinant of metabolite levels [37]. In our study, a broad panel of metabolites were



Antioxidants 2023, 12, 2122 10 of 17

used to assess potential metabolic traffic effects. Next, we reviewed the consistency of our
results with those of other available epidemiological studies.

Amino acids. In our study, exposure to traffic density was inversely associated with
amino acids levels, which are components of key enzymes in metabolic pathways involved
in cell homeostasis, nutrition and the regulation of the immune system [38,39]. Dysfunc-
tional levels of essential amino acids have been associated with several pathologies, such as
cardiovascular and neurological disorders and certain types of cancer [40,41]. Consistently
with our results, an intervention study conducted in healthy subjects (N = 43) found that
exposure to PM2.5 was associated with a decrease in glutamate, aspartate and taurine
levels [42]. A longitudinal study on healthy adults (N = 73) found that short-term air pollu-
tion exposure was associated with significant reductions in the levels of plasma alanine,
threonine and glutamic acid [43]. A cross-sectional study (N = 54) observed an inverse
association between histidine and outdoor PM2.5 level [44].

Bacterial co-metabolism. The gut microbiota play a vital role in human homeosta-
sis [45], stimulate the immune system and contribute to metabolism [46]. Microbiome
imbalance caused by exposure to air pollutants could have a role in cardiometabolic,
infectious and inflammatory disease [47,48]. Some studies have pointed to a potential
role of trimethylamines (TMAO), a component of bacterial co-metabolism involved in
human physiological processes [49] and in the pathogenesis of numerous diseases, includ-
ing kidney and cardiovascular diseases [47,50]. A study conducted in China (N = 114)
found that oropharyngeal microbiota of healthy volunteers differed within regions of high,
medium and low TRAP [51]. In addition, a pilot study conducted with obese adolescents
(N = 43) demonstrated that TRAP exposure can alter the composition and abundance of
the gut microbiota [52]. Consistently, in our study, traffic exposure was inversely associated
with all products of bacterial co-metabolism evaluated (ethanol, methanol, isopropanol,
trimethylamines and phenylpropionate).

Fatty acids and lipoprotein subclasses. The association of traffic density with fatty acids
and most of the lipoprotein subclasses, except for HDL cholesterol, was positive, although
the uncertainty of these associations was substantial. While there are no studies specifi-
cally reporting the association between traffic exposure and lipids, air pollution studies
carried out in large cohorts (MESA-Air Study, META-Air Study) identified that pollutant
components such as PM2.5 and NOx were positively associated with total and LDL choles-
terol levels [53,54]. The fatty acid isobutyrate is also considered a by-product of bacterial
co-metabolism [55–57].

The role of oxidative stress in traffic-related metabolomics. There is growing evi-
dence in support of a role of exposure to environmental pollution in altering redox bal-
ance [58,59]. In our data, higher traffic density exposure was positively associated with
GSSG/GSH levels and negatively associated with MDA levels. An increase in GSSG/GSH
is indicative of increased oxidative stress at the cellular level [60–62], consistently with
our hypotheses. Malondialdehyde is a product of lipid peroxidation, especially at the
membrane level; it is derived from polyunsaturated fatty acids and increases in situations
of oxidative stress [63]. Thus, identifying lower levels in subjects more exposed to traffic
with respect to those less exposed was unexpected. In a small study from Cracow (N = 40),
exposure to carbon monoxide (CO), a major pollutant from road traffic, was positively
associated with MDA and GSSG [64]. Inconsistently with our data, short-term exposure
to traffic-related black carbon concentrations in the air was positively associated with
8-isoprostane, a marker of oxidative stress in lipids [65], and 8-oxo-OhdG, a marker of
oxidative stress in the cellular nucleus [66]. In our study, MDA substantially explained
the association of traffic density with metabolites within the fatty acids and subproducts
of bacterial co-metabolism groups. Studies on experimental models show that MDA lev-
els were dependent on fatty acid unsaturation and correlated to carbonyls in fatty acids
(CH2CH2CO) [67]. In addition, alteration in gut and lung microbiota has been observed
in situations of TRAP exposure, with oxidative stress playing an important role in these
alterations [68,69].
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Overall, our results are consistent with the possibility that redox imbalance is a biolog-
ical mediator of trafficking-related metabolic alterations, especially at the cell membrane
level, and related to the microbiota [37,70].

Bioinformatic exploration of traffic- and redox-related metabolic pathways. The
most enriched pathway was Pantothenate and CoA biosynthesis, which has been associated
with mitochondrial function and energy metabolism (the most over-represented metabolites
were cysteine and valine, which were decreased in the subjects most exposed to traffic
density). An experimental study conducted in human epidermal keratinocytes showed
that a pantothenate derivative reduced cell damage by stimulating the intracellular defense
system against ROS [71]. Little is known, however, about the effect that exposure to
traffic density may have on energy metabolism. In our study, higher traffic density was
inversely related to acetate. Studies conducted in mice and rats also concluded that
certain air pollutants, such as lead and other PM, function as deregulators of energy
metabolism [55–57].

The molecular interactions (edges) in our protein network reflect the accumulated
evidence linking proteins involved in oxidative stress and proteins in pathways with over-
represented metabolites and provide an overview of the potential downstream biological
implications of the most interesting findings. For instance, MT2A encodes for metalloth-
ionein proteins, which play an important antioxidant role and have been associated with
the progression of various chronic diseases [72,73]. MAT2A encodes for an essential en-
zyme that synthesizes S-adenosylmethionine (SAM), a precursor of glutathione (GSH) [74].
Glutathione peroxidase isoform 7 (GPx7) is activated upon redox situations, mainly at the
endoplasmic reticulum level, and participates in the oxidative folding of proteins [75,76]. It
is known that the GPx7 structure contains cysteine [70], an amino acid that is associated
with high traffic density in our data. FARS2, GLYCTK, ALAS1 and ALPP intervene in vari-
ous metabolic pathways whose alteration has been associated with exposure to traffic and
various pollutants [77–79]. For a deeper review of other interesting potential mechanisms
identified in bioinformatic analysis, see Supplementary File S1, Supplementary Discussion.
Given the connection of most relevant metabolites with the glutathione cycle, as a post
hoc analysis, we descriptively report the interaction network of the GPX family of proteins
(isoforms 1 to 7) with other proteins and metabolites also obtained from IntAct (Figure 1
and Supplementary File S2, Supplementary Sheet S5).

Limitations and strengths. Our study has several limitations. For instance, the inter-
pretation of our findings requires some caution because the traffic exposure assessment in
our study was based on the participants home address, and it does not take into account
movements made throughout the day. To address this potential source of heterogeneity in
the traffic exposure measurement, we used average annual traffic density as a measure of
traffic exposure to select streets with a similar density and then created tertiles of traffic
density to compare between low, moderate and high exposure levels, as previously done
in other epidemiological studies [16]. Some other studies have employed other variables,
such as nitrogen dioxide, benzene [80–82] and volatile organic compounds [79], or have
assessed personal exposure to air pollution using rechargeable devices that can be car-
ried by the subjects themselves or via satellite-derived data [83]. Further, it should be
taken into account that humans are not only exposed to outdoor environmental pollution
but also indoor pollutants (aromatic hydrocarbons, aldehydes and others) [84]. An ad-
ditional limitation is related to the targeted metabolomic approach, which quantified a
predefined set of metabolites. Consequently, some relevant metabolites may have been
missed. Also, our findings must be interpreted with caution because diet and microbiota
can affect metabolomic profiles [85]. Several sensitivity analyses have been performed
including adjustment for total energy, fat, carbohydrate and protein intake from 24 h recall
questionnaires, yielding essentially similar findings, suggesting that possible confounding
by dietary factors is probably not relevant in our data. Last, the assumptions for mediation
analysis include no unmeasured confounding by the relationship between the exposure,
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the outcome and the mediators, an assumption that is impossible to verify in observational
studies. Another important limitation is the cross-sectional nature of our data.

Our study also has several strengths. To our knowledge, this is the first study to
analyze the association between traffic density exposure and metabolomic determinations
while exploring the potential role of oxidative stress as an intermediary in this association.
In addition, our approach did not provide individual compound measurements but sum-
marized the total exposure to traffic pollution, which is preferable for the purpose of our
study, which included a large number of metabolites with unknown relation to traffic expo-
sure as a whole. The strengths of this study also include the complex survey design and
sample size, which allows our results to be representative for the general population of a
region in Spain. Furthermore, the unique availability of a considerable panel of metabolites
measured with high-quality procedures is an additional strength of the study.

5. Conclusions

In our study, we observed a clear association of exposure to traffic density with differ-
ences in certain metabolic patterns that have traditionally been linked to the development of
chronic conditions in the general population. Our results supported the idea that oxidative
stress might be a relevant mechanism of traffic-related health effects, especially for lipidic
membranes and bacterial co-metabolism. Our findings need to be confirmed by prospective
studies with longitudinal metabolite measurements but suggest that reinforcing public
health interventions to reduce exposure to traffic in the population is needed.
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