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Abstract: Alzheimer’s disease (AD), a leading cause of dementia, has been a global concern. AD is
associated with the involvement of the central nervous system that causes the characteristic impaired
memory, cognitive deficits, and behavioral abnormalities. These abnormalities caused by AD is
known to be attributed by extracellular aggregates of amyloid beta plaques and intracellular neu-
rofibrillary tangles. Additionally, genetic factors such as abnormality in the expression of APOE, APP,
BACE1, PSEN-1, and PSEN-2 play a role in the disease. As the current treatment aims to treat the
symptoms and to slow the disease progression, there has been a continuous search for new nutraceu-
tical agent or medicine to help prevent and cure AD pathology. In this quest, honey has emerged
as a powerful nootropic agent. Numerous studies have demonstrated that the high flavonoids
and phenolic acids content in honey exerts its antioxidant, anti-inflammatory, and neuroprotective
properties. This review summarizes the effect of main flavonoid compounds found in honey on the
physiological functioning of the central nervous system, and the effect of honey intake on memory
and cognition in various animal model. This review provides a new insight on the potential of honey
to prevent AD pathology, as well as to ameliorate the damage in the developed AD.

Keywords: honey; natural products; Alzheimer’s disease; oxidative stress; anti-oxidants; neuropro-
tection; flavonoids; phenolic acids

1. Introduction

Alzheimer’s disease (AD) is a neurodegenerative disorder associated with damage to
the brain areas such as the cerebral cortex, temporal lobe, hippocampus, amygdala, entorhi-
nal cortex (EC), and parahippocampal region [1,2]. The disease is mainly characterized by
impaired memory and cognitive deficits [3,4]. AD is considered the most common cause of
dementia, accounting for about 60–70% of the total cases worldwide [5]. In addition to the
deficits of memory and cognition, AD is also accompanied by behavioral changes. Since
most of the areas affected by the pathology are involved both in cognition and behavior, the
predominant behavioral changes, such as agitation, dysphoria, and apathy, are correlated
highly with cognitive dysfunction [6].

Previous studies have proposed several effective solutions to reduce the deposition of
amyloid fibrils, minimize oxidative stress and neuroinflammation, and/or improve mem-
ory and cognition. These can be divided into drugs and antioxidants or neuroprotective
agents for ease of discussion. The drugs include N-methyl-d-aspartate (NMDA) recep-
tors antagonists [7,8], agents acting on the acetylcholinergic system (ACh system) [9,10],
anti-amyloid [11], and anti-tau [12]. The antioxidants or neuroprotective agents include
idebenone (an organic compound from the quinone family) and α-tocopherol [13], estrogen
analogues [14,15], and honey [16–18]. Although the allopathic medications have shown
promising results in attenuating symptoms, they may cause a number of adverse effects
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while having some serious precautions and contraindications [10,19–25]. Comparably,
honey only has one serious adverse effect that ranges from mild hypersensitivity reaction to
anaphylactic shock, which is attributed to the presence of pollens and bee-derived proteins
in honey [26]. These allergic reactions, however, are very rare with only a small number of
cases reported till date [26–28]. Additionally, among all the above mentioned substances,
honey stands out by having the potential to improve almost all aspects of AD, such as ox-
idative stress [29–31], neuroinflammation [32,33], neuroprotection [34,35], ACh system [36],
and memory and cognition [37,38].

As AD is associated with the involvement of the central nervous system (CNS) that
causes the characteristic impaired memory, cognitive deficits, and behavioral abnormalities,
in this review article, we will limit our discussion of the effects of honey on the said aspects.

2. Pathophysiology and Clinical Picture of Alzheimer’s Disease

AD is believed to begin and caused by the accumulation of amyloid beta (Aβ) plaques;
this perspective of AD progression is known as the amyloid-cascade-hypothesis [39].
According to this hypothesis, the neuropathology in AD starts from the extracellular
accumulation of Aβ fibrils as abnormal neuritic plaques, the deposition of which leads to
oxidative damage and inflammation. Although this is a widely accepted hypothesis, some
researchers believe in the tau hypothesis, according to which tau pathology is a prerequisite
for the Aβ aggregation to take place [40–42]. Additionally, there is a third viewpoint which
suggests that there may be more than one pathological pathway co-occurring, as dementia
in AD is not correlated with either plaque or tangle burden but with the serum amyloid
protein content in the Aβ plaques [43,44]. This hypothesis is further supported by the
findings that the neurofibrillary tangles (NFT)-bearing neocortical neurons are functionally
intact [45], and even though the cognitive deficits increase with ageing, the load of neuritic
plaques and NFTs tend to decline as the elderly people age, i.e., more burden in the
60–80-year-old individuals than in over 90-years old individuals [46].

Pathologically, AD is characterized by the deposition of Aβ plaques (extracellularly)
and NFTs (intracellularly). Soon after the tau fibrils are hyperphosphorylated, they may
be converted into pathological tau and result in the formation of NFTs [47]; the latter
more commonly affects the medial limbic structures (MLS) comprised of hippocampus,
subiculum, EC, and amygdala [48,49]. The tau aggregates need the presence of neuritic
plaques, therefore, are likely formed adjacent to them [47], whereas NFTs have an inde-
pendent presence [49]. Irrespective of the site of impaction of tangles, which may vary
in the brain, the formation of the NFTs is possibly the result of the interplay of oxidative
injury, neuroinflammation, ineffective degradation, and subsequent ubiquitination causing
hyperphosphorylation of tau followed by the subsequent formation of tangles [50–53].

Considering the defect at the genetic level, AD results from the abnormality in the
expression of five genes: Apolipoprotein E (APOE), Amyloid Precursor Protein (APP), Beta-
site Amyloid precursor protein Cleaving Enzyme 1 (BACE1), Presenilin 1 and 2 (PSEN-1,
and PSEN-2). While the pathology of the first gene APOE (especially the allelic variant ε4)
is associated with sporadic AD [54], the latter four genes were found to be responsible for
the familial AD. The most common form of AD is sporadic and its risk increases with the
presence of ε4 allele [55,56]. The other alleles, i.e., ε2 and ε3, minimize oxidative damage
and neuronal death, whereas, the ε4 allele has the lowest capacity to prevent cellular
toxicity [57]. Therefore, its presence increases the likelihood of developing AD [57,58].
As for the familial AD, the APP gene is located on chromosome 21 and is responsible
for the production of APP, which is required for the normal regulation of several cellular
functions [59]; however, excessive dose, hence over-expression, of this gene results in
increased amyloid levels in brain and likelihood to develop AD [60,61], as also observed in
Down syndrome (trisomy 21) [62]. The other genes, BACE1 and PSEN (1 and 2), also known
as β-secretase and γ-secretase, further play their part in AD pathogenesis [63–65]. It occurs
when the APP is cleaved by BACE1 (β- secretase) instead of the normal cleavage by α-
secretase, and the product acts as a substrate for γ-secretase resulting in the formation, and
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subsequently, aggregation of the Aβ oligomers [66,67]. Furthermore, since the β-secretase
and γ-secretase act on the common substrate, the elevated level and activity of the former
is mostly accompanied by a reduction in the level of the latter [68].

Overall, the damage in the brain in AD is comprised of injuries on both macroscopic
and microscopic levels. The gross changes consist of a reduction of the total brain tissue
with an increase in the volume of the ventricles [69,70], whereas the underlying micro-
scopic changes include the loss of synapses [71,72], damage to pyramidal neurons, and
neurodegeneration [1,73]. In addition, the loss of synapses can either occur in the presence
of normal long-term potentiation (LTP) [74] or is probably due to impaired LTP [75,76]. To
further shed the light on these contrasting results, recent studies described that AD may
affect LTP in some pathways (e.g., Schaffer collateral) while the LTP in other pathways (e.g.,
mossy fibers) remain unaffected/normal [77] with a possible alteration in the short-term
potentiation [78]. Moreover, AD brains are affected by oxidative injury and inflammatory
damage. The former is due to an imbalance between antioxidants and oxidation-causing
substances (i.e., free radicals and reactive oxygen species), causing a reduction in the activ-
ity of antioxidants such as superoxide dismutase (SOD), glutathione (GSH), and catalase,
together with an increase in the markers of oxidative damage such as Malondialdehyde
(MDA) (the product of lipid peroxidation) and 3-nitrotyrosine (the end product of protein
oxidation), and 8-hydroxydeoxyguanosine and 8-hydroxyguanosine (the product of oxi-
dation of guanine in DNA) [79–81]. Likewise, perpetual neuroinflammation marked by
an imbalance in the inflammatory cytokines is also evident by the over-expression of the
pro-inflammatory markers, such as IL-1α, IL-1β, IL-6 [82,83], TNFα, and NFκB [84,85], and
an accompanied under-expression of some anti-inflammatory cytokines, such as IL-4 and
IL-10 [86,87]. Moreover, the reduced level of anti-inflammatory cytokines further leads to
the uninhibited activity of pro-inflammatory cytokines [87–89] and results in more neu-
ronal damage [87]. Furthermore, an altered interaction of cytokines (both pro-inflammatory
and anti-inflammatory) has been observed based on the underlying pathology of APOE
genotypes [90,91].

Those mentioned structural and functional abnormalities that are the characteristic
features of AD can start appearing in the brain in middle-aged individuals (familial or
early-onset AD) or the elderly (sporadic or late-onset AD). Irrespective of the age of onset,
clinically, AD presents as deficits of memory, cognition [48,92], and behavior [6].

3. Honey and Its Powerful Ingredients—The Phenolic Compounds

Honey mainly contains sugar and water [93]. The high sugar content, comprised
of dextrose, levulose, and other complex carbohydrates, makes it a better alternative to
glucose as it replenishes energy with a constant blood glucose level [94]. In addition
to being a mixture of around 30 different kinds of sugars [95], honey has several minor
components, including phenolic compounds, proteins, amino acids, vitamins, enzymes,
and minerals [93,96]. Although the main constituents (water and sugars) remain the same,
the composition of minor components of each honey type varies significantly, which is due
to the difference in geographical location, floral source, storage, and the final color [95,97].
Due to the mentioned factors, various types of honey are different in composition of
polyphenolic compounds [98,99], and therefore, polyphenolic activity and total antioxidant
capacity (TAC). The quantification of total phenolic content showed that certain types of
honey, such as, stingless bee honey and Tualang honey have higher content of phenolic
acids and flavonoids, and greater TAC and radical scavenging activity [100–103] which may
indicate more potential in attenuation of oxidative stress in vivo as well. To our knowledge,
presently, no study has been conducted comparing antioxidant effects of various types
of honey in vivo. Moreover, the composition of the same variant of honey has not been
compared from different regions around the world so far, which points toward a likelihood
of varied composition of honey obtained from two different countries.
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Studies suggest that most of honey’s antioxidant, anti-inflammatory, and neuroprotec-
tive properties are due to its phenolic content [104,105]. Phenolic compounds are comprised
of four classes of polyphenols: Phenolic acids, flavonoids, stilbenes, and lignans. Out of
these, phenolic acids and flavonoids primarily have the potential to act as antioxidants
and reduce oxidative stress [29–31] and neuroinflammation [32] that are the mediators of
insults to the brain in the neurodegenerative diseases [106,107]. However, this review will
focus on the effectiveness of flavonoids and phenolic acids on the CNS and in the preven-
tion/treatment of AD pathology. The main phenolic compounds affecting the physiological
functioning and/or the pathophysiology of the CNS are stated in Figure 1.
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Figure 1. The phenolic compounds, which comprises of flavonoids and phenolic acids.

According to the studies on AD models (Refer to Tables 1 and 2), all mentioned
flavonoids and phenolic acids exert antioxidant effects and show neuroprotective activity.
All agents, except myricetin, were also found to exhibit anti-inflammatory potential. As
myricetin possesses an anti-inflammatory ability against post-ischemic neurodegenera-
tion [108], if tested, it may also display similar potential in AD brain. In addition to the
antioxidant and anti-inflammatory potential, most polyphenolic components also proved to
attenuate AD pathology by decreasing amyloid deposition, with an exception of kaempferol
and chlorogenic acid. Additionally, naringenin, naringin, quercetin, caffeic acid, and ellagic
acid also reduce levels of p-tau in AD brain.
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Table 1. Main flavonoid compounds affecting the physiological functioning and/or the pathophysiology of the central nervous system.

Flavonoid Component Studied Model Testing Method Time of Starting
Administration Potential to Act As Studied Region in Brain Important Findings of the Study References

Myricetin

STZ induced AD
(Wistar) rat model

Passive avoidance test
IHC

1 day before stereotactic
surgery (STZ exposure) Neuroprotective agent Hippocampus

(area CA3)

Myricetin (at 10 mg/kg i.p.,) resulted in a better
performance in avoidance test with decreased STL
and increased TDC, along with increasing number
of intact neurons in CA3 layer.

[109]

Kunming Mice MWM test, and brain
tissue analysis

Together with i.p.
injection of scopolamine

Antioxidant and
anti-AChE agent Hippocampus

Myricetin decreased escape latency and increased
time spent in target quadrant, and number of
platform crossings.
Decreased the amount of MDA while improving
antioxidant enzyme activities; it also sustained the
concentration of ACh in the hippocampus.

[110]

Neurons from fetal rat
cerebral cortex (E18)

IHC, Immunoblotting,
spectroscopy, and
activity assays

1 day before Aβ1–42
exposure

Anti-amyloid and
neuroprotective agent Not applicable

Myrecetin protects neurons from Aβ1–42 induced
injury and cell death.
It decreases production and aggregation of Aβ1–42
and Aβ1–40 (only at higher dose) that is also
proved by increased activity of α-secretase and
decreased activity of BACE1 (in a
concentration-dependent manner).

[111]

Luteolin

ICV-STZ induced AD
(Wistar) rat model

MWM task and probe
tests;
IHC

3 days before injection of
STZ Neuroprotective agent Hippocampus

(area CA1)

Luteolin pre-treatment resulted in:

• Decreased escape latency and travel distance
to reach the hidden platform.

• More time spent in the target quadrant.
• More pyramidal cells in area CA1.

[112]

Sprague–Dawley rats
(chronic hypoperfusion
injury model)

MWM task;
Brain tissue analysis

On 5th post-operative
day of (bilateral
common carotid arter)
ligation surgery

Anti-inflammatory,
antioxidant, and anti-
amyloid agent

Cortex and
hippocampus

Luteolin-treated rats showed:

• Decreased escape latency with more time
spent in the target quadrant.

• Decrease in the MDA level and an elevated
SOD activity and the amount of GSH.

• Decreased levels of TNF-α, IL-1β, and Aβ
after luteolin treatment.

[113]

Adult male Balb/c mice;
Murine Neuro.2a, and
LPS stimulated BV-2
(murine microglia
cell line)

MWM task;
Brain tissue analysis

4 weeks before
experiment

Anti-inflammatory
(aged mice), and
neuroprotective (before
LPS induction) agent

Hippocampus

Pretreatment with luteolin reduces
pro-inflammatory mediators in microglia,
therefore, prevents Neuro.2a cell death.
Reduction in mRNA levels of IL-1β and MHC
class II, and TNFα (only with higher intake).
Better performance of aged mice fed with luteolin
in MWM task.

[114]
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Table 1. Cont.

Flavonoid Component Studied Model Testing Method Time of Starting
Administration Potential to Act As Studied Region in Brain Important Findings of the Study References

Naringenin/Naringin

High-fat-diet fed SAMP8
mice (a model of AD)

MWM task and Barnes
Maze test;
Brain tissue analysis

Along with the
high-fat diet

Anti-inflammatory,
anti-amyloid, anti-tau,
and neuroprotective
agent

Cortex, hippocampus,
and white matter

Naringenin treatment resulted in:

• Better performance in memory tasks.
• Suppression of pro-inflammatory markers,

and elevation of anti-inflammatory cytokines.
• Reduction in the levels of soluble and

insoluble Aβ40, Aβ42, APP and BACE1,
p-tau, and GSK in hippocampus.

• Reduced concentration of MDA, NO, and
activity of SOD, GSH in cortex (compared to
high-fat-diet fed group).

[115]

AlCl3+D-gal induced
AD (Wistar) rat model

Behavioral tests;
Brain tissue analysis

Two weeks before
AlCl3+D-gal induction

Antioxidant, anti-AChE,
Serotonin- enhancer, and
neuroprotective agent

Cortex and
hippocampus

Naringenin pre-treatment resulted in:

• Better performance in memory tasks.
• Decreased SOD activity and MDA levels, and

increased activity of catalase, GPx, and GSH
concentration.

• Increased 5-HT and decreased 5-HIAA
concentration.

• Prevention of neuronal degeneration.

[116]

Intra- hippocampal
Aβ1–40 induced (Wistar)
rat model

Y-maze, Radial arm
maze task, passive
avoidance test;
Brain tissue analysis

1 h before injecting
Aβ1–40 bilaterally in the
dorsal hippocampus

Antioxidant and
neuroprotective agent Hippocampus

Pre-treatment of rats with naringenin caused:

• Better performance in behavior tasks.
• Lower level of MDA, without any significant

difference in nitrit4e and SOD concentration.
• Less DNA fragmentation (considered as a

marker of apoptosis) in hippocampi.

[117]

ICV-STZ induced AD
rat model

Passive avoidance test,
MWM task;
Brain tissue analysis

14 days before ICV-STZ
injection

Antioxidant and
neuroprotective agent Hippocampus

Pre-treatment with naringenin resulted in:

• Better performance in behavioral tests.
• Attenuation of lipid peroxidation and protein

oxidation.
• Increased level of GSH and increased activity

of antioxidant enzymes.
• Alleviation of Na+/K+-ATPase activity in

hippocampus.
• Restoration of ChAT neurons while

maintaining normal morphology of the
neurons in CA1.

[118]
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Table 1. Cont.

Flavonoid Component Studied Model Testing Method Time of Starting
Administration Potential to Act As Studied Region in Brain Important Findings of the Study References

Naringenin/Naringin Hydrocortisone injected
AD mice model

MWM task NOR test
and step-down
test;$$$$$Brain tissue
analysis

21 days before
hydrocortisone injection

Anti-amyloid, anti-tau,
anti-AChE, antioxidant,
and neuroprotective
agent

Hippocampus and
hypothalamus

The results of the pre-treatment of mice with
Naringin were:

• Better performance in behavioral tests.
• The count, shape and distribution was

similar to sham group.
• Increased expression of estrogen receptor

protein.
• Decreased expression of p-Tau and CDK5 in

hippocampus.
• Inhibition of protein expression of Aβ, APP

and BACE1 in hippocampus.
• Increased ACh and ChAT, and decreased

AChE in hippocampus.
• Decreased levels of MDA and NO, and

increased SOD in hippocampus.

[119]

Quercetin

ICR mice subjected to
dexamethasone MWM task

3 h before
dexamethasone i.p.
injection

Neuroprotective agent Hippocampus (area
CA3 and DG)

More number of cells in DG in quercetin-treated
group. [120]

ICV-STZ induced AD rat
model MWM task After 1 week of ICV-STZ

induction Neuroprotective agent Not mentioned Decreased escape latency, and increased time
spent in target quadrant. [121]

Homozygous 3xTg-AD
mice

MWM task, elevated
plus maze;
Brain tissue analysis

Quercetin injected i.p.,
every 48 h for 3 months
in AD mice before
experimentation

Anti-amyloid, anti-tau,
anti-inflammatory and
neuroprotective agent

Subiculum, area CA1,
entorrhinal cortex and
amygdala

Quercertin-treated group showed:

• An increased cell density in subiculum.
• Decreased Aβ and tau fibrillary tangles

deposition and in CA1, subiculum, and
amygdala.

• Significantly reduced astroglial and
microglial immunoreactivity in the CA1
hippocampal area, the entorrhinal cortex,
and the amygdala.

• Improved memory in behavioral tests.

[122]

I.C.-STZ induced (Swiss)
albino mice

MWM task
Passive avoidance test;
Brain tissue analysis

Just after I.C.- STZ
injection

Antioxidant and
anti-AChE
agent

Whole brain
(homogenate)

Reduced mean latency in MWM task and
increased TLT.
Reduction in MDA and nitrite levels, and
inhibition of AChE activity (with higher dose of
quercetin).
Increased GSH levels in quercetin-treated mice.

[123]

ICR mice subjected to
TMT-induced neuronal
deficits

Y-maze and passive
avoidance test;
Brain tissue analysis

21 days before the TMT
induction

Antioxidant and
anti-AChE
agent

Whole brain
(homogenate)

Quercetin pre-treatment resulted in:

• Improved performance in behavioral tests.
• Inhibitory effect on AChE, with inhibition of

lipid peroxidation (at a higher dose of
Quercetin).

• Antioxidant and radical scavenging ability
shown by ABTS and FRAP assays.

[124]
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Table 1. Cont.

Flavonoid Component Studied Model Testing Method Time of Starting
Administration Potential to Act As Studied Region in Brain Important Findings of the Study References

Quercetin
APPswe/PS1dE9
(C57/BL) transgenic
mice

NOR test,
MWM test; Brain tissue
analysis

16 weeks before sacrifice
Antioxidant,
anti-amyloid, and
neuroprotective agent

Hippocampus and
cortex

Mice treated with quercetin showed an increased
recognition index in NOR test, decreased escape
latency in MWM task.
Quercetin increases AMPK, prevents the
formation of amyloid plaques, and alleviates
hippocampal-mitochondria dysfunction.

[125]

Kaempferol Transgenic Aβ flies (DS
model)

Climbing assay;
Brain tissue analysis

30 days before
behavioral tests

Antioxidant, anti-AChE,
and neuroprotective
agent

Whole brain
(homogenate)

Dose-dependent increase in GSH content, and
decrease in LPO, PC, GST, and AChE activity after
kaempferol treatment compared with unexposed
Aβ-flies.
Decreased apoptosis (evident by lower level of
caspase enzymes) compared with the unexposed
Aβ-flies.

[126]

Ovariectomized
ICV-STZ induced AD
(Wistar) rat model

MWM test;
Brain tissue analysis

On the same day as 2nd
dose of STZ, and
continued for 21 days

Antioxidant and
anti-inflammatory agent Hippocampus

Kaempferol consumption caused:

• Reversal of STZ-induced cognitive
dysfunction.

• Enhanced hippocampal SOD and GSH levels.
• Reduced levels of inflammatory markers

MDA and TNF-α.

[127]

ICV-STZ induced AD
(Wistar) rat model [128]

MWM = Morris Water Maze; NOR = novel object recognition; TLT = transfer latency time (i.e., the time taken to move from the open arm into any covered arm with four legs);
ICR = Institute of Cancer Research; STZ = streptozotocin; ICV = intracerebroventricular; I.C. = intracerebral; IHC = immunohistochemistry; STL = step-through latency; TDL = time spent
in the dark chamber; i.p. = intraperitoneal; TMT = trimethyltin; MDA = malondialdehyde; ABTS = 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid); 5-HIAA = 5-hydroxyindoleacetic
acid; FRAP = ferric reducing antioxidant power; GSH = reduced glutatione; GPx = glutathione peroxidase; GST = glutathione-S-transferase; LPO = lipid peroxidation; PC = protein
carbonyl content; ROS = reactive oxygen species; CDK5 = cyclin-dependent kinase 5; SAMP8 = senescence-accelerated mouse prone-8; NO = nitric oxide; ChAT = choline acetyltransferase;
GSK3β = glycogen synthase kinase-3β; LPS = lipopolysaccharide; AMPK = AMP-activated protein kinase.
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Table 2. Main phenolic acid compounds affecting the physiological functioning and/or the pathophysiology of the central nervous system.

Phenolic Acid
Component Studied Model Testing Method Time of Starting

Administration Potential to Act As Studied Region in Brain Important Findings of Study References

Caffeic acid

ICV-STZ induced AD
(Wistar) rat model

MWM, NOR test and
spontaneous locomotor
activity;
Brain tissue analysis

1 h after first dose of
ICV-STZ

Antioxidant and
anti-AChE agent

Cerebral cortex and
hippocampus

Caffeic acid-treated rats showed:

• Dose-dependent improvement in STZ-induced
cognitive dysfunction.

• Better memory (with a higher dose of caffeic acid),
and more time spent in the target quadrant.

• Dose-dependent attenuation of MDA, PC, and
nitrite levels.

• Restoration of depleted GSH and inhibition of
AChE activity.

[129]

AlCl3-induced AD
(Wistar) rat model

MWM;
Brain tissue analysis

20 days after AlCl3
(daily) injection

Antioxidant and
anti-AChE agent

Whole brain
(homogenate)

Reversal of AlCl3 –induced memory deficits.
Inhibition of AChE activity, and nitrite levels in brain.
Increased levels of catalase, GSH, and GST in caffeic
acid-treated group.

[130]

High-fat-diet-induced
AD (Sprague-Dawley)
rat model

MWM;
Brain tissue analysis

Along with the high-fat
diet

Antioxidant,
anti-amyloid
and$$$$$anti-tau agent

Cerebral cortex and
hippocampus

Reversal of memory deficits in caffeic acid group.
Increased SOD, and decreased level of APP expression,
β-Amyloid(1–42) content and BACE1 levels.
Decreased in p-Tau (Thr181) expression.
Increased synaptophysin expression in cortex, and
drebrin expression after caffeic acid treatment.

[131]

High carbohydrate high
fructose (HCHF) diet
induced metabolic
syndrome (Wistar)
rat model

Brain tissue analysis After consumption of
HCFC diet for 8 weeks Anti-inflammatory agent Hippocampus (area

CA1 and DG)
Reduced TNF-α levels, and higher BDNF concentration
compared with HCHF-only fed group. [132]

Intrahippocampally-
Aβ1–40-induced AD
(Sprague-Dawley)
rat model

MWM;
Brain tissue analysis After injecting Aβ1–40

Antioxidant,
anti-inflammatory,
anti-AChE, and
neuroprotective agent

Hippocampus

Caffeic acid-treated group showed:

• Decreased escape latency and mean path length, and
more time spent in target quadrant.

• Increased synaptophysin expression, and decreased
AChE activity.

• Decreased nitrite along with increased catalase and
GSH levels.

• Reduced NFκB-p65 expression with decreased
activity of IL-6 and TNF-α.

• Decreased p53 and P-p38 MAPK expression.

[133]

Wistar rats (whole brain
in-vitro) Not applicable

Added to the
supernatant of the
homogenate

Antioxidant,
anti-AChE, and
anti-BChE agent

Whole brain
homogenate

Addition of caffeic acid caused:

• Dose-dependant inhibition of AChE and BChE.
• Dose-dependant decrease in MDA content.
• High total antioxidant capacity and radical

scavenging ability.

[134]

i.p. D-gal induced aging
(Sprague-Dawley)
rat model

Novel Object Location,
NOR;
Brain tissue analysis

Along with D-gal Neuroprotective agent Hippocampus

Co-treatment with caffeic acid displayed:

• Dose-dependent attenuation of memory
impairment.

• Enhanced hippocampal neurogenesis by attenuation
of reduced cell proliferation and increased survival
of mature neurons.

[135]
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Table 2. Cont.

Phenolic Acid
Component Studied Model Testing Method Time of Starting

Administration Potential to Act As Studied Region in Brain Important Findings of Study References

Chlorogenic acid

APP/PS1 double
transgenic mice

MWM;Brain tissue
analysis At 3-month of age Neuroprotective agent

Brain (including
histological evaluation
of hippocampal CA1
area)

Chlorogenic acid-treated mice showed:

• Decrease in escape latency with more time spent in
the target quadrant.

• Cholorogenic acid protected against Aβ25–35
induced autophagy and promoted lysosomal
function in APP/PS1 brain while restoring normal
morphology of neurons in area CA1.

[136]

C57BL/6 mice
+
Primary neuro-glia
cultures

Brain tissue analysis
+
Neuro-glia analysis and
assays

7 days before LPS
injection
+
2 h before incubation
with LPS

Anti-inflammatory and
neuroprotective agent Substantia nigra

Pre-treatment with chlorogenic acid:

• Attenuated LPS-induced IL-1β and TNFα
expression in Substantia nigra.

• Inhibited nitrite and nitric oxide production along
with attenuation of TNFα expression and NFκB
signaling in LPS-stimulated microglia.

• Protected dopaminergic neurons from
microglia-mediated LPS toxicity.

[137]

Scopolamine-induced
AD (ICR) mice model

Y-maze test, passive
avoidance test, MWM;
Brain tissue analysis

30-min before
scopolamine injection

Antioxidant, and
anti-AChE agent

Whole brain
(homogenate), and
frontal cortex and
hippocampus
(homogenate)

Cholorogenic acid pre-treatment resulted in:

• Prevention of scopolamine-induced (short-term and
long-term) learning and memory deficits.

• Inhibition of AChE activity and MDA levels in
hippocampus (at all tested doses) and frontal
cortex(only at higher dose).

[138]

Ellagic acid

Intrahippocampal
microinjection Aβ25–35
induced
AD (Wistar) rat model

NOR, Y-maze, passive
avoidance and radial
arm maze tasks;
Brain tissue analysis

One week before
Aβ-induction surgery

Anti-inflammatory,
antioxidant, anti-AChE,
and
neuroprotective agent

Hippocampus
(including histological
evaluation of CA1 area)

Ellagic acid pre-treatment caused:

• Improved discrimination ratio and memory
performance.

• Decreased MDA with an increase in GSH (at both
doses), and catalase (only at higher dose).

• Restored NFκB and nuclear/cytoplasmic ratio for
Nrf2 (at both doses), and decreased TLR4
expression(only at higher dose).

• Decreased level of AChE activity along with
prevention of decline of CA1 neuronal count (at both
doses).

[139]

AlCl3-induced AD
(Wistar albino) rat model

NOR test;
Brain tissue analysis After stopping AlCl3

Antioxidant,
anti-amyloid, anti-tau,
and neuroprotective
agent

Whole brain

The results of ellagic acid treatment were:

• Better memory in NOR test compared with
untreated AD group.

• Decreased lipid peroxidation along with increased
levels of catalase, GSH, and total antioxidant
capacity.

• Improved neuronal morphology and lowering of
amyloid and tau burden in cerebral cortex.

• Co-treatment of ellagic acid with ellagic acid-loaded
nanoparticles was more effective in mitigating all
the behavioral and brain abnormalities.

[140]
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Table 2. Cont.

Phenolic Acid
Component Studied Model Testing Method Time of Starting

Administration Potential to Act As Studied Region in Brain Important Findings of Study References

Ellagic acid

APP/PS1
double-transgenic mice

MWM;
Brain tissue analysis

1 week after
acclimatization

Anti-amyloid, anti-tau,
and neuroprotective
agent

Hippocampus

Improved learning and memory in the ellagic
acid-treated group.
More number of neurons with reduced expression level
of caspase-3 in hippocampus.
Decreased Aβ plaque deposition along with reduced
levels of both Aβ40 and Aβ42 which is also confirmed by
reduction in pThr668-APP and BACE1 expression.
Down-regulation of p-tau (pSer199-tau and pSer396-tau)
by mediating AKT/GSK3β signaling pathway
(increasing pSer473-AKT and lowering pTyr216-GSK3β).

[141]

NOR, Y-maze, radial
arm water- maze tasks;
Brain tissue analysis

At 12 months of age
Antioxidant,
anti-inflammatory, and
anti-amyloid agent

Whole brain (including
study on EC, RSC, and
hippocampus)

Treatment with ellagic acid resulted in:

• Complete reversal of learning and memory
impairments and (anxiety-like) behavioral
abnormalities.

• Upregulation of α-secretase and downregulation of
BACE1 with reduced Aβ-plaque deposition (both
Aβ1–40 and Aβ1–42), and CAA.

• Decreased number of immunoreactive glia (astroglia
and microglia) with reduced expression of SOD1
and GPx1.

[142]

Oral AlCl3- induced AD
(Wistar) rat model

NOR test;
Brain tissue analysis

4 weeks after the
beginning of oral AlCl3
dosage

Antioxidant,
anti-amyloid, anti-tau,
and neuroprotective
agent

EC

Ellagic acid-treated group showed:

• Improved discrimination index in NOR test.
• Increased serum SOD (due to upregulated gene

expression), GSH levels and higher mean total
antioxidant capacity with decreased levels of TBRS
(products of lipid peroxidation).

• Restored thickness of EC with more neurons having
normal morphology.

• Down-regulation of APP and caspase-3 expression
with reduced load of NFTs.

[143]

ICV-STZ induced AD
(Wistar) rat model

Radial arm maze and
Y-maze tasks;
Brain tissue analysis

1 day after STZ
administration

Antioxidant,
anti-inflammatory,
anti-amyloid, and
neuroprotective agent

Cerebral cortex
(homogenate), EC and
hippocampus proper
(area CA1, CA2, CA3,
and DG)

Ellagic acid treatment caused:

• Improved memory and cognitive scores.
• Reduced levels of MDA and CRP together with

elevated GSH and catalase activity.
• Neurons having normal morphology with decreased

Aβ-plaque burden in EC and hippocampus proper.
• Reduction of immunoreactive astroglia and

elevation of synaptophysin levels.

[144]
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Table 2. Cont.

Phenolic Acid
Component Studied Model Testing Method Time of Starting

Administration Potential to Act As Studied Region in Brain Important Findings of Study References

Ferulic acid

APP/PS1 (transgenic)
mice

MWM task;
Brain tissue analysis

In AD mice of 6 months
age

Anti-amyloid,
neurovascular protective
agent

Whole brain (including
study on cerebral cortex
and hippocampus)

Ferulic acid treatment effects on APP/PS1 mice were:

• Restoration of learning and memory impairment.
• Increased density of whole-brain blood vessels

(including hippocampus) with prevention of
reduction of diameter of hippocampal capillaries
and, therefore, cerebral blood flow.

• Reduction of Aβ plaque deposition in
hippocampus(both Aβ1–42 and Aβ1–40) and cortex
along with attenuated BACE1 activity.

• Reduced microglia aggregates surrounding Aβ
plaques.

[145]

NOR, Y-maze, radial
arm-water maze tasks;
Brain tissue analysis

In 1-year-old AD- mice
model

Anti-inflammatory,
antioxidant, and
anti-amyloid agent

Whole brain (including
study on RSC, EC,
hippocampus)

Treatment with Ferulic acid resulted in:

• Reduction in cerebral amyloidosis and CAA.
• Decreased reactive gliosis with reduced expression

of SOD1, GPx1, TNF-α and IL-1β.
• Elevated synaptophysin immunoreactivity in area

CA1 and EC.
• Moreover, the combination therapy of Ferulic acid

with epigallocatechin-3-gallate was more effective
and completely reversed all the behavioral and brain
abnormalities.

[146]

NOR and Y-maze tasks;
Brain tissue analysis In 6-month old AD mice Anti-amyloid,

anti-inflammatory agent
Frontal cortex and
hippocampus

Ferulic acid treatment:

• Improved memory performance in NOR after
low-dose (5.3 mg/kg/day) treatment, whereas
treatment at a higher dose (16 mg/kg/day) was
ineffective.

• Reduction in cortical Aβ1–40 and Aβ1–42 levels
(more effective at lower dose) with alleviation of
IL-1β levels (at both doses).

[147]

PSAPP mice (AD-model)
NOR, Y-maze and
MWM tasks;
Brain tissue analysis

In 6-month-old AD mice
Antioxidant,
anti-inflammatory and
anti-amyloid agent

Cingulate cortex, EC and
hippocampus
+
Whole brain
(homogenate)

Ferulic acid-treated PSAPP mice displayed:

• Remediation of learning, memory and behavior
impairment.

• Reduction of cerebral amyloid burden and CAA by
attenuating both Aβ1–40 and Aβ1–42 levels along
with decreased BACE1 activity (at the
translational/protein level).

• Attenuation of glial activation with reducing
expression of TNF-α, IL-1β, SOD1, catalase and
GPx1.

[148]
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Table 2. Cont.

Phenolic Acid
Component Studied Model Testing Method Time of Starting

Administration Potential to Act As Studied Region in Brain Important Findings of Study References

Ferulic acid
ICR mice (ICV-induced
Aβ1–42 AD-model)

Brain tissue analysis 4 weeks before ICV
injection of Aβ1–42

Antioxidant and
anti-inflammatory agent Hippocampus

Ferulic acid pre-treatment mitigated oxidative stress and
neuroinflammation by blocking astroglial activation
evident by double staining of 3-nitrotyrosine and
endothelial nitric oxide synthase immunoreactive cells
with GFAP.

[149]

Brain tissue analysis 4 weeks before ICV
injection of Aβ1–42

Antioxidant and
anti-inflammatory agent Hippocampus

Ferulic acid pre-treatment inhibited microglial activation
evident by blocking of OX-42 (marker of activated
microglia) and IFN-γ immunoreactivity.

[150]

Gallic acid

ICV Aβ1–42 induced AD
(ICR) mice model

Y-maze and passive
avoidance test;
Brain tissue analysis

3-weeks before ICV
injection of Aβ

Anti-inflammatory and
neuroprotective agent

Whole brain
(homogenate), Cerebral
cortex and hippocampus

Gallic acid pre-treatment:

• Prevented Aβ-induced cognitive deficits.
• Restored cytokine (iNOS and COX-2) levels in the

cerebral cortex and hippocampus induced with Aβ
and decreased neuronal apoptosis.

• Inhibited nuclear translocation and acetylation of
NFκB and prevented subsequent IL-1β release in
mice brain.

[151]

Oral AlCl3-induced AD
(Wistar) rat model

Y-maze and MWM tests;
Brain tissue analysis Together with AlCl3

Antioxidant and
neuroprotective agent Hippocampus

Gallic acid co-ingestion group showed:

• Improved learning and memory indices in
behavioral tests.

• Elevated levels of catalase, SOD and GSH with more
neurons in hippocampus.

[152]

APP: BACE [high]
transgenic Drosophila
AD-model

Brain homogenate
analysis 5 days before sacrifice

Antioxidant,
anti-inflammatory,
anti-AChE, and
anti-BChE, and
anti-amyloid agent

Whole brain
(homogenate)

Gallic acid caused:

• Decreased BACE1 and Cholinesterase (AChE and
BChE) activity.

• Reduced MDA levels and increased catalase activity
together with amelioration of reactive oxygen
species burden.

• Raised total thiol content.

[153]

Intrahippocampal
Aβ1–42 induced
AD (Wistar) rat model

Electrophysiological
analysis;
Brain tissue analysis

The 2nd day after
intrahippocampal
injection

Anti-amyloid Hippocampus (area CA1
and DG)

Improved amplitude and area under curve of LTP as
recorded from DG in gallic acid-treated flies.
Reduced burden of Aβ plaques in area CA1 in treated
group.

[154]

ICV-STZ
induced AD (Wistar) rat
model

Passive avoidance and
MWM tests;
Brain tissue analysis

5 days before ICV-STZ
injection Antioxidant agent Cerebral cortex and

hippocampus

Pre-treatment with Gallic acid resulted in:

• Improved learning and memory in behavioral tests.
• Decreased levels of MDA and increased total thiol

levels with restoration of SOD, GPx and catalase
activity.

[155]
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Table 2. Cont.

Phenolic Acid
Component Studied Model Testing Method Time of Starting

Administration Potential to Act As Studied Region in Brain Important Findings of Study References

p-Coumaric acid (p-CA)

AlCl3-induced AD
(Wistar) rat model

Passive avoidance test;
Electrophysiological
analysis;
Histological analysis

1-h prior to
AlCl3-induction

Anti-amyloid and
neuroprotective agent Hippocampus

p-CA pretreatment resulted in:Improved memory
retrieval in behavioral test.
Mitigation of LTP impairment that is evident by
increased amplitude and area under curve for the
population spike, and the field excitatory postsynaptic
potentials slope in electrophysiological recordings.
Reduced burden of Aβ-plaques in DG.

[156]

OFT, elevated plus maze,
MWM, and forced
swimming tests;
Brain tissue analysis

Antioxidant,
anti-inflammatory, and
neuroprotective agent

Cerebral cortex and
hippocampus
(histological studies on
area CA1, CA3 and DG)

p-CA pre-treatment improved memory, decreased
anxiety and depression-like behavior, and increased
exploratory activity.
p-CA increased SOD, GPx, and Catalase activities and
decreased MDA NFκB, TNF-α, IL-1β, and IL-6 levels.
Increased number of intact neurons.

[157]

Scopolamine-induced
AD (Sprague-Dawley)
rat model

Passive avoidance and
MWM test
Electrophysiological
analysis

1-h before scopolamine
administration Neuroprotective agent Hippocampus (area

CA1)

p-CA causes the following changes:

• Increases amplitude of LTP with increased field
excitatory postsynaptic potentials in
electrophysiological studies in p-CA group.

• Inhibition of NMDA receptor and AMPA receptor
blockade and resultant increase in LTP.

• Inhibits muscarinic receptor blockade which is
proposed as the likely reason behind memory
improvement in behavioral test.

[158]

EC = entorhinal cortex; RSC = retrosplenal cortex; DG = dentate gyrus; CC = cerebral cortex; CA = cornu ammonis; NFTs = neurofibrillary tangles; CAA = cerebral amyloid
angiopathy; LTP = long-term potentiation; NOR = novel object recognition; OFT = open field test; LPS = lipopolysaccharide; TLR4 = Toll-like receptor 4, Nrf2 = nuclear factor
(erythroid-derived) 2; NFκB = nuclear factor-kappa B; SOD = superoxide dismutase; PC = protein carbonyl content; BACE = β-Site APP-cleaving enzyme; GPx = glutathione
peroxidase; TBRS = thiobarbituric-acid-reactive substances; AlCl3 = aluminum chloride; IFN-γ-gamma interferon; NMDA receptor = N-methyl-D-aspartate receptor; AMPA receptor =
α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor.5. Effect of honey as a neuroprotective agent.
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4. Therapeutic Potential of Flavonoids and Phenolic Acids

Several polyphenols are known to exert protective effects on the nervous system and
are suggested to have a role in alleviating symptoms of neurological diseases [159–161]
including AD [162]. All these phenolic compounds, which are listed in Figure 1, are
found to improve cognitive performance in AD pathology, and prevents from cognitive
decline when ingested before inception of disease. These compounds are found in different
kinds of honey in addition to other sources, and are particularly effective in attenuating
oxidative stress along with exerting preventive effects on several other mechanisms in
AD pathology. Their potential to reduce AD-induced brain injury is further proven by
the microscopic studies and brain assays where they showed neuroprotective effects on
the cortex [116,140], hippocampus [124,125], and hypothalamus [119]. Moreover, the con-
sumption of polyphenols resulted in the prevention of hypoperfusion injury [145] with a
generalized increment in cell number having normal physiology in the subiculum [122],
and hippocampal proper area CA1 [48,136,139,154], CA3, and dentate gyrus [109,120,157],
along with preserving normal synapses [112,131,144], the latter is further evident by an
increased LTP after polyphenol consumption [154,156,158,163]. Further, the detailed stud-
ies of AD-brain animal model showed the potential of the polyphenols to reduce oxi-
dation markers such as MDA [128,153], nitric oxide (NO), and nitrite [112,119,129,130],
thereby attenuating free-radical-induced oxidation insults. The observed levels of antiox-
idants, however, are contrasting, with many studies deducing an elevated level of SOD
and catalase, GSH [113,127,140,143,152,155], whereas others concluding decreased expres-
sion [115,146,148]. Although the results are contradictory, the studies demonstrating a
reduction in the activity of antioxidants claim that this decrease also signifies the attenua-
tion of oxidative injury, which subsequently renders the expression of the anti-inflammatory
markers unnecessary. However, despite the discrepancy in the results, all studies conclude
that the changes in the expression of these markers lead to reduced oxidative damage and
Aβ-plaque accumulation.

Moreover, phenolic compounds can also alter the expression of some critical genes:
APP, BACE1, PSEN-1, and Glutathione peroxidase 1 (GPx1). Polyphenols are found to
down-regulate the expression of APP [164] and PSEN-1 gene [165], along with either
a decrease [142,146,148] or increase in GPx1 expression [116]. As GPx1 is an enzyme
that catalyzes the reduction of hydroperoxides and hydrogen peroxide by GSH to at-
tenuate oxidation [166], reduced expression can lead to oxidative injury to cell. More-
over, the expression of BACE1 is also decreased [153] and is thought to be inhibited
post-transcription, probably at the protein level [148]. Although not studied yet, a sim-
ilar down-regulation of PSEN-2 gene expression can be expected by polyphenol con-
sumption [167]. Moreover, polyphenols may also prevent neuritic plaque deposition by
increasing α-secretase activity and by reducing cleavage of the APP to amyloidogenic
soluble APP-β and β-CTFs [142] and hence, preventing the accumulation of the latter
in synapses [148,165]. Taken together, these studies suggest that the polyphenols likely
regulate gene expressions to reduce oxidation and formation of Aβ fibrils. Moreover,
the polyphenols also increase the expression of the transcription factor Nrf2, which is
responsible for regulating the induction of antioxidant genes, thereby improving defense
against oxidative injury [139]. To protect the CNS further, the polyphenols reduce the
level of pro-inflammatory markers, such as NFκB, TLR4 [139,157], COX-2 [151], MHC
class II, TNFα [114,127,146], IL-1α [149], IL-1β [147,151,168], IL-6 [157,169] and increase
anti-inflammatory cytokines [115], thereby reducing neuroinflammation. Furthermore,
by decreasing neuroinflammation, these substances also attenuate the immunoreactivity
of microglia and astroglia in the hippocampus, EC, and amygdala, which is commonly
observed in AD neuropathology [115,122,142,146,149,150].

Additionally, the polyphenols reduce tau hyperphosphorylation and subsequent
formation of NFT [170] and decrease the deposition of Aβ-plaques [140,156,171]. They
also seem to exert a neuroprotective effect by preventing neuronal injury [136,152] and
apoptosis [119,136,151] and by regulating the ACh system, where they increase ACh and
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choline acetyltransferase (ChAT), and decrease acetylcholinesterase (AChE) [119,123] and
butyrylcholinesterase (BChE) [153]. These polyphenols’ effects also lead to minimization
of deficits of memory and cognitive [172–175]. As honey contains a number of these
polyphenols, its consumption can be expected to have similar potential to prevent and
treat CNS pathology in AD. The therapeutic potential of the polyphenols: flavonoids and
phenolic acids, are summarized in Tables 1 and 2, respectively.

The effectiveness of honey in minimizing neurodegeneration is attributed to its neu-
roprotective effects on the brain [30,34], including the prefrontal cortex [176–178] and
hippocampus [34,35,179,180]. Honey prevents neurodegeneration by attenuating two main
phenomena, which are oxidative stress and neuroinflammation [36,132]. The reduction in
neuroinflammation [181] is due to the attenuation of oxidative stress [30,31] and the pre-
vention of free radical-mediated injury to the brain tissue [182,183]. This effect is evident by
an increase in the antioxidant enzyme such as SOD and a reduction in the oxidative-stress
markers, such as plasma MDA and protein carbonyl in aged brains [176,177]. Subsequently,
as the hippocampal pyramidal neurons are highly susceptible to oxidative damage, this
reduction of oxidative stress probably rescues them from insult and degeneration [34,182].

Further, along with the hippocampus, injury to the medial prefrontal cortex (mPFC)
and piriform cortex is commonly observed in AD, both of which are associated with
memory and cognition. Unlike other primary sensory cortices, which are minimally
affected by the AD pathology, the piriform cortex is possibly affected even before or along
with the development of the cognitive symptoms [184–186]. Hence, it is also considered a
predictive marker of the conversion to AD [184,187]. Similarly, the damage to the mPFC
in AD is evident as defective functioning [188,189] and abnormal connectivity with other
associated brain areas [190]. Even though no such study has been undertaken to look at the
injuries in these areas, the neuroprotective effects of honey may also rescue the mPFC and
piriform cortical injury.

Although researchers widely accept the neuroprotective capacity of honey, we still
do not have much data on the effects of honey on the physiology and/or anatomy of the
human brain, and, therefore, its potential to act on the CNS is not fully understood to date.
It is probably due to the late advent of technologies to study the brain in honey-related
research and the limitation to researching human CNS. However, to overcome the limitation
of experimental access to the human brains and to understand the possible effect of honey
on the microscopic level, the research is now predominantly being carried out in rodents.

5. Effects of Honey on Memory, Cognition, and Behavior

Cortical Aβ deposition exerts effects on temporal lobe atrophy and resultant cognitive
impairment in individuals with AD [191]. From psychophysiological perspective, cognition,
learning, and memory are believed to be mainly determined by the cortico-hippocampal
(C-H) circuit’s normal functioning [192,193]. As ACh is the principal neurotransmitter
in synapses, the amount of ACh also plays an essential role in learning behavior and
cognitive performance [194]. Although relatively constant, the amount of ACh still nor-
mally fluctuates, according to the need in the memory processes, such as encoding and
retrieval [195]. Essentially, since the integrity of the C-H circuit depends upon the nor-
mal physiology of neurons and synapses, the Aβ plaque formation, and therefore AD,
may affect the circuit by damaging neurons [196], reducing the number of cholinergic
neurons [197], decreasing the ChAT activity [198,199], decreasing ACh release [200], and
impairing synapses, which results in defective transmission [72,74]. Surprisingly, ageing
and Aβ fibrillogenesis also decrease the AChE activity [201,202]; this finding is unexpected
and in contrast to the decreased ACh indicates that the reduction in ACh is likely due to
degeneration of the cholinergic neurons along with an increase in another cholinesterase
enzyme activity, such as BChE [203] and not due to elevated AChE levels, as the latter is
itself hydrolyzed by the former [204,205]. The intake of honey is found to reduce the level
of BChE with a further decline in the level of AChE [176,206]. Although the exact mode of
action is still not understood, this cholinesterase inhibition, together with neuroprotection,
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results in improved cognition and memory [207] after honey consumption, as observed
in rodents [180,182,208,209] and humans [37,210]. The effects of honey as a nutraceutical
agent in improving memory and cognition are further discussed in Table 3 (in rodents) and
Table 4 (in humans).

Table 3. Effects of honey intake on memory and cognition in animal model.

Studied Model Dosage Duration of Exposure Findings Reference

Wistar rats induced with
metabolic syndrome
effects (MetS) by feeding
high carbohydrate high
fructose (HCHF) diet

15 mL of Kelulut honey
dissolved in 15 mL of
distilled water given at
0.1 mL/kg of body
weight daily

35 days (after 16 weeks of
HCFC diet)

Reduced anxiety compared with the MetS
group
Enhanced memory efficiency than both
control and MetS groups
Increased number of pyramidal cells in the
hippocampus compared with the
MetS group

[34]

Female Swiss albino
mice
(age = 2.5 months)

A total concentration of
750 mg/kg and
2000 mg/kg among
groups—with 0.3 mL of
Stingless bee honey
dilution forced-fed daily

7 days (acute) and 35 days
(semichronic)

Improvement in learning and spatial
reference memory [211]

Stressed ovariectomized
Sprague–Dawley rats
(approximately
8 weeks old)

0.2 g/kg body weight
daily of Tualang honey
diluted with 1ml of
distilled water

18 days (started 3 days
before stress induction)

Decreased anxiety-like behavior in the
stressed ovariectomized rats (StOE) that is
comparable to β-estradiol (E2) treatment

[29]

Improved short-term and long-term memory
in the StOE rats
Increased pyramidal cells in CA2, CA3, and
DG of hippocampus in the StOE rats
Results were comparable to that after E2
treatment

[180]

Sprague–Dawley rats
(approximately
2 months old)

Experimental diet of
containing 100 g/kg
honeydew honey that
was available ad libitum

3, 6, 9, and 12 months Improved spatial memory and decreased
anxiety-like behavior [208]

Sprague–Dawley rats
(2 months old)

0.2 g/kg body weight
Tualang honey
dissolved in distilled
water/daily

35 days Improved short-term and long-term memory
Decreased depressive-like symptoms [209]

Sprague–Dawley rats
(16 months old)

200 mg/kg body weight
of Tualang honey/daily

28 days (started 14 days
prior to stress procedures)

Improvement in both short-term and
long-term memory
More Nissl-positive cells in the mPFC and
hippocampus
Greater number of pyramidal cells in the
mPFC and hippocampus exhibiting normal
shape and structure

[176]

Male Sprague–Dawley
rats
Young (2 months old),
and aged
(16 months old)

200 mg/kg body weight
of Tualang honey/daily

28 days (started 14 days
prior to stress procedures) [177]

Wistar rats 0.5, 1.0, and 2.0 g/kg
body weight

Singly dose (1 h before
behavioral tests)

Honey, in a dose-dependent manner,
ameliorates the anxiety-like behavior and
possibly also acts as an anti-depressant

[212]

Swiss albino mice
Young (3–4 months),
aged (12–15 months)

The formulation
containing honey
(400 mL), ghee (800 mL)
and gold (288 mg) was
given at the dose of 30
mg/kg/daily

15 days
The formulation intake improved learning
and memory in young and aged mice
Decreased activity of AChE in brain

[213]
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Table 4. Effects of honey consumption on memory and cognition in humans.

Subjects Type of Study Dosage Duration of
Exposure Findings Reference

Mild cognitively
impaired, and
Cognitively intact
controls
(all over 65 years old)

Randomized, placebo
control, double-blind 1 tablespoon daily 5 years—tested every

6 months

About 28% of the
placebo-given subjects, while
less than 7% of the
honey-ingested subjects
developed dementia.

[37]

Postmenopausal
women
(aged between 45 and
60 years)

Cohort 20 g Tualang honey
(sachet) daily 16 weeks

Improved learning and
memory scores in the
auditory verbal learning test

[38]

Patients diagnosed
with mood disorders
and candidates for
electroconvulsive
therapy (ECT)
(aged > 18 years)

Randomized,
double-blind

9 g of herbal
combination of
Crocus sativus,
Cyperus rotundus, and
honey/twice daily

40 days (after
initiation of ECT)

Improvement of ECT-induced
memory improvement,
especially after one to two
months of the last ECT
session.

[214]

Depressed elderly
individuals (aged 60
or more)

Crossover
randomized

25 g Talbinah honey
in 100 mL of water
daily

6 weeks (3 weeks + 1
week break + 3
weeks)

Improvement in depression,
stress, and mood
disturbances scores.

[215]

Patients diagnosed
with mild to
moderate major
neurocognitive
disorder

Randomized,
double-blind

10 g Asparagalus
honey with 1000 mg
of sedge and 60 mg of
saffron extracts daily

3 months
Improved attention, memory
and cognition compared with
the placebo-given group.

[210]

6. Honey on Dopaminergic Neurons—Important Players in Memory Deficits in AD

In addition to ACh, dopamine plays a significant role in learning and memory func-
tions. Besides being secreted from dopaminergic neurons (DN) of the Ventral tegmental area
(VTA) and substantia nigra pars compacta (SNpC) in the midbrain [216,217], dopamine is
also released by locus coeruleus (LC), located in the brainstem, which co-releases dopamine
along with noradrenaline [218,219]; this released dopamine from LC innervates CA3 [220],
and is thought to be the primary source of supply to the dorsal hippocampus [218,221];
however, a recent study suggests that the midbrain modulate dopaminergic innervation to
the dorsal hippocampus and this stimulation is sufficient to arouse aversive memory even
in the absence of input from LC [216]. To aid with the understanding of the contrasting
source of dopamine, Takeuchi et al. proposed that although the projection of dopaminergic
fibers from LC is denser than the midbrain [221], the midbrain and LC both modulate dorsal
hippocampus in different kinds of memory consolidation processes [222]. Since the DN in
the VTA are the primary site for dopamine synthesis, the DN in the midbrain-hippocampal
(M-H) loop are vital in learning, memory formation, and consolidation [223,224]. The DN,
and the secreted dopamine, modulate synaptic plasticity and contribute to the LTP in the
hippocampus [225], thereby playing an essential part in the genesis and fortification of the
episodic [226], aversive [216], and spatial memories [224]. Moreover, dopamine, together
with norepinephrine, is crucial for the recognition memory [227,228]. In non-diseased
brains, the number of DN and, therefore, the functional connectivity of the midbrain tends
to decline with age [229,230], which may appear as deficits in learning and memory [231].
Similarly, as AD is a disease of old age, there is degeneration of DN [232,233]; However,
due to the Aβ pathology, probably more damage occurs to the dopaminergic synapses
in the M-H loop. Due to the mentioned insult, there is a decrease in dopamine, leading
to impaired synaptic plasticity [234,235] and deficits of memory [233,236]. Polyphenols
are found to prevent the degeneration of dopaminergic neurons and increase dopamine
levels [137,237–241]. Although all these studies discuss the attenuation of neuroinflamma-
tion with/without Parkinson’s disease, similar results are expected in the AD model. As
the insults to DN and reduced dopamine in AD are recently being studied in detail, more
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research is encouraged to be conducted on the AD M-H loop to understand the effect of
honey and its constituent polyphenols on memory improvement in AD.

7. Honey as a Nootropic Agent—Prevention, Treatment, or Both?

In light of the previous research, it is evident that by acting on the CNS and working
through various mechanisms, honey acts as a nootropic agent (refer Figures 2 and 3).
Now the question arises of the right time to utilize these nootropic properties to alleviate
AD symptoms. Another similar issue is understanding whether honey consumption is
effective in preventing the development/conversion of mild cognitive impairment into AD,
mitigating the damage during ongoing AD disease pathology or reversing the injury done
to the brain by AD. Although, to our knowledge, this aspect is not assessed to date, the
studies on polyphenols (discussed in Tables 1 and 2) may suggest some possible effects.
The intake of phenolic compounds before initiation of the AD neuropathology is found
to halt the progression of the CNS disease, protect neurons, reduce neuroinflammation
and oxidative damage, and minimize memory and cognitive deficits, as seen in the studies
on the AD-rodent models [48,109,111,112,117]. Likewise, honey ingestion in subjects with
developed AD may also cause effects similar to those observed in the polyphenols-treated
AD model [121,122,125,126]. Since these polyphenols are abundant in honey, we can expect
the same benefits with honey consumption in human subjects.

Although honey is loaded with various kinds of polyphenols [100,102,103], the protec-
tive or curative effect of honey can be enhanced further by consuming it in combination
with some nutraceutical agent [182,210,242]. Moreover, the synthesis of dimer by combin-
ing caffeic acid and ferulic acid [243], and the use of an amino acid (glutamine) conjugated
with phenolic acid [244], both of which proved to be more efficient than the polyphenol
alone, have paved a path for the likelihood of the advent of similar new combinations with
honey that might emerge as the novel therapies for the prevention of AD. Moreover, a
mixture of honey with other nutraceutical substances has proven to be effective in AD (for
review: [245–247]) and can be appraised in prevention and/or management of AD.

In the same notion, the accurate dose of honey to prevent and/or treat AD has not
been deduced to date. One of the important reasons of inability to draw conclusions is the
fact that most studies are conducted on rodents, with very few studies on human subjects.
Moreover, many confounding factors need to be addressed, such as the type of honey to be
ingested, the therapeutic dose of honey, the minimum duration of honey intake, stage of AD
(if given for treatment). Since few studies mentioned in Table 4 use a formulation of honey
and other nootropic agents, another question arises whether combinations with such agents
are more effective in terms of dosage and duration in improving human cognition. To our
knowledge, currently there are no known studies on primates that observe the benefits of
honey on cognition, or sporadic AD which is best modeled by the rhesus monkeys [248].
Comparative studies are encouraged in these areas, with possible usage of primates such
as chimpanzees etc., to observe and deduce invaluable conclusions.
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8. Conclusions and Future Directions

The phenolic compounds prevent damage to the neurons while promoting apoptosis
in dysfunctional or cancer cells, which points toward different mechanisms of action in the
brain cells than the rest of the body. On the same notion, the polyphenols are believed to
exhibit oxidation-promoting properties for review: [249], rendering it necessary to explore
the reasons for the switch between pro-oxidant and antioxidant characteristics to utilize
these novel qualities appropriately. However, as various polyphenols have anti-amyloid
and anti-tau potential, there is a possibility that they function as antioxidants in the cells
that contain (or may contain) the Aβ aggregates and NFTs, whereas they promote oxidation
in other abnormal cells; this aspect of these substances, as well as that of honey, needs
further elaboration.
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Some recent studies have demonstrated the potential of flavonoids in prevention
of memory decline in elderly individuals [250–253]. Similarly, the research on animal
models of AD (mentioned in Tables 1 and 2) have shown an effectiveness of polyphenols
in prevent and/or treat AD symptoms. However, the source of phenolic compounds in
all these studies are variable. Considering the fact that the phenolic compounds can be
obtained from various sources, notably fruits, vegetables, beverages, and nuts [254,255],
the same polyphenols from distinct sources may have different pharmacological activities,
and their polyphenolic potential, especially the capacity to act as an anti-oxidant and
anti-inflammatory agent, may also vary accordingly. In the light of these considerations,
new studies focusing primarily on the flavonoids and phenolic acids derived from honey
are highly encouraged to understand the polyphenolic potential of honey.

Although an increased level of AChE is observed in cerebrospinal fluid (CSF) of AD pa-
tients [256], an overall reduction of AChE concentration is found in the AD brain [201,202].
The reduced amount of AChE suggests that AD pathology can be due to the reduction
of some neuroprotective variant of AChE (e.g., AChE-R) in the absence of an increase in
AChE activity [202]. Taking this into consideration, although the most reliable drug to
treat mild to moderate AD is donepezil, an AChE inhibitor, it paradoxically increases the
amount of AChE in the CSF [257,258]. These findings suggest that the AChE could have
different properties inside the brain and within the CSF, pointing toward the possibility
that the effect of honey on memory and cognition is due to neuroprotection with/without
some mechanism other than AChE inhibition.

The role of dopaminergic system has been studied for a long time; however, its
importance in memory deficits in AD was not clear. With the new studies on the role
of dopaminergic system in learning and memory, a decline in dopamine levels with the
damage in synapses is observed in AD. Furthermore, it is found that restoration of the
dopaminergic levels is associated with improvement of memory deficits in AD [259]. For
this purpose, dopamine agonists are being tested and proven to reverse the memory-related
symptoms [260,261]. Moreover, the dopamine and its derivatives are found effective
to reverse oxidative stress, inflammation, and Aβ load [262]. However, the dopamine
replacement methods have given promising results, the effects of polyphenols and honey
are still not being elucidated. Considering the polyphenol composition of honey, it can be
more effective in treating various aspects of AD neuropathology compared to dopamine
alone. On the same note, despite the fact that honey consumption is found to have a
miraculous role in treating various diseases [263–265], its effectiveness in neurodegenerative
diseases is still under evaluation. Having being proven to positively affect cognition
and memory, the antioxidant capacity of honey also suggests its potential to manage
neurological disorders and neurodegenerative diseases. More studies are needed to be
conducted using animal models of neurodegenerative diseases, such as AD, to study the
benefits of honey in its treatment and management.
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