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Abstract: Aflatoxin contamination of food and water is a serious problem worldwide. This study
investigated the defensive ability of gibel carp exposed to aflatoxin B1 (AFB1) by challenging it
with cyprinid herpesvirus 2 (CyHV-2) infection. The data showed that AFB1 exposure significantly
increased the mortality of CyHV-2-infected gibel carp, and enhanced the viral load in the fish liver,
kidney, and spleen. The oxidative-antioxidant balance suggested that AFB1 induced severe oxidative
stress, including increased reactive oxygen species (ROS) and malondialdehyde (MDA) levels in
the AFB1 exposed group, and the reduced activity of superoxide dismutase (SOD), glutathione-S-
transferase (GST) and catalase (CAT) in the AFB1 exposed group. Meanwhile, the related expression
of nuclear factor erythroid 2-related factor 2 (Nrf2), interferon regulatory factor 3 (IRF3) and the type
1 interferon (IFN1) were noticeably down-regulated, but caspase-1 was up-regulated, after exposure
to AFB1, demonstrating that fish are unable to avoid the virus infection. It should be noted that
the intestinal microbiota diversity and richness were lower in the AFB1 exposed group, and the
composition of intestinal microbiota was affected by AFB1, resulting in the higher abundance of
bacteria (such as Aeromonas and Bacteroides) and the lower abundance of potentially beneficial bacteria
(such as Cetobacterium and Clostridium) in the AFB1 exposed group. This research provides insight
into the possibility that AFB1 may increase the susceptibility of C. gibelio to CyHV-2 infection, and
thus amplify the viral outbreak to endanger ecological safety in aquatic environment.

Keywords: aflatoxin B1; oxidative stress; intestinal microbiota; cyprinid herpesvirus 2; Carassius
auratus gibelio; susceptibility

1. Introduction

In recent years, the rapid growth of the aquaculture industry worldwide, without an
accompanying increase in fishmeal, has stimulated an increased use of plant ingredients as
a source of protein in commercial aquaculture feeds [1]. Consequently, the potential risk
of mycotoxin contamination in fish has increased due to the high amount of mycotoxin
contamination in plant sources [2]. Mycotoxin, such as aflatoxin, exposure in fish causes
growth inhibition, bioaccumulation, immunosuppression, and increased susceptibility to
opportunistic pathogens [3]. Although certain precautions are taken at the feed production
stage, mycotoxin contamination during transport and storage may be difficult to avoid [4].
Therefore, it is crucial to study the toxicity mechanism of mycotoxin on fish and find
effective strategies to alleviate the adverse effects caused by mycotoxin.

Aflatoxins (AFs) are highly toxic, carcinogenic, teratogenic, and mutagenic secondary
metabolites secreted primarily by conidial fungi of the genus Aspergillus, specifically As-
pergillus flavus and Aspergillus parasiticus [5]. Aflatoxin has five main analogs: aflatoxin B1, G1,
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M1, B2, and G2 (AFB1, AFG1, AFM1, AFB2, and AFG2) [6]. These compounds are serious
contaminants of food, water, aquafeeds, and aquaculture systems, causing health hazards in
humans and animals [7]. The International Agency for Research on Cancer (IARC) classifies
AFB1 and AFM1 as the most toxic and carcinogenic among different types of AFs [8]. Several
studies around the world have reported that AFB1 has been detected at a ratio of 60–70% in
aquaculture feeds [9–12]. Previous studies have reported that AFB1 causes internal organ
dysfunction, including induction of hepatotoxicity, teratogenicity, and immunosuppression
in fish [13,14]. AFB1 exposure could activate oxidative stress and the endoplasmic reticu-
lum stress pathway, inducing apoptosis and inflammation in northern snakehead (Channa
argus) [15]. Hepatic and intestinal histopathological damages were found in common carp
(Cyprinus carpio) fed with an aflatoxin-contaminated diet [16]. Dietary aflatoxin B1 could de-
crease growth performance and damage the structural integrity of immune organs in juvenile
grass carp (Ctenopharyngodon idella) [4]. Thus, an aflatoxin-contaminated diet may reduce the
growth performance of fish and render them more susceptible to opportunistic pathogens
frequently found in aquaculture systems [17].

The balance of pro-oxidation and anti-oxidation in the internal environment plays
a key role in maintaining the immunity and metabolism function. The previous study
demonstrated that AFB1 induced excessive production of reactive oxygen species (ROS)
and hydrogen peroxide (H2O2) in the liver, and caused oxidative stress to aggravate liver
damage [18]. DNA virus-induced ROS accumulation in the host could trigger the negative
change of cyclic GMP-AMP (cGAMP) synthase (cGAS) and nuclear factor erythroid 2-
related factor 2 (Nrf2), which is associated with type-I interferon regulatory factor 3 (IRF3)
activation, and ultimately affect the secretion of type I IFNs needed to achieve viral immune
escape [19–21]. Therefore, the immune organ damage caused by AFB1 may be related to
the reduction of the antioxidant capacity [4].

Intestinal bacteria play an important role in host health owing to the critical effect on
metabolism and immune function [22]. Cumulative evidence demonstrates that the intestinal
microbiota can modulate IFN responses, indirectly affecting viral infections [23–25]. External
factors may change the structure of gut microbiota, which in turn affect intestinal physiological
function [26]. Previous studies have reported that AFB1 could reduce the diversity of the
composition of the intestinal microbiota community and severely affect the gut microbiota
metabolome in rats [27]. However, research on the effects of aflatoxin on the intestinal flora in
aquatic animals is lacking.

Gibel carp, Carassius auratus gibelio, is one of the most important cultivated freshwater
fish species in China [28]. Crucian carp hematopoietic necrosis is an acute and contagious
hemorrhagic disease in crucian carp caused by cyprinid herpesvirus 2 (CyHV-2) [29]. In
recent years, CyHV-2 has spread rapidly in many provinces of China and resulted in huge
losses for the crucian carp farming industry [30].

In the present study, we characterized the defensive capacities of gibel carp exposed
to AFB1 and subsequently challenged them with CyHV-2 infection. To comprehensively
evaluate the threat of AFB1 to aquaculture, the oxidative stress, gut microbiota, and related
gene expression were assessed.

2. Materials and Methods
2.1. Fish Specimens

Healthy gibel carp specimens (15 ± 2 g, 12 ± 1 cm) with no history of disease were
obtained from the gibel carp breeding base in Wuhan, China. The fish were maintained in
recirculating aquaria (300 L) for 14 days to acclimatize to laboratory conditions. During the
acclimatization period, the fish were fed with commercial feed (Tongwei, Chengdu, China)
twice a day, the water temperature was 25 ◦C ± 1 ◦C and the water was renewed daily,
approximately 30%. All animal experimental procedures were conducted according to the
Animal Experimental Ethical Inspection (Ethical protocol code: YFI2022-zhouyong-09).
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2.2. Diet Preparation and Sampling

AFB1 (purity > 98%) was purchased from Sigma–Aldrich (Sigma–Aldrich, St. Louis,
MI, USA). The fish were randomly selected and divided into three groups: Group 1 (control
diet, C), Group 2 (control diet + 50 µg/kg AFB1, T1), and Group 3 (control diet + 100 µg/kg
AFB1, T2). There were three replicates in each group, with 60 fish in each replicate.

On days 14 and 28 of feeding, three fish from each tank were randomly collected and
anesthetized with 100 mg/L MS222 (Sigma Aldrich, St. Louis, MI, USA). Over the 28-day
period, excluding sampled fish, the survival rate of the control, T1, and T2 fish was 98.8%,
97.2%, and 95.6%, respectively. The liver tissues were removed and divided into three
parts. One part was fixed in neutral 4% paraformaldehyde and subsequently used for
immunofluorescence, one part was placed in RNase-free centrifuge tubes containing 200 µL
TRIzol reagent (Invitrogen, Carlsbad, CA, USA) and subsequently used to analyze related
genes expression, and the third part was placed in sterile tubes and stored at −80 ◦C to
be used to determine the liver antioxidant index. During the 28 days of feeding, intestinal
tissue was flash-frozen in liquid nitrogen and stored at −80 ◦C for Illumina sequencing.

2.3. Immunofluorescence

Liver tissues were fixed in 4% paraformaldehyde for 24 h and dehydrated in a sequential
ethanol series. Tissue blocks were sectioned on a freezing microtome (Olympus, Tokyo,
Japan). The tissue sections were blocked in 5% bovine serum albumin with normal serum in
0.1% Triton X-100, washed, and incubated with primary antibodies (CAT, 1:1000, ABCAM,
Cambridge, MA, USA; GSTT1, 1:1000). The tissue sections were further incubated with
secondary antibodies (Alexa Fluor 555-conjugated antibodies and Alexa Fluor 488-conjugated
antibodies, 1:500, Invitrogen). Cell nuclei were stained with DAPI solution (blue). Images
were obtained using fluorescence microscopy (Olympus BX41).

2.4. Changes in Antioxidant and Antiviral Related Genes Expression

The TRIzol reagent (Invitrogen, Carlsbad, CA, USA) was used to extract total RNA
from tissues of gibel carp. The quality and purity of RNA were assessed by nanodrop
(Thermo, Waltham, MA, USA). The cDNA was synthesized using random primers (TaKaRa,
Dalian, China) following the manufacturer’s instructions. Then, the cDNA was used as
the template for real-time quantitative PCR by real-time PCR Kit (TaKaRa, Dalian, China).
The β-actin gene was performed as an internal reference. The specific primers are listed in
Table 1. Each PCR reaction was performed in triplicate. The relative quantification of gene
expression was conducted using the 2−∆∆CT method [31].

Table 1. Primer sequences used in this study.

Gene Primer Sequence (5′-3′) Accession
Numbers References

β-actin F: CATCTACGAGGGTTACGCCC NC068418.1 [32]
R: AACCACACGTCGGCTTGTTA

GST F: CCTGAAAACAAACCGGCACA NC068386.1 [32]
R: AAAAGGAGGTGGCTCAACACG

CAT F: ATC TTACAGGAAACAACACCC NC056596.1 [33]
R: CGATTCAGGACGCAAACT

Nrf2 F: GCGAGCGTAGCTCCAGTCTGA MG759384.1 [34]
R: AAGGCTTGCCGTGCTCGTCT

IRF3 F: TCCAGGCCAAGCATACGAA NC056583.1 [35]
R: CCATTTGCAACAGCCATCAT

Caspase-1 F: AAACCCAAGATCATCATCATCCA NW024042261.1 [36]
R: CAGGGCATCAGCCTCTAAGTTGT

IFN1 F: GTCAATGCTCTGCTTGCGAAT NC007114.7 [37]
R: CAAGAAACTTCACCTGGTCCT

CyHV-2 F: TCGGTTGGACTCGGTTTGTG
R: CTCGGTCTTGATGCGTTTCTTG AY939863.1 [38]

CyHV-2 probe FAM-CCGCTTCCAGTCTGGGCCACTACC-
BHQ1



Antioxidants 2023, 12, 306 4 of 15

2.5. Liver Antioxidant Index

Liver tissues were homogenized in phosphate-buffered saline at a ratio of 1:9 (w/v) using
a glass homogenizer at 4 ◦C. The homogenate was centrifuged at 5000× g for 20 min at 4 ◦C
to remove tissue debris. The supernatant was used to determine the superoxide dismutase
(SOD) activity, malondialdehyde (MDA) levels, and reactive oxygen species (ROS) levels using
appropriate kits according to the manufacturer’s instructions (Jiancheng, Nanjing, China).

2.6. Illumina miSeq Sequencing and Bioinformatics Analysis

The total bacterial genomic DNA of the intestinal content was extracted using a
Bacterial DNA Kit (Omega, Norcross, GA, USA) following the manufacturer’s instructions.
The DNA was quantified using NanoDrop 2000 spectrometer (Thermo Fisher Scientific,
Waltham, MA, USA), diluted to a concentration of 1 ng/µL, and stored at −20 ◦C. The
V3–V4 region of the bacterial 16S rRNA gene was amplified by PCR using specific primers
338F (5′-ACTCCTACGGGAGGCAGCA-3′) and 806R (5′-GGACTACHVGGGTWTCTAAT-
3′) with barcodes in 50 µL reactions. The following thermal cycling conditions were used:
initial denaturation at 95 ◦C for 1 min; followed by 30 cycles at 95 ◦C for 30 s, 55 ◦C for
30 s, and 72 ◦C for 45 s; and a final extension at 72 ◦C for 10 min. PCR amplicons were
isolated from 2% agarose gels and purified using the DNA Gel Extraction Kit (Omega,
Norcross, USA). Subsequently, amplicons were sequenced on an Illumina MiSeq PE250 high-
throughput sequencing platform. All sequence reads were quality filtered and assembled
using the Mothur software package [39]. Reads were clustered into operational taxonomic
units (OTUs) at 97% identity [40]. Representative reads were selected from each OTU
using QIIME package. Annotated taxonomic classification was performed using the RDP
Classifier algorithm (http://rdp.cme.msu.edu/ accessed on 20 August 2022) against the
Silva database version 123 (16S rDNA) [41].

Alpha diversity analyses (abundance-based coverage estimator [ACE], Chao, Shannon,
and Simpson index) were performed using Mothur (version v.1.30) [42]. Beta diversity was
estimated by computing the Bray-Curtis distance based on the abundances of microbes at
the genus level and visualized using principal coordinate analyses (PCoA) and Unweighted
Pair Group Method with Arithmetic Mean (UPGMA) clustering. Other analyses were
performed using the R software.

2.7. Challenge Tests and Viral Load in Liver, Kidney, and Spleen of Gibel Carp

After 28 days of the feeding trial, a challenge test was performed in each group with
CyHV-2 purified by sucrose gradient ultracentrifugation in our laboratory. Fish in each
group were intraperitoneally injected with 0.2 mL CyHV-2 (106.3 TCID50/mL). Infected
fish were observed daily, and mortality was recorded for 14 days. At 2, 7, and 14 days post
injection (dpi), three fish were randomly selected to investigate the viral load. Liver, kidney,
and spleen tissues were collected from the fish. Total DNA was extracted from each tissue
type using a Viral DNA Kit (Omega, Norcross, GA, USA). Viral DNA was quantified using
droplet digital PCR (ddPCR, Bio-Rad, Hercules, CA, USA) with the primers CyHV2-F,
CyHV2-R, and CyHV2-probe (Table 1) [29]. The viral load was determined as the number
of viral copies per microgram of total tissue.

2.8. Statistical Analysis

Data were analyzed by one-way analysis of variance (ANOVA) and expressed as the
arithmetic mean ± standard deviation (SD). Survival curves were estimated by the Kaplan–
Meier method. Differences were determined by Tukey’s test in SPSS statistical software (SPSS
Inc., Chicago, IL, USA), with p-values < 0.05 indicating statistical significance.

3. Results
3.1. Oxidative Stress in the Liver

As shown in Figure 1, the 50 µg/kg AFB1 and 100 µg/kg AFB1 exposed groups
showed significantly higher ROS and MDA levels and significantly lower SOD levels in

http://rdp.cme.msu.edu/
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the liver than those in the control group (C; p < 0.05; Figure 2A–C). At day 28, the ROS
and MDA levels in the 100 µg/kg AFB1 exposed group were about 45% and 189% higher,
respectively, and the mean SOD levels in the 100 µg/kg AFB1-exposed group were 45% of
the control group. There were no significant differences between the 50 µg/kg AFB1 and
100 µg/kg AFB1 exposed groups on day 28 (p > 0.05).
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Figure 1. Reactive oxygen species (ROS; (A)), superoxide dismutase (SOD; (B)), and malondialdehyde
(MDA; (C)) activity in gibel carp liver after exposure to aflatoxin B1 (AFB1) for 14 and 28 days. C:
control diet, T1: 50 µg/kg AFB1, T2: 100 µg/kg AFB1. Results are presented as mean ± standard
deviation (SD). Dissimilar superscript letters represent statistically significant differences between
different treatment groups (p < 0.05).
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Figure 2. Effects of aflatoxin B1 (AFB1) on glutathione-S-transferase (GST) and catalase (CAT) levels in the
liver of gibel carp. (A,B) Immunofluorescence of GST and CAT in the liver of gibel carp. (C,D) mRNA
expression levels of the GST and CAT in the liver of gibel carp. C: control diet, T1: 50 µg/kg AFB1, T2:
100 µg/kg AFB1.Data are presented as mean± standard deviation (SD; * p < 0.05; ** p < 0.01).

3.2. Effects of Aflatoxin B1 on Antioxidant Enzymes in the Liver

Liver tissue obtained from the AFB1 exposed groups on day 28 showed a lower
intensity of red fluorescence (Figure 2A,B) than the control group, indicating lower GST
and CAT levels in hepatocytes. Moreover, the fluorescence intensity was lower in 100 µg/kg
AFB1 exposed group than in 50 µg/kg AFB1 group. The GST and CAT mRNA expression
levels in the liver were significantly lower in the 50 µg/kg AFB1 and 100 µg/kg AFB1
exposed groups than in the control group on days 14 and 28 (p < 0.05; Figure 2C,D).
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3.3. Effects of Aflatoxin B1 on Related Genes Expression

The mRNA expressions of Nrf2, IRF3, and IFN1 were significantly lower in the AFB1
exposed groups on day 28 (p < 0.01) (Figure 3A,C,D), and at day 28, the mRNA expressions
of apoptosis related gene (Caspase-1) were significantly higher in the AFB1 treatment
groups than in the control group (p < 0.01) (Figure 3B).
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3.4. Characteristics of 16S rDNA Sequencing

After quality filtering and assignment, 990,671 valid read sequences were obtained
from the nine samples belonging to three groups. The rarefaction curves and rank abun-
dance curve demonstrated that sufficient sequencing depth, richness, and evenness were
achieved for each sample (Figure 4A,C).
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Figure 4. Rarefaction curves, Venn diagram, and rank abundance curve of different treatment
groups of gibel carp exposed to aflatoxin B1 for 28 days. (A) Rarefaction curves. (B) Venn diagram
representing the operational taxonomic units (OTUs) shared among treatment groups. (C) Rank
abundance curve. C: control diet, T1: 50 µg/kg AFB1, T2: 100 µg/kg AFB1.

On the basis of 97% nucleotide sequence identity, these high-quality sequences were
clustered into 1363 OTUs in total. The OTU distribution in different groups is depicted in a



Antioxidants 2023, 12, 306 7 of 15

Venn diagram in Figure 4B. The number of OTUs in the control group was higher than that
in the treatment groups. Meanwhile, 88 core OTUs were observed in all collected samples.
Furthermore, the number of OTUs in the 100 µg/kg AFB1 exposed group was the lowest.

3.5. Effects of Aflatoxin B1 on Alpha Diversity of Intestinal Microbiota

ACE and Chao1 indices were used to quantify species richness. The ACE index
ranged from 0.34 to 0.44, and the Chao1 index ranged from 37 to 198. The ACE index
and Chao1 index were significantly lower in the AFB1 exposed groups than in the control
group (C; p < 0.05; Figure 5A,B). The alpha diversity of each sample was calculated via the
Shannon index and Simpson index. The Shannon index ranged from 2.2 to 2.8, and the
Simpson index ranged from 0.43 to 0.79. The AFB1 exposed groups showed a significantly
lower Shannon index and a significantly higher Simpson index than the control group
(Figure 5C,D). The richness and diversity of bacterial communities in the treatment groups
were lower than those in control group. The average Good’s coverage was 0.999913 (values
ranged from 0.999870 to 0.99936), indicating that the sequences identified represented the
majority of the bacteria in each sample (Figure 5E).
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100 µg/kg AFB1.

3.6. Microbial Community Composition

A total of 19 phyla were identified in all samples, and five phyla were identified at
an abundance >1%. As shown in Figure 6A, the dominant phyla in the control group
were Fusobacteria, Proteobacteria, Firmicutes, and Actinobacteria, accounting for over
98% of the bacterial sequences from control group samples. In the treatment groups, the
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dominant bacterial phyla were Fusobacteria, Proteobacteria, Bacteroidetes, and Firmicutes,
accounting for over 99% of the total reads from treatment group. At the phylum level,
the AFB1 exposed groups showed a significantly higher abundance of Proteobacteria and
Bacteroidetes (p < 0.05; Figure 6C,D) and a significantly lower abundance of Fusobacteria
and Firmicutes (p < 0.05; Figure 6B,E) than the control group.
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A total of 198 genera were detected across all nine samples. In the control group,
the dominant genera were Cetobacterium, Clostridium, Peptostreptococcus, and Mycoplasma
(Figure 6F). In the treatment groups, the dominant genera were Cetobacterium, Aeromonas,
Bacteroides, and Peptostreptococcus. The relative abundance of dominant genera of intestinal
bacteria was significantly different between the control and the treatment groups. At
the genus level, the AFB1 exposed groups showed a significantly higher abundance of
Aeromonas (p < 0.05; Figure 6C,D), and a significantly lower abundance of Cetobacterium
(p < 0.05; Figure 6B,E) than the control group.

3.7. Beta Diversity of Intestinal Microbiota

PCoA and unweighted pair group method with arithmetic mean (UPGMA) clustering
were conducted to evaluate beta diversity. As shown in Figure 7, the intestinal microbiomes
of the control group and treatment group were separated into different clusters. In addition,
the individual differences in gut microflora in the AFB1 exposed groups were less than
those in the control group. Overall, the PCoA and UPGMA clustering results showed that
AFB1 exposure markedly altered the intestinal microbial community structure in gibel carp.
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B1. (A) The principal co-ordinate analysis (PCoA) of the bacterial community at the operational
taxonomic unit (OTU) level. (B) The hierarchical clustering tree was calculated using the unweighted
pair group method with arithmetic mean (UPGMA) method. C: control diet, T1: 50 µg/kg AFB1, T2:
100 µg/kg AFB1.

3.8. Effect of AFB1 on CyHV-2 Infection and Viral Load in Tissues in Gibel Carp

The cumulative survival rate of C. gibelio challenged with CyHV-2 for 14 days is shown
in Figure 8A. The cumulative mortality of CyHV-2-infected gibel carp in the control group
was 40%, and the cumulative mortality in the T2 group reached 83% at 14 dpi. At 14 dpi, the
cumulative survival rate of fish exposed to AFB1 was significantly less than in the control
group (p < 0.05). Moreover, the 100 µg/kg AFB1 exposed group of gibel carp showed
significantly higher mortality than the 50 µg/kg AFB1 exposed group. Regarding viral
load, the AFB1 exposed groups showed a significantly higher number of copies of CyHV-2
in the liver, kidney, and spleen than the control group (p < 0.05; Figure 8B–D).
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Figure 8. Effects of AFB1 on cyprinid herpesvirus 2 (CyHV-2) infection in gibel carp and viral load
in tissues of gibel carp. (A) Cumulative survivorship curves of gibel carp intraperitoneally injected
with CyHV-2 in different treatment groups. (B–D) CyHV-2 viral load in the liver, kidney, and spleen
of gibel carp in different treatment groups at 2, 7, and 14 days post infection (dpi). C: control diet,
T1: 50 µg/kg AFB1, T2: 100 µg/kg AFB1. Data are presented as mean ± standard deviation (SD;
* p < 0.05; ** p < 0.01).
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4. Discussion

Fisheries provide a large amount of high-quality protein to meet the nutritional re-
quirements of the increasing human population (Food and Agriculture Organization [FAO],
Rome, Italy, 2018). The rapid expansion of fish farming has led to an increased use of plant
protein sources in aquaculture feeds [13]. AFB1 could be a latent threat to the health of
aquatic organisms when fishmeal ingredients are replaced with plant-based materials in
aquafeeds [43]. The present study reveals that AFB1 causes oxidative stress, changes in
intestinal microbiota and exacerbates CyHV-2 infection in C. gibelio.

Oxidative stress under exposure to extreme conditions induces ROS and MDA produc-
tion, which may lead to protein, lipid, and DNA damage [44]. In the present study, changes
in the levels of antioxidant enzymes and oxidative stress markers were observed in the
AFB1 exposed groups. The lower SOD levels, and the higher ROS and MDA levels were
observed in the AFB1 exposed groups. The immunofluorescence and mRNA expression
levels of GST and CAT showed that the quantity of antioxidant enzymes was lower in the
AFB1 exposed groups. These results suggest that AFB1 induces oxidative stress. Moreover,
the oxidative stress increased with the increase in AFB1 concentration. Similarly, previous
studies have reported that AFB1 significantly reduced the activity of antioxidant enzymes
by down-regulating the expression of Nrf2, and increased the levels of ROS and MDA in
Nile tilapia [45] and gibel carp [46]. Previous research showed that ROS accumulation
could promote the replication of CyHV-2, while antioxidants could inhibit the amplification
of CyHV-2 by activating Nrf2 signaling pathway [19]. In this study, we found that the
expression of Nrf2 was inhibited significantly by AFB1. Thus, we believe that the oxidative
stress induced by AFB1 could promote CyHV-2 proliferation.

Recently, it has been reported that ROS accumulation could limit the virus DNA
induced cGAS-STING activation by activating caspase-1 [20]. STING is involved in the
activation of IRF3. Activated IRF3 induces inflammation through generating IFN1 [21].
Our study demonstrated that the expression of caspase-1 was higher, and the expressions
of IRF3 and IFN1 were lower, in the AFB1 exposed group. Based on the challenge test, we
found that AFB1 exposure increased the mortality of gibelio carp infected with CyHV-2 and
enhanced the viral load in liver, kidney and spleen of gibelio carp. We believe that AFB1
promoted the amplification of CyHV-2 by inducing the oxidative stress and suppressing
the IFN1 response (Figure 9). Similarly, it has been found that azoxystrobin enhance the
spring viremia of carp virus (SVCV) replication by regulated the MAPK-Nrf2 signaling
pathway to suppress HO-1-mediated IFN expression [47].

Intestinal microbiota is crucial to host health owing to its significant influence on
metabolism and immune function [48]. The gut microbiome can influence ROS levels, im-
mune response and host health [49–51]. Changes in the intestinal flora are highly correlated
with physiological, pathological, and environmental conditions [52]. An increasing number
of studies have focused on the relationship between environmental pollution and gut mi-
crobiota to understand the toxicological response [53]. Bioaccumulation of benzophenone-3
in Carassius auratus can affect the structure and diversity of intestinal flora [54]. Another
study showed that the intestinal microbiota of freshwater crayfish (Procambarus clarkii) was
significantly altered by microcystin [55]. In the present study, the results demonstrated that
AFB1 exposure disrupts the intestinal microbiota of gibel carp. The PCoA and UPGMA
clustering analysis showed that AFB1 exposure markedly altered the intestinal microbial
community structure of gibel carp. The AFB1 exposed groups showed significantly lower
richness and diversity of the gut microbiota than the control group. The lower intestinal
bacterial richness and diversity reduced the stability of intestinal microbial communities
of gibel carp. Previous research suggests that viral infection, toxin exposure, and unfa-
vorable environment reduce the richness and diversity of gut flora in animals [48,56,57].
In the present study, the intestinal microbiota composition of gibel carp was examined
and compared to identify common flora that showed significant difference after AFB1
exposure. At the phylum level, the higher relative abundances of Proteobacteria and Bac-
teroidetes and the lower relative abundances of Fusobacteria and Firmicutes were observed
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in AFB1 exposed group. Some members of Proteobacteria and Bacteroidetes are oppor-
tunistic pathogens and facilitate inflammation or disrupt the intestinal mucosal barrier [58].
Fan et al. (2019) showed that increased relative abundance of phylum Proteobacteria in
the intestine is associated with slow growth and disease in shrimp [59]. Previous studies
have demonstrated that members of Fusobacteria regulate the transepithelial transport,
thus strengthening the mucosal barrier and improving the oxidative and inflammatory
status of the intestinal mucosa [60]. At the genus level, the abundance of Aeromonas was
significantly higher and that of Cetobacterium was significantly lower in the AFB1 exposed
groups than in the control group. Members of Aeromonas are ubiquitous opportunistic
pathogens in the intestinal tracts of aquatic animals and aquaculture waters, and some
of these species cause infections in humans [61]. Cetobacterium has been observed to be
the dominant genus in the intestinal microbiota of different freshwater fishes; it has been
shown to improve digestion and produce large quantities of vitamin B [62]. Several studies
pointed to the role of the intestinal microbiota in modulating the systemic immunity and
providing a competitive barrier to bacterial, viral, and fungal pathogens [23,63]. In murine
models of lymphocytic choriomeningitis virus (LCMV) or influenza infection, disorder
of the gut microbiota results in an unresponsive reaction to the virus [64]. Feeding with
Clostridium butyricum improved the host immune responses and the survival rate of gibel
carp against Carassius auratus herpesvirus (CaHV) infection [65]. Our data demonstrated
that the changes in intestinal microbiota caused by AFB1 might weaken the immunity and
antioxidant capacity of gibel carp.
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5. Conclusions

In summary, our study is the first, to our knowledge, to report that AFB1 exacerbates
viral infection in aquatic animals. We found that AFB1 exposure increased the mortality
and enhanced the viral load of gibelio carp infected with CyHV-2. The cCAS-STING
pathway and the expression of IFN1 was significantly suppressed by AFB1, which might
be associated with severe oxidative stress and intestinal microbiota disorder induced by
AFB1. This research provides new understanding of the threat that AFB1 may increase
CyHV-2 susceptibility in C. gibelio.
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