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Abstract: Protein aggregation, mitochondrial dysfunction, iron dyshomeostasis, increased oxidative
damage and inflammation are pathognomonic features of Parkinson’s disease (PD) and other neu-
rodegenerative disorders characterized by abnormal iron accumulation. Moreover, the existence of
positive feed-back loops between these pathological components, which accelerate, and sometimes
make irreversible, the neurodegenerative process, is apparent. At present, the available treatments for
PD aim to relieve the symptoms, thus improving quality of life, but no treatments to stop the progres-
sion of the disease are available. Recently, the use of multifunctional compounds with the capacity to
attack several of the key components of neurodegenerative processes has been proposed as a strategy
to slow down the progression of neurodegenerative processes. For the treatment of PD specifically, the
necessary properties of new-generation drugs should include mitochondrial destination, the center of
iron-reactive oxygen species interaction, iron chelation capacity to decrease iron-mediated oxidative
damage, the capacity to quench free radicals to decrease the risk of ferroptotic neuronal death, the
capacity to disrupt a-synuclein aggregates and the capacity to decrease inflammatory conditions.
Desirable additional characteristics are dopaminergic neurons to lessen unwanted secondary effects
during long-term treatment, and the inhibition of the MAO-B and COMPT activities to increase
intraneuronal dopamine content. On the basis of the published evidence, in this work, we review
the molecular basis underlying the pathological events associated with PD and the clinical trials
that have used single-target drugs to stop the progress of the disease. We also review the current
information on multifunctional compounds that may be used for the treatment of PD and discuss the
chemical characteristics that underlie their functionality. As a projection, some of these compounds
or modifications could be used to treat diseases that share common pathology features with PD, such
as Friedreich’s ataxia, Multiple sclerosis, Huntington disease and Alzheimer’s disease.
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1. Introduction

PD is a slowly progressive neurodegenerative disorder that affects 2-3% of the popula-
tion over 65 years of age. The immediate cause of PD is the loss of dopaminergic neurons in
the substantia nigra pars compacta (SNpc). These neurons project into the striatum, where
they interact with two populations of the spiny projection neurons that form the direct and
indirect pathway of the basal ganglia, whose coordinated activity is essential for movement
control [1]. In PD patients, the decrease in dopamine signaling to the striatum causes the
hypo- and brady-kinetic symptoms of the disease [2].

Among neurological disorders, PD is the world’s fastest-growing prevalence, with dis-
ability and deaths increasing from 2.5 million people affected globally in 1990 to 6.1 million
in 2016 [3]. Driven mostly by aging, this number is projected to exceed 12 million affected
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persons worldwide by the year 2040 [4]. This pathology also has a high financial impact,
reporting a total economic burden of $51.9 billion, annually, in the USA [5].

Traditionally, pharmacological PD treatments aim to compensate for the decreased
content of dopamine derived from the death of substantia nigra dopaminergic neurons,
either by L-DOPA supplementation, the inhibition of Mono Amino Oxidases (MAO) or
by agonists of the dopamine receptors. These treatments improve the quality of life of the
patients but do not stop neuronal death and, in the long term, loose effectivity and generate
toxicity [6-8].

Pathophysiological events associated with the death of SNpc dopaminergic neurons
include mitochondrial dysfunction, which results in oxidative stress and decreased ATP
production; iron dyshomeostasis and its associated free radical production, which results
in lipoperoxidation and ferroptotic cell death; x-synuclein aggregation, which results in
impaired proteasomal protein clearance; and mitochondrial dysfunction and inflammatory
conditions, which accelerate the neurodegenerative process. In consideration of the mul-
tiplicity of factors involved in this neurodegenerative process, therapeutic interventions
addressing a single target do not hold much promise of long-term success, as has been
experienced by finalized clinical trials. Accordingly, a multi-target approach that deal with
several aspects of the neurodegenerative process simultaneously may be a better approach
to stop the progress of the disease [9-11].

An ideal drug for the treatment of PD should have an effect on the main pathophysio-
logical events found in PD. Arguably, an ideal drug should have: the capacity to quench
free radicals; the capacity to disrupt or impede a-synuclein aggregation; iron chelation
capacity; the capacity to decrease inflammatory conditions; and have a mitochondrial
destination, which is the center of iron-reactive oxygen species interaction. Additionally,
an ideal multifunctional drug should have a MAO-B inhibitory capacity to increase the
intracellular dopamine content and be selective for dopaminergic neurons to impede un-
wanted effects in other cell types. To facilitate treatment and increase compliance, the drug
should be orally effective, which comprises both good intestinal absorption and blood-brain
barrier permeability.

Here, we review the processes that underlie neuronal death in PD and the surge of
multifunctional compounds that are effective in the neutralization of two or more aspects
of the pathological process.

2. Mitochondria-Associated Events in PD Neurodegeneration

The mitochondrion is the center of the oxidative metabolism and the main site of
continuous reactive oxygen species (ROS) production. Similarly, it is crucial in health and
its dysfunction contributes to the pathogenesis of several diseases, including PD (reviewed
in [12-14]).

Mitochondrial dysfunction is a key factor in SNpc neuron death. Indeed, diminished
mitochondrial complex I activity has been widely observed in postmortem tissue from PD
patients. In addition, several familial PD-associated genes encode the proteins involved
in the maintenance of mitochondrial function and the degradation of damaged mitochon-
dria [15]. Moreover, toxins that inhibit mitochondrial complex I are widely used to generate
experimental models of PD.

Downstream, mitochondrial dysfunction is interlinked with other pathophysiological
events associated to PD neurodegeneration, including iron accumulation, oxidative stress,
a-synuclein aggregation and neuroinflammation (Figure 1). It follows that the multiplicity
of factors comprising PD neuronal death should be considered in the planning of effective
treatments for the disease.
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Figure 1. Interplay between neuroinflammation, mitochondrial dysfunction, iron accumulation,
and a-synuclein aggregation in PD. Mitochondrial dysfunction takes place downstream of PD-
associated genes mutations (encoded proteins in red), which induce mitochondrial ROS (mtROS)
generation and oxidative damage (1). Mitochondrial dysfunction impairs Fe-S cluster synthesis
prompting iron accumulation through IRE/IRP dysregulation. Iron uptake is mediated by TfR1 and
DMT1, which are increased in PD, while ferroportin, which mediates iron export, is decreased, causing
iron accumulation and an increased iron labile pool (2a). Iron is transported to mitochondria by
mitoferrin or by an endocytic mechanism named “kiss and run”. Iron inside of mitochondria is used
for Fe-S cluster synthesis. However, mitochondrial iron accumulation catalyzes the Fenton reaction,
triggering mtROS production (2b). Iron excess is stored in ferritin, which is released by lysosome-
mediated ferritin degradation, which is also altered in PD (2c). Cytoplasmic iron accumulation
triggers hydroxyl radical production, which promotes lipid peroxidation and DNA damage and
a-synuclein aggregation, which further enhances mitochondrial dysfunction (3). Neuroinflammation
also alters iron homeostasis (4). Pro-inflammatory cytokines, NO and H,O; increases DMT1 and
TfR1 protein expression and decreases ferroportin and ferritin levels through IRP1-dependent and
independent mechanisms.

2.1. Mitochondrial Dysfunction and ROS in PD

The main functions of mitochondria are the production of ATP, the regulation of Ca®*
homeostasis, heme biosynthesis, the formation and export of iron-sulfur (Fe-S) clusters, cell
division control and the control of cell death via apoptosis [16]. In addition, mitochondria
are the major intracellular source of ROS and are the site of the Krebs cycle that translate the
products of the catabolism of carbohydrates, lipids, and proteins into reduced nicotinamide
adenine dinucleotide and flavin adenine dinucleotide, which are substrates of the electron
transport chain [17].

The parkinsonism triggered by the accidental injection of the selective inhibitor of mito-
chondrial complex I, 1-methyl-4-phenyl-1, 2, 3, 6- tetrahydrodropyridine (MPTP), provides the
first evidence that mitochondria have a main role in PD pathogenesis. [18,19]. Subsequently,
several studies have revealed that other complex I inhibitors, such as Rotenone, pyridaben,
trichloroethylene and fenpyroximate, also induce dopaminergic neurodegeneration in flies,



Antioxidants 2023, 12, 214

4 of 31

humans and rodents, reinforcing the idea that mitochondrial dysfunction is an essential char-
acteristic in idiopathic PD pathogenesis. These toxins cause alterations in the mitochondrial
electron activity, triggering chronic ROS production, increasing the activity of mitochondrial
nitric oxide synthase and reducing ATP synthesis. These events are observed in the SNpc
neurons, skeletal muscle and platelets of PD patients, where the activity of complex I is impaired
and several subunits of complex I are oxidatively damaged [20].

In addition, structural changes in complex I triggered by a deficiency of apoptosis-
inducing factors make the dopaminergic neurons more vulnerable to neurotoxins [21].
Moreover, the deletion of NADH:ubiquinone oxidoreductase subunit S4 (NDUFS4), an
accessory subunit involved in complex I assembly and stability, causes reactive gliosis in
the brainstem and produces motor symptoms [21]. The conditional deletion of NDUFS4
in mice dopaminergic neurons causes a decline in dopamine levels in the striatum and
amygdala and non-motor manifestations, such as anxiety and cognitive defects [22], condi-
tions resembling a pre-symptomatic stage of PD. Nonetheless, the importance of complex
I inhibition in the death of dopaminergic neurons was recently questioned due to the
conflicting results obtained in the Ndfus4 null mice. Studies show that Ndufs4-deficient
dopaminergic neurons are equally as sensitive as wild-type neurons to neurotoxins such
as rotenone, paraquat, MPP* [23] or Maneb [24], suggesting that mitochondrial complex
I inhibition is not required for the dopaminergic neuron death induced by these toxins.
Additionally, mice with conditional Ndufs4 KO, specifically in in dopaminergic neurons,
did not show enhanced neurodegeneration or sensibility to MPTP [25]. The absence of
spontaneous neurodegeneration in the Ndufs4 knockout mouse has been confirmed by an-
other independent group, although this mouse is more vulnerable to MPTP treatment [26].
These divergent observations could be explained by differences in penetrance caused by a
remnant activity of complex I in the Nudfs4 KO mouse [27] or by unknown compensatory
mechanisms to Ndufs4 deficiency.

Notwithstanding, it is safe to establish that mitochondrial dysfunction in SNpc neurons
is intimately linked to many of the pathognomonic signs of idiopathic PD. This concept is
reinforced by the genetic mutations that result in familial forms of PD.

The loss-of-function mutations of PTEN-induced kinase 1 (PINK1) or Parkin are re-
sponsible for autosomal recessive early-onset PD. PINK1 and Parkin proteins partici-
pate in mitochondrial quality control by regulating mitophagy [28]. PINKI encodes a
serine/threonine-protein kinase that is localized in the outer mitochondrial membrane
(OMM) or mitochondrial intramembrane space (IMS), depending on the membrane poten-
tial. In polarized mitochondria, PINK1 is imported into the IMS, where it is degraded by
proteases [29]. In contrast, mitochondrial depolarization deactivates PINK degradation,
leading to its accumulation in the OMM. PINKI1 recruits Parkin, an E3 ubiquitin ligase,
which ubiquitinates selected proteins on the mitochondrial surface, generating a signal
for mitochondrial degradation [30,31]. Therefore, normal low levels of PINK1 prevent
mitophagy in healthy mitochondria, while the activation of the PINK1/Parkin pathway by
membrane depolarization allows for the removal of damaged mitochondria. Accordingly,
several studies show that rodents and cells lacking Parkin or PINK1 have reduced complex
I or complex IV activity, decreased mitochondrial integrity, lower respiratory capacity and
synthesis of ATP and higher ROS production [32-37].

Mutations in the gene encoding the DJ-1 protein are associated with autosomal re-
cessive early-onset parkinsonism [38], which is found in approximately 1% of PD familial
cases. DJ-1 is a peptidase of the C56 family, whose functions are not completely understood.
DJ-1 is required for a normal life span, motor function and neuronal resistance to oxidative
damage [39—42], and it is implicated in mitochondrial biology. Defects in DJ-1 expression
alter mitochondrial morphology and function [43], increases ATP production and ROS pro-
duction, and opens the mitochondrial permeability transition pore [41,44]. Interestingly, in
response to mitochondrial stress and oxidative damage, DJ-1 translocates from the cytosol
to the mitochondria [45,46], where it can rescue the PINK loss-of-function phenotype [41],
suggesting that it also participates in the elimination of damaged mitochondria. Recently,
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it was reported that DJ-1 maintains dopaminergic cell metabolism and neuronal growth by
regulating the ATP synthase protein components [47].

Mutations in the SNCA gene are responsible for autosomal dominant forms of PD.
The SNCA gene encodes the x-synuclein, a protein predominantly located in the synaptic
terminals, where it is thought to play a role in vesicular packaging and trafficking [48,49].
As it has small amounts of a secondary structure, a-synuclein has a high propensity to
form aggregates [50]. Aggregated «-synuclein is the main structural building block for
the formation of Lewy bodies, a pathological hallmark of PD [51]. Lewy bodies are found
in the remaining DA neurons of the SNpc, as intraneuronal eosinophilic inclusions are
positive for a-synuclein and ubiquitin. Additionally, in most PD cases, Lewy neurites are
found in the amygdala and striatum, which are neurites containing granular material and
a-synuclein filaments (reviewed in [52])

The propensity of a-synuclein to form aggregates can be influenced by several factors,
including missense mutations (best known: A53T, E46K, A30P) [53,54], environmental
toxins [54,55] and high metal concentration, including aluminum, copper(Il), iron(III),
cobalt(Il), and manganese(Il) [56].

The a-synuclein aggregates impact mitochondrial function. a-synuclein binds to
the OMM, inhibiting mitochondrial protein import, triggering mitochondrial senescence
and increasing mitochondrial ROS production [57]. Additionally, x-synuclein aggregates
reduce the mitochondrial membrane potential, inhibit complex I activity [58] and induce
mitochondrial fragmentation, which can be rescued by PINK1, parkin or DJ-1 overexpres-
sion [59-61].

Leucine rich repeat kinase 2 (LRRK?2) is a large multidomain protein that has a cen-
tral catalytic tri-domain with GTPase and kinase activities surrounded by a series of
protein—protein interaction domains [62]. Mutations in the LRRK2 gene are responsible for
autosomal dominant forms of familial PD [63]. Several studies show that LRRK?2 regulates
several cellular processes, including endo-lysosomal vesicle trafficking, mitochondrial
homeostasis, autophagy, neurite outgrowth, cytoskeletal maintenance and immune system
function (reviewed in [64]).

LRRK?2 is localized in several subcellular compartments, including the mitochon-
drion [65]. Its overexpression generates mitochondrial fragmentation, along with the
increased expression of the mitochondrial dynamin-like protein (DLP) and ROS produc-
tion [66]. Moreover, human fibroblasts or induced pluripotent stem cells (iPSCs)-derived
neurons from PD patients carrying the LRRK2 G2019S mutant (the most frequently oc-
curring mutation) show impaired mitochondria function [67,68], increased ROS produc-
tion [67], increased rotenone sensibility [69] mitochondrial DNA damage [70], increased
mitochondrial fragmentation [71,72] and excessive mitophagy [73,74].

Mutations in the ATP13A2 gene, which encodes for a lysosomal P-type ATPase, cause
a rare autosomal recessive parkinsonism known as Kufor Rakeb Syndrome (KRS) [75]. Pa-
tients with KRS show an increased iron deposition in the basal ganglia [76]. ATP13A2 plays
an important role in the maintenance of iron homeostasis as lysosomes can act as reservoirs
of redox-reactive ferrous iron [77]. The loss of ATP13A2 activity disrupts the lysosome’s
ability to store iron excess, reducing dopaminergic neuronal cell survival [78]. In addition,
ATP13A2 overexpression reduces iron-induced lysosomal membrane permeabilization
and cytotoxicity, triggering an enlargement of the lysosomes and late endosomes [79].
Lysosomes are essential for autophagy, where the autophagic clearance of dysfunctional
mitochondria represents a crucial element of mitochondrial quality control. Accordingly,
ATP13A2-deficiency induces mitochondrial dysfunction [80-82] and increases mitochon-
drial ROS production [82].

Thus, it is safe to conclude that mitochondrial dysfunction is a central feature to both
idiopathic and most familial cases of PD.
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2.2. Mitochondrial Dysfunction and Iron Homeostasis in PD

As mentioned previously, the mitochondrion plays a central role in the biology of
Fe-S clusters as it holds the assembly machinery responsible for their synthesis (reviewed
in [83]). Fe-S cluster synthesis also occurs in the cytoplasm, albeit at a minor scale, and
depends on a sulfur-containing factor generated in mitochondria.

Eukaryotic cells have, approximately, between 50 and 70 different Fe-S clusters-
containing proteins, which support a wide array of biological processes through redox-
dependent and independent mechanisms. Mitochondrial Fe-S proteins take part in the
electron transport chain (complexes I-1II), lipid -oxidation, heme biosynthesis and the
citric acid cycle (aconitase). On the other hand, cytosolic and nuclear Fe-S proteins include
several DNA polymerases, DNA helicases and glycosidases, proteins required for transfer
RNAs modification, ribosome biogenesis and function, cellular iron homeostasis mainte-
nance (IRP1), antiviral defense and finally kinesin family member 4A, a molecular motor
associated to chromosome segregation during mitosis (reviewed in [84]).

Beyond its essentiality for Fe-S cluster synthesis, iron excess is linked to cellular death,
causing protracted cellular oxidative stress through the iron-mediated non-enzymatic
catalytic conversion of HyO; and O,°” into the highly reactive hydroxyl radical as a
result of Fenton and Haber-Weiss chemistry [85,86]. Therefore, iron homeostasis must be
tightly controlled to satisfy iron requirements while avoiding iron toxicity, particularly in
the mitochondprion, as this organelle, with its high content of iron and ROS, allows for a
favorable environment for iron-mediated oxidative damage.

The iron transport protein transferrin (Tf), present in serum/cerebrospinal fluid, plays
an essential role in cellular iron uptake. Tf possesses two high affinity iron (III)-binding
sites. Iron-loaded Tf is endocytosed by binding to transferrin receptor-1 (TfR1). Ferric
ions from endocytosed Tf dissociate in the acidic environment of the endosome and are
subsequently reduced to ferrous ions and released into the cytosol by divalent metal
transporter-1 (DMT1) [87]. This pool of chelatable and redox-active iron is known as the
cytosolic labile iron pool (cLIP). Iron in the cLIP is distributed to three destinations: (i) to
mitochondria, for the synthesis of Fe-S clusters or heme group; (ii) to ferritin, a cytosolic
iron storage protein; or (iii) transported back to the extracellular medium through the iron
exporter, Ferroportin 1 (FPN1). The iron stored in ferritin become bioavailable after ferritin
lysosomal degradation [88-90].

Changes in cell iron status (iron overload or depletion) lead to compensating transla-
tional changes of the iron homeostasis-related proteins, mediated by the iron responsive
element (IRE)/Iron regulatory protein (IRP) system. Two IRPs isoforms, IRP1 and IRP2,
modulate the expression of proteins by binding to conserved stem-loop structures, named
IREs, in the mRNA untranslated regions (UTRs). The regulatory outcome depends upon
the position and context of the IRE in the mRNA: IRP binding to a 5’ UTR IRE represses
translation, whereas IRP interaction to a 3’ UTR IRE can indirectly stimulate translation
through the suppression of nRNA degradation. In iron-deficient cells, IRPs selectively bind
IRE at 5” UTR of the mRNA coding for ferritin and FPN1 and to 3’UTR of the mRNA coding
for TfR1 and DMT1, promoting iron uptake. When iron is in excess, IRP2 is degraded, and
IRP1 apoprotein binds a [4Fe-45] cluster by a successive transfer of two [2Fe-25] clusters
to become a functioning cytosolic (c)- aconitase, suppressing its RNA-binding activity.
Diminished IRPs binding to the IREs promotes ferritin and FPN1 synthesis and the TfR1
and DMT1 mRNAs are degraded by nucleases.

Iron is imported into mitochondria by two mechanisms. The first mechanism is named
“endosome kiss and run”, by which iron bypasses cytoplasmic transport, and is instead
released into the mitochondria by a transient physical contact between the endosome and
outer mitochondrial membrane [91]. Recently, it was reported that DMT1 participates
in this mechanism by regulating the interactions between mitochondria and early endo-
somes [92]. In the second mechanism, a mitochondrial iron importer mitoferrin delivers
iron to mitochondria from the cLIP [93-95]. This mechanism is also regulated by IRP1, as
IRP1 stimulates mitoferrin expression, enhancing the mitochondrial iron import [96].
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Several studies show elevated iron content in glial cells and dopaminergic neurons
of the SNpc of PD patients [97-100]. This increased iron is thought to contribute to neu-
ronal death by mediating the production of hydroxyl radicals and by promoting the fibril
formation of x-synuclein aggregation and fibrillation [101]. Neuroprotection, achieved by
pharmacological or genetic chelation of iron in animal models of PD, supports its role in
neuronal degeneration (discussed below).

Interestingly, dysregulation on cellular iron homeostasis is observed in cellular and
animal models of PD that are based in mitochondrial complex I inhibition. In MPTP
intoxicated animals, elevated DMT1 expression in the ventral mesencephalon takes place
with iron accumulation, oxidative stress and dopaminergic neurons loss. In neuroblastoma
cell lines, MPP* (the active metabolite of MPTP) treatment also induces the up-regulation
of DMT1, generating iron accumulation and ROS [102]. Moreover, treatment with rotenone
increases TfR1 and DMT1 levels and decreases FPN1 levels, together with an increment
in iron uptake and increase in the cLIP [103]. Complex I inhibition also increases cysteine
oxidation and lipid peroxidation [103]. These changes were accompanied by an increase in
IRP1 activity due to a decrease in Fe-S cluster synthesis [104]. By contrast, IRP1 knockdown
induces higher ferritin levels and a lower LIP, increases resistance to cysteine oxidation
and decreases lipid peroxidation, protecting it from complex I inhibition-induced cell
death [103]. These results support the concept that mitochondrial dysfunction results in
IRP1 activation, triggering iron accumulation and cell death.

2.3. Mitochondrial Dysfunction and Neuroinflammation in PD

Chronic neuroinflammation is one of the hallmarks of PD pathology. Several studies
using postmortem tissue from PD patients show a dramatic proliferation of reactive amoe-
boid macrophages and microglia in the SNpc. Macrophage proliferation is accompanied by
a high expression of pro-inflammatory cytokines, such as tumor necrosis factor-o (TNF-«),
interleukin-1p (IL-1$), interferon-gamma (IFN-y) and interleukin-6 (IL-6), as well as the
production of reactive oxygen and nitrogen species by glial cells (reviewed in [105,106]).
This increase in pro-inflammatory cytokines is also observed in the cerebrospinal fluid and
basal ganglia of patients with PD [107]. These features are reproduced in several animal
models of PD, including 6-hydroxydopamine-, MPTP-, rotenone- or LPS-injected rodents
(reviewed in [108]).

Recently, it was proposed that ROS derived from dysfunctional mitochondria (mtROS)
can activate the NOD-, LRR- and pyrin domain-containing protein 3 (NLRP3) inflamma-
some and the secretion of pro-inflammatory cytokines in PD [109]. These observations may
help us to comprehend the often-observed association between mitochondrial damage and
inflammation in neurodegenerative diseases, including PD (reviewed in [110]).

The inflammasome is a cytoplasmic multiprotein complex composed by a sensor
protein, named the pattern-recognition receptor (PRR), and an inflammatory caspase. In
some inflammasomes, both the PRR and the inflammatory caspase are connected by an
adapter protein. Several PRR families have been described, with the best-characterized
members being the Toll-like receptor (TLR) family, RIG-I-like receptors (RLRs), nucleotide-
binding domain leucine-rich repeat-containing proteins (NLRs), C-type lectin receptors
(CLRs) and AIM2-like receptors (ALRs).

Many pathogen-associated molecular patterns (PAMPs) and damage-associated molec-
ular patterns (DAMPs) can activate the inflammasomes by PRR binding, stimulating both
the canonical and non-canonical pathway. The canonical pathway depends on caspase 1
activation, whereas the non-canonical pathway depends on caspase 11 (caspase 4 or 5
in humans) or caspase 8 activation. Both converge in the production of IL-1f3, IL-18 and
gasdermin D, which induces pyroptosis by forming pores in the cell plasma membrane
(reviewed in [111]).

The NLRP3 inflammasome primarily sense exogenous signals, but also respond to
endogenous signals, including mitochondrial dysfunction and ROS (reviewed in [112]).
The first study linking mitochondrial dysfunction with NLRP3 inflammasome activation
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showed that mtROS, generated downstream of the inhibition of the mitochondrial respira-
tory chain, can activate the NLRP3 inflammasome canonical pathway [113]. Accordingly,
ROS induces thioredoxin-interacting protein binding to NLRP3, which is essential for
NLRP3 inflammasome activation [114].

In addition, mtROS can damage the mitochondrial genome and open the mitochon-
drial permeability transition pore, allowing for the escape of oxidized mitochondrial DNA
(mtDNA) to the cytosol, acting as damage-associated molecular patterns and, accordingly,
activating TLR9 [115], the NLRP3 inflammasome [116], the AIM2 inflammasome [117]
and the cytosolic cyclic GMP-AMP synthase (cGAS)-stimulator of the interferon genes
(STING) pathway [118]. The latter activates the NF-«B transcriptional factor, triggering
the production of type I IFN and the expression of inflammatory cytokines, such as tumor
necrosis factor (TNF), IL-1f3 and IL-6 [119]. Interestingly, the loss of STING prevented SNc
dopaminergic neuron death and motor deficits in a Parkin-null mouse that also expressed a
proofreading-defective mtDNA polymerase (accumulating mtDNA mutations with aging),
suggesting that inflammation mediates the neurodegeneration in this model [109]. Mito-
chondrial transcription factor A contributes to eliminating damaged mtDNA molecules
bearing apurinic/apyrimidinic (abasic) sites [120]. Moreover, TFAM KO mice develop a
PD-like neurodegeneration [121], and Idiopathic PD patients displays increased levels of
abasic sites together with a reduced expression of TFAM [122], suggesting that defective
damaged mtDNA removal is implicated in the pathogenesis of PD.

In conclusion, it is apparent that mitochondrial dysfunction and inflammasomes
activation are critical emerging players in inducing and sustaining neuroinflammation
during PD.

2.4. Neuroinflammation and Iron Homeostasis in PD

Interestingly, neuroinflammation is highly connected to iron accumulation in PD.
Cytokines regulate the expression of iron homeostasis proteins, such as ferritin, DMT1
and hepcidin, while reactive oxygen and nitrogen species trigger a c-aconitase to the
IRP1 switch with the consequent iron accumulation amplifying the neurotoxic effects of
unresolved neuroinflammation.

Accordingly, NFkB promotes the expression of the iron importer DMT1 gene [123,124].
The nuclear translocation of NF«kB occurs downstream of many cytokine receptors, such as
the TNF receptor (TNFR) and the IL-1 receptor (IL-1R) (reviewed in [125]). Importantly,
the nuclear translocation of NF«B is increased in the dopaminergic neurons of PD patients
(9207126), which express high levels of TNFR [126]. Accordingly, TNF-«, IL-6 or the TLR4
agonist, LPS, directly increases both DMT1 mRNA and protein levels, generating iron
accumulation in neurons and microglia [127,128].

Ferritin, which stores iron in a redox inactive form, is also regulated by inflamma-
tion. Ferritin is composed of 24 ferritin-H and ferritin-L subunits in cell-specific ratios.
These subunits are not functionally interchangeable and are critical for maintaining iron
homeostasis and protecting against iron overload. Ferritin-L has a higher capacity than
ferritin-H to induce iron-core nucleation, whereas ferritin-H is superior in promoting iron
oxidation [129]. Ferritin-H expression is regulated by the activation of the transcription
factors NFkB [130,131] and NF-E2-related factor 2 (Nrf2) (reviewed in [132]).

In PD patients, the SNpc neurons have diminished ferritin levels, their being ferritin
iron load higher than the ferritin from control patients [133]. Relatively low levels of ferritin
and iron accumulation make DA neurons more susceptible to oxidative stress in the SNpc.
Moreover, the ferritin-H/ferritin-L ratio in PD is also changed, with increased ferritin-H
and decreased ferritin-L, reducing the capacity of ferritin to store iron [134].

Pro-inflammatory cytokines, such as IL-6 and IL-1f3, induce hepcidin synthesis through
the activation of the transcriptional factors STAT3 and NF«B (reviewed in [135]). Hepcidin
is a small peptide hormone that acts as the master regulator of systemic iron homeostasis,
which is expressed in several brain regions, including the cortex, hippocampus, amygdala,
thalamus, hypothalamus, olfactory bulb, mesencephalon, cerebellum, pons and spinal
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cord [136-138], as well as in the endosomal structures in the reactive astrocytes and ep-
ithelial cells of the choroid plexus, colocalizing with FPN1 [139]. Hepcidin downregulates
the iron exporter FPN1, with cell type-specific effects on brain iron homeostasis. Hepcidin
expression triggers iron accumulation on neurons [128,140]. On the contrary, in astrocytes
that participate in iron incorporation across the blood-brain barrier [141], hepcidin reduces
blood-to-brain iron passage, thus reducing brain iron overload [142,143]. The overexpres-
sion of hepcidin in brain cells decreases neuronal loss and mitochondrial dysfunction in
rotenone or 6-OHDA-injected mice [144]. Endogenous hepcidin levels in the cerebrospinal
fluid of PD patients have not been evaluated until now, although an increase in serum levels
has been observed [145], possibly triggered by inflammatory mediators or deregulated
iron homeostasis.

Finally, inflammation mediators also regulate the IRE/IRP system. Proinflammatory
cytokines IL-13 and TNF-« increase IRP1 levels, generating an increment of DMT1 and
TfR1 protein levels, together with a decrease in FPN1, triggering iron accumulation in
ventral mesencephalic neurons. These changes are abolished by the co-administration of
the anti-oxidant N-acetylcysteine or the inducible nitric oxide synthetase inhibitor Nw-
nitro-l-arginine methyl ester hydrochloride [146]. IRP1 displays a complex response to
reactive oxygen/nitrogen species. Both NO and H,O, disrupts the Fe-S cluster of the
c-aconitase, turning it into IRP1 [147-150]. Accordingly, an increase in the iron labile pool
is observed in NO or H,O,-treated cells [151].

In summary, neuroinflammation, mitochondrial dysfunction and iron accumulation
are intertwined in a positive feedback loop that supports the development and progression
of PD (Figure 1).

3. Current Therapeutic Approaches to PD

In addressing the pathophysiology of PD, an attractive hypothesis is the metal-based
neurodegeneration hypothesis [152]. According to this hypothesis, redox-active metal ions,
such as iron, together with mitochondrial dysfunction, generate ROS, which causes the
peroxidation of membrane phospholipids, which in turn leads to the formation of reactive
aldehydes. Reactive aldehydes and ROS modify x-synuclein, inducing its aggregation.
Aggregated «-synuclein affects mitochondrial function, generating a positive loop of more
ROS production and less ATP synthesis. From the therapeutic standpoint, it follows that
multiple-task strategies targeting these events should provide more effective treatment to
stop the progression of this disease.

Here, we will review finished clinical trials with published results that were designed
to slow down the neurodegenerative process of PD, in particular, trials addressing the
PD-associated pathological events of increased ROS production, iron overload, x-synuclein
aggregation and inflammation. To this effect, we used the data base of the Clinicaltrials.gov
(https:/ /beta.clinicaltrials.gov: accessed on 13 December 2022) as a source. A comprehen-
sive analysis of ongoing trials aimed either to decrease the symptoms or to delay/slow the
progression of the disease is found in [153].

3.1. Clinical Trials Targeting Oxidative Stress

Several clinical trials have aimed to decrease the oxidative damage observed in PD by
utilizing ubiquinol, the anti-oxidant form of Coenzyme Q10 (CoQ10). As mitochondrial
Complex I dysfunction is a common trait in sporadic PD, treatment with CoQ10, intended
to bypass Complex I dysfunction, could restore mitochondrial function [154].

A Meta-Analysis study of eight randomized controlled trials using CoQ10 (899 patients)
concluded that CoQQ10 was safe and well tolerated; however, no improvement of motor symp-
toms was observed compared to the placebo. The authors indicated that they cannot recommend
CoQ10 for routine treatment of PD [155].

Overall, the clinical evidence indicates that supplementation with CoQ10 does not
improve the motor symptoms of PD patients, perhaps with the exception of those with
wearing-off resulting from years of using levodopa.


https://beta.clinicaltrials.gov
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3.2. Clinical Trials Using Iron Chelation Therapy

A search in https:/ /beta.clinicaltrials.gov: accessed on 14 December 2022 using Parkin-
son’s disease and iron chelation as keywords showed four finished clinical trials, only two
of them with published results.

In clinical trial NCT01539837, reported by researchers from the Imperial College
London, good tolerance to deferiprone was found in PD patients. Although the removal of
excess iron in the dentate and caudate nucleus was found, the treatment with deferiprone
had minimal effects on the symptoms of the disease [156].

A randomized pilot clinical trial tested 40 patients with early-stage PD treated with the
iron chelator deferiprone (ClinicalTrials.gov Identifier NCT00943748). A dose of 30 mg/kg
body weight per day, during a period of six months, resulted in decreased iron content in
the substantia nigra, evaluated by T3 magnetic resonance. In addition, a smaller change
in the UPDRS score in the deferiprone-treated group, compared to the placebo group,
was also found. Nevertheless, once the treatment was suspended, iron accumulation
reappeared, suggesting a reversal to the pathological state [157]. In a second report of
the same study, the usefulness of the ferroxidase ceruloplasmin (CP) as a biomarker was
emphasized, associating the low activity of this enzyme in Parkinson’s disease with iron
overload in the substantia nigra [158]. It was found that after six to 12 months of deferiprone
treatment, greater reductions in the substantia nigra iron levels and UPDRS motor scores
were obtained in patients with higher serum and cerebrospinal fluid levels of CP-ferroxidase
activity. A second stage of this project, under the acronym FAIRPARK II, enrolled 372 early-
diagnosed PD patients who had never received levodopa. (https:/ /clinicaltrials.gov/ct2
/show /NCT02655315: accessed 11 January 2023). The patients were supplemented with
of 15 mg of deferiprone per kilogram of body weight or with the placebo, twice daily, for
36 weeks. At week 36, the MDS-UPDRS score increased by 15.6 points (i.e., worsened) in
the deferiprone group, compared with 6.3 points in the placebo group, despite a decrease
in brain iron content in the deferiprone group [159]. Based on these findings, the authors
concluded that deferiprone supplementation to early-diagnosed PD patients was associated
with worse MDS-UPDRS scores, despite the decreased brain iron content.

In summary, the reported results on the iron chelation treatment of PD discussed
above are not encouraging in terms of a possible slowdown of the disease progression.

3.3. Clinical Trials Targeting a-Synuclein Aggregation

A Phase II study (SPARK, NCT03318523) evaluated the effects of the monoclonal anti-
body BIIB054 (trade name Cinpanemab), which targeted aggregated forms of a-synuclein
in participants with PD. BIB054 was administered every four weeks via intravenous (IV)
infusion to adults with PD, at doses between 250 and 3500 mg. No effect on the MDS-
UPDRS score at any dose tested was found. Due to “negative clinical trial findings”, the
producing company, Biogen, discontinued the development of Cinpanemab as a medica-
tion intended to treat PD in 2021 (https:/ /www.alzforum.org/therapeutics/cinpanemab:
accessed 14 December 2022).

Opverall, the finished clinical trials targeting o-synuclein aggregation by monoclonal an-
tibody treatment have failed to produce evidence of an improvement of disease conditions.
Nonetheless, a number of other studies targeting a-synucleinopathies, either in the recruit-
ing step or in progress, may shed evidence that o-synuclein aggregation is indeed a thera-
peutic target in PD. These trials are found in https:/ /beta.clinicaltrials.gov/search?patient=
Parkinson%C2%B4s%20Disease%20%CE%B1-Synuclein&locStr=&distance=0&page=9: ac-
cessed 14 December 2022.

3.4. Clinical Trials Targeting Inflammation

There are no finished clinical trials that specifically target inflammation as a treatment
for PD. Clinical trial NCT03462680 studied the effect of the daily supplementation of
niacin (vitamin B3) on motor symptoms in PD patients. Based on the knowledge that
niacin inhibits vascular inflammation and protects against endothelial dysfunction [160],


https://beta.clinicaltrials.gov
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niacin can be considered an anti-inflammatory drug. A six-month double-blind, placebo-
controlled randomized study produced evidence that the UPDRS III scores significantly
decreased in PD patients compared with the placebo group [161].

Following the recognized link between the intestinal environment and inflammation, a
number of clinical trials are now in the recruiting step to evaluate the effects of microbiota
intervention and of nutritional supplementation with anti- inflammatory compounds on a puta-
tive improvement of clinical parameters in PD patients. (https://beta.clinicaltrials.gov /search?
patient=Parkinson%C2%B4s%20Disease%20inflammation&locStr=&distance=0&page=4: ac-
cessed 14 December 2022).

Overall, clinical interventions devoted to decreasing inflammatory conditions in PD
could be a promising path to follow.

4. Multifunctional Drugs for the Treatment of PD

The lack of success observed in one target trial raises the need for drugs that attack
multiple aspects of the PD neurodegenerative process. In addition to targeting the patho-
logical aspects of the disease, the mitochondrial destination is also a desirable property of a
putative drug as the mitochondrion can be viewed as a confined space in which both high
concentrations of ROS and of iron coexist, which makes this organelle particularly prone to
oxidative damage [103,104,162].

During the last two decades, several multifunctional agents have been reported to
be effective in experimental models of PD. It must be considered that a treatment with
a multitarget drug has advantages over the combination therapy of several single-target
drugs. By reducing polypharmacy (i.e., the mixing of many drugs), multitarget drugs
decrease the risk of adverse effects and the risk of drug-drug interactions [163]

Table 1 shows the basic characteristics of these agents, including their metal chelation
characteristics, their capacity to act as anti-oxidants/free-radical scavengers, their route of
administration and their blood-brain barrier permeability.

At present, there are several chemical nuclei that could be used for the design and
development of new substances with a multi-target capacity. Below, we will analyze the
active chemical groups and the functions they influence.


https://beta.clinicaltrials.gov/search?patient=Parkinson%C2%B4s%20Disease%20inflammation&locStr=&distance=0&page=4
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Table 1. Biological properties of multifunctional agents that could be used for the treatment of PD.
gical prop g
Compound Active Chemical Groups Metal Chelation ROS Neutralization Dopamine Metabolism * Mitochondria Tropism Anti-Inflammation In Vivo Effectiveness Reference
Resveratrol Phenol Not tested Yes Not tested Not tested Yes Yes [164]
Magnolol Phenol Not tested Yes No No Yes Yes [165]
Cinnamoyl-N-

Acylhydrazone-Donepezil Catechol and No tested Yes Not tested Not tested Not tested Not tested [166]

ylhy P

Hybrids (PQM263)
Choqul(il((:;s;(l;grllgré:?ybnds amino-hydroxyl Cu?*; Fe?*; Zn>* Yes Yes Not tested Not tested Yes [167]
(]/E&)r-;—lllzslrgﬁlfiz;}s]l Catechol Not tested Yes Yes Not tested Yes Not tested [168]
N-D(gg;:zl;:ﬁ(ﬁ:noyl Cathecol Not tested Yes Yes Not tested Yes Not tested [169]
Ginkgetin Enol and phenol Fe?* Yes Not tested Not tested Yes Yes [170]
Biochanin A Phenol Not tested Yes Yes Not tested Yes Yes [171]
Eplgallo(%aéeccg)n gallate Catechol Cu?t; Fe3*; AIP*; Mn2* Yes No Not tested Not tested Yes [172]
Z%{Bﬁiﬁf]%ﬂ}sglugllgm Catechol Cu?*~ Fe?* > Zn?* > Fe3* Yes Yes Yes Not tested Yes [173]

2-amino-2-
Coumarin-tris hybrid (CT51) (hydr(ixgi g}ztlkt}%lr){pg(;pane— Fe?* > Fe3* Yes Not tested Yes Not tested Not tested [174]
and carbonyls

Coumarin Mannich
base derivatives No Present Not tested No Yes Not tested Yes Yes [175]
HYdrOX}}i}C/lErliiosl l(rll\ié%lgopargyl quinolin-8-ol Fe* > Cu?* > Zn2+(1%) No Yes Not tested Not tested Yes [176]
I;ﬁiizg’g:ﬁ;ﬁ?;?g{fgggl quinolin-8-ol Fe** > Cu** Yes Yes Not tested Not tested Yes [177]
2—hepf]y;r31;)}g:£0xy—4— 3-hydroxy-4-quinolone Not tested Yes Not tested Not tested Not tested Not tested [178]
Dlerlﬁ}}l’llg'gst(/D 1?2,([){7,;1g0mst 2,2'-Bipyridyl Fe?* >>> Fe®* No Yes Not tested Not tested Yes [179]
Ceiag?r?ics(:l(_DD—z'E/Zlg):a Catechol No tested No Yes Not tested Not tested Yes [180]
Carbeilz;éi;?(]/)]-)%gsgomst No present No tested Yes Yes Not tested Not tested Yes [181]
Plperazﬁ;zsiégﬁ'g‘%;;momne quinolin-8-ol Fe?*; Fe3* No No Not tested Not tested Yes [182]
I-hydroxypyrazin-2(1H)-one N-hydroxy-N- Fe?* Not tested Yes Not tested Not tested Not tested [183]

(1,2-HOPY)

methylacetamide
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Table 1. Cont.

Compound Active Chemical Groups Metal Chelation ROS Neutralization Dopamine Metabolism * Mitochondria Tropism Anti-Inflammation In Vivo Effectiveness Reference
2-pyridones derivatives 2-pyridones Not tested Yes Not tested Not tested Yes Not tested [184]
Tetramethylpyrazine (T-006) hydr;}zllrr:grllledene— Not tested Yes Yes Not tested Not tested Yes [185]
Celastrol 2-hydroxycyclohexanone Not tested Yes Yes Not tested Yes Yes [186]
Ferruginol Phenol Not tested Not tested Yes Not tested Not tested Yes [187]
Ginkgolide K Ascorbic Acid Derivatives Not tested Yes Yes Not tested Yes Yes [188]

7-Aminophenanthridin- 8-aminoisoquinolin- oy 0y

6(5H)-one (APH-4) 1(2H)-one Fe**, Cu Yes Not tested Not tested Not tested Not tested [189]
Ladostigil derivative (MT-20R) No Not tested No Yes Not tested Not tested Yes [190]

# Include D2/D3 agonism and modification of MAO-B activity.
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4.1. Derivatives of Phenols

Phenols are compounds with multiple activities that could play a key role in the
development of new multi-target drugs for the treatment of neurodegenerative diseases.
These include resveratrol, magnolol and PM263, among others. The association between
the structure and function of putative neuroprotective phenolic derivatives is shown in
Figure 2.
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Figure 2. Structure-function association of multifunctional phenolic derivatives. Green shadow-
ing shows iron chelation sites; yellow shadowing shows free radical scavenger sites.

Resveratrol is a natural compound of the stilbene family that is present in appreciable
concentrations in the skin of grapes and red wine. Cell studies show that resveratrol
decreases the concentrations of ROS and NOS, and stimulates the increase in endoge-
nous anti-oxidant systems, such as Nrf2, HO-1, SOD, CAT and GSH [164,191-193]. In
neuroinflammation, resveratrol decreases the activity of the pro-inflammatory pathways
and increases the levels of the anti-inflammatory cytokine IL-10 [194-196]. In autophagy,
it induces the control of LKB1 and AMPK over mTOR, Beclin-1, LC3-II and p62 signal-
ing [197,198], whereas in apoptosis, it exerts activity on Caspase-3, Caspase-9, Bax, Bcl-2
and SIRT-1/pAMPK [199,200]. These data indicate that resveratrol acts as a modulating
agent of the various synergistic pathways involved in anti-oxidant, anti-inflammatory and
anti-apoptotic activities.

Magnolol is a very particular hydroxylated biphenyl compound extracted from the
Magnolia officinalis species. It exhibits inhibitory activity of the NF-xB and MAPK signaling
pathways, which are associated with neuroinflammation and oxidative processes [165].

A group of multifunctional cinnamoyl-N-acylhydrazone-donepezil hybrid compounds
were synthesized. From these, PM-263 was evaluated in in vitro models of neurodegener-
ative diseases [166]. Testing showed that PM-263 inhibits ROS generation, has moderate
inhibitory activity towards acetylcholinesterase and effects the protection of cell viability
against 6-OHDA-induced damage.

The structure of Compound 8a displays a potential site for MAO-B inhibition and func-
tional groups with putative anti-oxidant activity and potential metal interaction sites [167].
Tested in cells, compound 8a inhibited MAO-B activity at submicromolar concentrations
and presented outstanding anti-oxidant activity and chelation of Fe?*, Cu?* and Zn?* ions.
In addition, it was observed that Compound 8a inhibited the Cu?*-induced aggregation of
AR [167].

A group of (E)-hydroxystyryl aralkyl sulfone derivatives (compounds 5a to 5h) were
synthesized and tested in their anti-oxidant and as neuroprotective activities. All of these
compounds had a catechol group with potential anti-oxidant and metal chelating properties.
The results showed free radical scavenging and neuroprotective effects through in vitro
assays from neurotoxins such as HyO,, 6-OHDA and MPP* [168]. In addition, compound
5h showed the highest anti-inflammatory capacity using the LPS-induced nitric oxide
release model in BV2 microglia.
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N-Docosohexaenoyl dopamine is a compound that presents a catechol group, fa-
vorable for exerting anti-oxidant activity and chelating ions such as Fe?* and Cu?* [201].
This compound is an endogenous bioactive lipid of the neurolipin family and shows
neuroprotective activity at micromolar concentrations.

4.2. Derivatives of Polyphenols

Flavonoids are natural compounds with a wide range of health-promoting activities
on diseases that include cancer, heart and neurodegeneration [202-204]. Widely charac-
terized flavonoids with therapeutic potential include Ginkgetin, Biochanin A and EGCG.
The association between the structure and function of these neuroprotective polyphenol
derivatives is shown in Figure 3.
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Figure 3. Structure of flavonoids with neuroprotective activity. Green shadowing shows iron
chelation sites; yellow shadowing shows free radical scavenger sites.

The bioflavonoid Ginkgetin, a compound isolated from the species Ginkgo biloba
L., presented significant protection against MPP-induced damage, as represented by the
decrease in reactive oxygen species, which correlates with the molecule’s multiple hydroxyl
groups [170] (Figure 3). Ginkgetin inhibited cell apoptosis through the caspase-3/Bcl2/Bax
pathway and had a stabilizing effect on SNpc tyrosine hydroxylase expression and on
SOD activity in the striatum. In addition, this compound could chelate ferrous and ferric
ions, indicating that the mechanism by which it exerts neuroprotective activity is through
decreasing redox-active iron [170].

A compound that exhibits promising neuroprotective activity is the isoflavone Biochanin
A (Figure 3), which is isolated from a variety of plants of the family Leguminosae (reviewed
in [171]). Biochanin A has three hydroxyl groups (Figure 3) which are responsible for the
anti-oxidant capacity [205,206], and it is possible that they also coordinate ferrous ions. Within
the mechanism of neuroprotective activity, this compound blocks microglial activation and
increases SOD, NADPH oxidase and glutathione peroxidase. In addition, it has a direct effect
on decreasing NO, TNF-«, IL-13 and ROS concentrations in vitro, as well as other attributes
associated with neuroprotection [205].

Another widely known compound is (—)-epigallocatechin-3-gallate (EGCG) [172],
distributed in various plant species with high anti-oxidant power. This compound is
characterized by its polyphenolic, ferrous and ferric ion chelating capacity (Figure 3). In this
study [172], EGCG was the most abundant polyphenol of the polyphenol mixture tested.
The administration of the mixture was found to reduce the a-synuclein concentration.
Furthermore, it was concluded that this polyphenol mixture, where EGCG is relevant, had
the ability to stabilize motor disturbances and o-synuclein aggregation.

4.3. Derivatives of Coumarins

Our research group has developed the multi-white coumarin compounds, DCH12 [173]
and CT51 [174] (Figure 4). In affinity studies of metals of biological interest, both com-
pounds showed a chelation of ferric and ferrous ions. However, DHC12 showed a higher
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affinity constant compared to the values obtained from CT51. In addition, DHC12 also
showed affinity for cuprous ion, a metal that can also mediate the Fenton reaction for
the generation of the hydroxyl radical. In vitro studies with DHC12 concluded that it is
a compound with chelating capacity that localizes to cytoplasm and mitochondria. In
addition, DHC12 showed protection against lipid peroxidation, stabilized mitochondrial
membrane potential and inhibited MAO-B activity (Figure 4).
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Figure 4. Structure of coumarins with neuroprotective activity. Green shadowing shows iron
chelation sites; yellow shadowing shows free radical scavenger sites; blue shadowing shows MAO-B
inhibition sites.

In the in vivo studies, DHC12 showed a neuroprotective capacity in neurons of the
SNpc. CT51 showed a potent capacity to inhibit radical species by chemical experiments
based on EPR studies. In cells, CT51 was also distributed to the mitochondria, protected
against lipid peroxidation and reduced the sustained release of calcium in the ryanodine
receptor (RyR) upon an oxidation stimulus. However, unpublished results from our group
indicated that CT51 is toxic to mice at putative therapeutic doses.

4.4. Derivatives of Quinolines and Quinolones

The quinoline derivatives M30 [176] and HLA-20 are versatile compounds character-
ized by a N- propargylamine MAO-B inhibition group and a metal (Fe?*, Fe**, Cu?*, Zn?*)
chelation site [177] (Figure 5).
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Figure 5. Structure of quinolines and quinolones with neuroprotective activity. Green shadowing
shows iron chelation sites; blue shadowing shows MAO-B inhibition sites.
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M30 has neuroprotective activity in vitro, and its in vivo treatment results in an in-
crease in the hypoxia inducible factor HIF-1 [207]. It differentially induces endothelial
growth factor, erythropoietin, enolase-1, transferrin receptor, heme oxygenase-1, inducible
nitric oxide nitric oxide synthase, glucose transporter 1, brain-derived neurotrophic factor,
glial cell-derived neurotrophic factor, anti-oxidant enzymes (catalase, superoxide dismutase
1 and glutathione peroxidase). It has been shown to induce increased phosphorylation of
protein kinases PKC and PKB/ Akt and glycogen synthase 3 [207-211].

HLA-20 (propargyl hydroxyquinoline) exhibits a behavior similar to M30. It features
a MAO-B inhibition and a metal chelation site. In vitro, it shows neuroprotective activity
against glutamate-induced neurotoxicity and a reduction in ROS accumulation mediated
by the inhibition of MAPK pathway activation (p38, ERK and JNK). Notably, it protects
neuronal cells from apoptotic death [177,178,212-214].

Discarding the possible toxicity effects, it is apparent that M30 and its derivatives are
serious potential drug candidates for PD treatment.

4.5. Derivatives of Piperazine

The piperazine derivatives D-607 [215], D-520 [180], D-653 [181] and 1b [182] are
characterized as D2/D3 agonists. In addition, they have anti-oxidant and metal chelation
features that allow them to be classified as multi-target drugs designed to treat PD (Figure 6).
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Figure 6. Structure of piperazine with neuroprotective activity. Green shadowing shows iron
chelation sites; yellow shadowing shows free radical scavenger sites.

D-607 has a ferrous and ferric ion chelating site consisting of a bipyridyl group [216],
which also inhibits prolyl hydroxylase [217], and an anti-oxidant center consisting of 4,5,6,7-
tetrahydrobenzo[d]thiazol-2-amine. Ligand receptor binding assays at dopamine D2/D3
receptors indicate very high affinity, showing in vivo activity in reserpinized PD. In vitro,
it showed the protection of PC12 cells against 6-OHDA toxicity [215]. In addition, another
study showed that, in vivo, it protects dopaminergic neurons from MPTP toxicity [215].

D-520 has a meta chelation site consisting of a catechol, which in turn can act as an
anti-oxidant site in conjunction with a hydroxyl group. It also acts as a multifunctional
dopamine D2/D3 receptor agonist. It inhibits the formation of A aggregates in vitro
and promotes the disaggregation of x-synuclein and A3 aggregates in the Drosophila
melanogaster model of A31-42-dependent toxicity [180].

D-653 is a proposed multifunctional drug with a high agonist affinity on dopamine
D2 /D3 receptors, no identifiable chelating site, a carbazole ring and conditions to have
anti-oxidant capacity as it has isolated hydroxyls. In the in vitro assays, D-653 showed
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reduction in oxidative stress induced by the neurotoxin 6-OHDA [181], whereas in the
in vivo models, it showed potent activity to reverse hypo-locomotion compared to the
clinically used compound, ropinirole [218]. These observations lead to the conclusion that
D-653 exerts neuroprotective activity and is a candidate for the development of a substance
for the treatment of PD.

Compound 19b [182], similarly to its predecessors, is a dopamine D2/D3 agonist.
Although it does not have a clear chelation site, this compound showed chelating activity
against iron and potent anti-oxidant activity [182]. In the in vivo models, 19b reversed the
locomotor activity in reserpinized rats [182]. These observations lead to the conclusion that
19b is a candidate for drug development for the treatment of PD.

4.6. Derivatives of Pyrazine and Pyridones

Deferiprone was one of the first Fe?* /Fe3* chelators used in clinic to decrease the
iron load in the blood [219]. This small bidentate molecule showed significant results on
iron excretion when administered orally and peritoneally [220]. In recent years, alternative
chelators have been proposed that have a significant effect in the treatment of PD based on
the principle of simple heterocyclic chelators that permeate the BBB. Based on the above,
work has been published on the development of molecules such as 1,2-HOPY [183,221].
This compound showed chelating activity against ferrous and ferric ions and also showed
a free radical trapping capacity (Figure 7).
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Figure 7. Structure of pyrazine and pyridones with neuroprotective activity. Green shadowing
shows iron chelation sites; yellow shadowing shows free radical scavenger site. T-006 does not
have a demonstrated metal chelation site nor anti-oxidant activity. Nonetheless, it has proven
neuroprotective activity.

In a recent study, 24 compounds derived from 2-pyridone were synthesized [184].
Among these compounds, compound 6 (6-hydroxy-4-methyl-2-oxo-1,2-dihydropyridine-
3-carbonitrile) showed the most promising results. This compound exhibited a metal
chelation site and a hydroxyl group to which the reported anti-oxidant activity can be
ascribed (Figure 7). It also demonstrated neuroinflammatory activity by reducing the
production of NO, IL-6 and TNF-«. In vitro neuroprotective activity was also observed.

Compound T-006 [185,222] improved the mitochondrial membrane potential loss and
energy metabolism, in vitro. In the in vivo experiments, the results showed that T-006
decreased the 6-OHDA-induced loss of tyrosine hydroxylase positive neurons, as well as
dopaminergic nerve fibers in the striatum, and the functional impairments decreased after
T-006 treatment in the 6-OHDA-injured animals. Its neuroprotective effects were attributed
to the activation of the PKA /Akt/GSK-3f3 and CREB/PGC-1«/NREF-1/TFAM pathways
(Figure 7).

4.7. Derivatives of Terpenoids

Natural products have a wide variety of chemical nuclei, one of the most important
being the terpenes. These substances can be classified according to the number of carbons
into monoterpenes, sesquiterpenes, diterpenes, sesterpenes, triterpenes and tetraterpenes.
They all exhibit diverse biological activities and have given rise to drugs for multiple
biological targets. These includes Celastrol, Ferruginol and Ginkgolide K (Figure 8).
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inhibition site for MAO-B.

Celastrol [186] is a pentacyclic acid triterpene derived from oleanane. This compound
has two active sites, the first of which is in ring 1, where it has a carbonyl and a hydroxyl
functional group. These can exert chelating activity against various metals and display
anti-oxidant activity, as well as the carboxyl group located in ring 5. This triterpene has
anti-inflammatory and anti-oxidant capacities. Celastrol stabilized the motor deficits in an
in vivo model of PD and showed inhibitory activity on NLRP3 inflammasome activation,
as well as the dopaminergic neurodegeneration associated with the Nrf2-NLRP3-caspase-1
pathway [186].

Ferruginol and Ginkgolide K are diterpenes with an aromatic ring of tricyclic origin.
Ferruginol is a diterpene with only one hydroxyl group that would confer anti-oxidant
activity and has a possible coordination site with ferric ions. This compound demonstrated
neuroprotective activities against apoptosis and MPTP-induced motor dysfunction in the
in vitro and in vivo models of PD [187]. In addition, in SH-SY5Y cells transfected with
the A53T «-synuclein mutant, Ferruginol attenuated the cytotoxicity induced by A53T
a-synuclein. It promoted «-synuclein clearance neurons and inhibits its expression. It
also inhibited the abnormal aggregation of the A53T o-synuclein mutant and the death of
dopaminergic neurons [187]. The mechanism by which this process occurs has not yet been
elucidated, but Ferruginol could eventually be a good candidate for PD treatment.

Ginkgolide K has a complex structure, with functional groups, such as hydroxyl and
lactone rings, that can undergo metal-catalyzed opening processes, increasing its metal
chelating capacity, an activity that has not yet been proven. Ginkgolide K exerted neuro-
protective effects in MPTP-treated mice, improving signs of gait disease and protecting the
dopaminergic neurons loss [188]. The compound exhibited immunomodulatory activity,
including the induction of a microglial G2 phenotype and de-inflammation. Additionally, it
promoted the co-localization GFAP/TH and GFAP/Nestin in astrocytes, an indication of a
possible trans-differentiation of astrocytes into dopaminergic neurons in MPTP mice [188].
Its exact cellular and molecular mechanisms need to be further studied and ratified.

4.8. Others Molecules

APH-4 is a polycyclic molecule with amido, amino, methoxy and furan-based hetero-
cycle functional groups (Figure 9).

According to a published report, this compound exhibits copper and iron ion chelating
activity attributable to the neighboring amino and amide functional groups [189]. In
addition, it induced anti-oxidant activity through the activation of the Nrf2 pathway and
neuroprotective activity and reversed, in a concentration-dependent manner, the cytotoxic
effects induced by Fe?*, Cu®* or Zn?* in the SN556 neuronal cells.
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MT-20R [190] is a multifunctional compound of simple design that has not been
studied for chelating activity, but has been designed to inhibit MAO-B both in vitro and
in vivo. In the MPTP mice model of PD, MT-20R decreased the TH-positive DA neurons
loss in the SNpc and improved the motor deficits [190]. In addition, it was observed that
Bcl-2 expression was significantly enhanced, Bax and Caspase 3 expression was decreased
and the AKT/Nrf2/HO-1 signaling pathway was activated. MT-20R also demonstrated
hydroxyl radical and peroxynitrite radical scavenging capacities [190]. These properties
make MT-20R yet another drug candidate for the treatment of PD.

It follows that a number of multi-functional compounds have the potential to be used
as multi-target drugs for the treatment of PD and other neurodegenerative diseases that
have iron accumulation, inflammation, and oxidative damage components. In continuing
our analysis, we then proceeded to evaluate the putative drug-likeness of these compounds.

5. Drug-Likeness Prediction of the Multifunctional Compounds

The SwissADME program (http://www.swissadme.ch/: accessed 20 September 2022)
was used to explore and achieve an in-silico prediction of the drug rating of the compounds
used in this study, using different molecular descriptors [223] (Table 2). It must be consid-
ered that in-silico studies are just a reference regarding pharmacokinetic, drug-likeness,
lipophilicity and other putative properties of a compound that do not replace the actual
experimental testing.

It should be noted that most of the compounds comply with the main rules for
compounds with the characteristics of a central nervous system drug. Only compounds 8a
(4), D-607 (16), D-520 (17), D-653 (18) and Ferruginol (24) do not comply with one of the
main Lipinski rules.

In the predictive study of the 27 compounds used in this review, the herbal egg
model [224] was used to intuitively evaluate the passive gastrointestinal absorption (HIA)
and BBB penetration, by means of lipophilicity (WLOG; Log Po/w) and TPSA calculations
of the low molecular weight compounds (Figure 10). When evaluating the compounds for
predictive BBB permeability, only 15 of the 27 compounds analyzed fulfilled the requisites.
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Table 2. In silico prediction of drug-likeness *.
Compound MW RB HBA HBD MR TPSA Log P Lipinski Violations BBB Permeability
1 Resveratrol 221.21 2 5 3 59.10 82.70 0.80 0 Yes
2 Magnolol 281.35 3 4 1 92.05 39.60 1.90 0 Yes
3 PM263 310.75 4 5 1 82.84 70.75 1.23 0 Yes
4 Compound 8a 286.45 1 1 1 91.63 20.23 5.26 1 No
5 Compound 5h 367.44 10 5 2 107.96 74.16 2.84 0 Yes
6 N-Docosahexa-enoyl 37349 9 4 0 112.18 6153 2.95 0 Yes
dopamine
7 Ginkgetin 448.64 7 4 1 143.84 42.84 4.08 0 Yes
8 Biochanin A 266.33 5 2 2 84.14 40.46 4.25 0 Yes
9 EGCG 428.6 2 4 3 126.90 66.76 5.29 0 No
10 DHC12 382.41 4 3 2 115.81 67.26 4.43 0 No
11 CT51 406.38 1 9 2 91.62 128.59 0.58 0 No
12 Coumarin 24 323.3 7 7 5 80.03 140.23 -0.31 0 Yes
13 M30 482.66 7 3 2 157.97 45.74 4.89 0 Yes
14 HLA20 228.24 2 3 3 67.88 60.69 248 0 Yes
15 Zheptyl-3-hydroxyquinolin- 3939 4 4 2 88.45 82.98 3.00 0 No
4(1H)-one
16 D-607 501.66 8 5 3 158.09 70.41 429 1 Yes
17 D-520 449.62 17 3 3 141.37 69.56 4.29 1 No
18 D-653 566.51 5 10 4 155.91 159.80 4.34 1 No
19 19b 364.36 5 7 0 94.44 58.45 3.94 0 Yes
20 1,2-HOPY 284.26 2 5 2 78.46 79.90 244 0 Yes
21 2-Pyridones derivatives 150.13 0 3 2 38.77 76.88 0.45 0 No
22 T-006 477.67 8 5 1 147.69 102.65 3.16 0 No
23 Celastrol 259.34 6 2 2 80.40 53.09 3.70 0 Yes
24 Ferruginol 458.37 4 11 8 112.06 197.37 1.01 1 No
25 Ginkgolide K 112.09 0 3 1 26.04 55.12 -0.35 0 No
26 APH-4 308.42 7 2 2 97.12 35.50 3.58 0 Yes
27 MT-20R 226.27 3 3 1 69.02 36.36 2.07 0 No

*: MW: molecular weight; RB, number of rotatable bonds; HBA, number of hydrogen bond acceptors; HBD,
number of hydrogen bond donors; MR: molar refractivity; TPSA: topological polar surface area; Log Po/w:
consensus octanol/water partition coefficient; BBB, blood-brain barrier.

- 90017 C} BBB
() HA
6 g 19 od O PGP+
18
5 13— o PGP—
[+]
4 80 3 160 0l5
o
3 260 07 o6 20
13 ooﬂ 022

(&) 5
S 2 120 3 240
S
3 02 01

0 021

-l 025 Qll

012

-2

-3

4

0 20 40 60 80 100 120 140 160 180
TPSA (A?)

Figure 10. Predictive human intestinal absorption (HIA) model and blood-brain barrier permeation
(BBB) method (boiled-egg plot) of the 27 compounds. Resveratrol (1), Magnolol (2), PM263 (3), 8a (4),
(E)-Hydroxystyryl Aralkyl Sulfones (5), N-Docosahexaenoyl dopamine (6), Ginkgetin (7), Biochanin A (8),
EGCG (9), DHC12 (10), CT51 (11), Coumarin 24 (12), M30 (13), HLA20 (14), 2-heptyl-3-hydroxyquinolin-
4(1H)-one (15), D-607 (16), D-520 (17), D-653 (18), 1b (19), 1,2-HOPY (20), 2-Pyridones derivatives (21),
T-006 (22), Celastrol (23), Ferruginol (24), Ginkgolide K (25), MT-20R (26) and APH-4 (27).
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Egg analysis showed that compounds with neuroprotective activity Magnolol (2),
PM263 (3), N-Docosahexaenoyl dopamine (6), Ginkgetin (7), M30 (13), D-607 (16) and
APH-4 (26), and found within the egg yolk, passively cross and are highly absorbable
at the BBB, while compounds 8a (4), CT51 (11) and T-006 (22) egg-yolk zone are highly
absorbable in the gastrointestinal tract. Compounds EGCG (9), D-520 (17), D-653 (18) and
Ferruginol (24) are not absorbed and are not permeable to the BBB because they are outside
the range of the graph. The compounds dotted in red—(E)-Hydroxystyryl Aralkyl Sulfones
(5), Biochanin A (8), Coumarin 24 (12), HLA20 (14), 19b (19), 1,2-HOPY (20) and Celastrol
(23)—penetrate the brain and are not subject to active efflux.

In summary, our structure-function analysis, together with the drug-likeness predic-
tion, which importantly includes BBB permeability, identified compounds Resveratrol,
Magnolol, PM263, Coumarin 24, M30, HLA20, D-607, compound 19b, 1,2-HOPY, Celastrol
and APH14 as suitable multi-target drug candidates for the treatment of PD. However, the
validity of any of these putative drugs must be corroborated in clinical trials.

6. Conclusions

PD is the second most common age-related neurodegenerative disorder, after Alzheimer’s
disease, with ever-expanding health, social and economic impacts as result of increased longevity.
In the etiology of PD, multiple processes converge, where mitochondrial dysfunction is a key
factor in SNpc neuron death. The mitochondria is the center of the oxidative metabolism
and the main site of continuous ROS production. Mitochondrial dysfunction triggers several
interlinked processes, such as iron accumulation, oxidative stress, a-synuclein aggregation and
neuroinflammation, that accelerate the neurodegenerative process. This complex interplay
of mechanisms involved in the neurodegenerative process anticipates the reduced long-term
success of therapeutic interventions that address single targets. Accordingly, several clinicals
trials that have focused on one-target strategies have failed to stop the progression of the disease.
Therefore, a multi-target approach that deals with several aspects of the neurodegenerative
process simultaneously may be a better approach to stop the progress of the disease. Here,
we propose several multifunctional agents with the potential to become a disease-modifying
drugs for PD, affecting the underlying pathophysiology of the disease and possessing beneficial
clinical outcomes.
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