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Abstract: Flavonoids are a biodiverse family of dietary compounds that have antioxidant, anti-
inflammatory, antiviral, and antibacterial cell protective profiles. They have received considerable
attention as potential therapeutic agents in biomedicine and have been widely used in traditional
complimentary medicine for generations. Such complimentary medical herbal formulations are
extremely complex mixtures of many pharmacologically active compounds that provide a therapeutic
outcome through a network pharmacological effects of considerable complexity. Methods are emerg-
ing to determine the active components used in complimentary medicine and their therapeutic targets
and to decipher the complexities of how network pharmacology provides such therapeutic effects.
The gut microbiome has important roles to play in the generation of bioactive flavonoid metabolites
retaining or exceeding the antioxidative and anti-inflammatory properties of the intact flavonoid
and, in some cases, new antitumor and antineurodegenerative bioactivities. Certain food items have
been identified with high prebiotic profiles suggesting that neutraceutical supplementation may be
beneficially employed to preserve a healthy population of bacterial symbiont species and minimize
the establishment of harmful pathogenic organisms. Gut health is an important consideration effect-
ing the overall health and wellbeing of linked organ systems. Bioconversion of dietary flavonoid
components in the gut generates therapeutic metabolites that can also be transported by the vagus
nerve and systemic circulation to brain cell populations to exert a beneficial effect. This is particularly
important in a number of neurological disorders (autism, bipolar disorder, AD, PD) characterized
by effects on moods, resulting in depression and anxiety, impaired motor function, and long-term
cognitive decline. Native flavonoids have many beneficial properties in the alleviation of inflamma-
tion in tissues, however, concerns have been raised that therapeutic levels of flavonoids may not be
achieved, thus allowing them to display optimal therapeutic effects. Dietary manipulation and vagal
stimulation have both yielded beneficial responses in the treatment of autism spectrum disorders,
depression, and anxiety, establishing the vagal nerve as a route of communication in the gut-brain
axis with established roles in disease intervention. While a number of native flavonoids are benefi-
cial in the treatment of neurological disorders and are known to penetrate the blood–brain barrier,
microbiome-generated flavonoid metabolites (e.g., protocatechuic acid, urolithins, γ-valerolactones),
which retain the antioxidant and anti-inflammatory potency of the native flavonoid in addition to
bioactive properties that promote mitochondrial health and cerebrovascular microcapillary function,
should also be considered as potential biotherapeutic agents. Studies are warranted to experimentally
examine the efficacy of flavonoid metabolites directly, as they emerge as novel therapeutic options.

Keywords: therapeutic treatment of neurological disorders; gut-brainaxis; protocatechuic acid;
urolithins; γ-valerolactones; autism; bipolar disorder; Alzheimer’s disease; Parkinson’s disease
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1. Introduction

The vagus nerve is the longest and most complex of the 12 cranial nerves in the human
body and a major component of the parasympathetic nervous system. It provides auto-
nomic control and functional regulation of internal organs, controlling such fundamental
processes as digestion, the pulsatile behaviour of the heart (which controls blood circu-
lation), and the behavior of the muscle systems that control the respiratory system [1–3].
The autonomic nervous system also controls reflex actions, such as coughing, sneezing,
and swallowing, and coordinates with the sympathetic nervous system to achieve organ
homeostasis. The vagus nerve has important roles as a line of communication between
the gut microbiome and linked organ systems [4]. In infancy, the microbiome contributes
to the education of the immune system by exposing it to a range of epitopes, leading to
a diverse recognition system that can identify self- from non-self-preventing sensitivities
to food epitopes in adulthood, and also to the development of auto-immune disorders
and life-threatening allergies [5]. The microbiota, gut, and brain communicate through
the vagus nerve In a bidirectional communication system in what has been termed the
gut-brain axis (Figure 1) [5]. The vagus nerve is a mixed nerve containing 80% afferent and
20% efferent fibres that deliver important instructive information in the form of vesicular
neurotransmitters using a sophisticated transport system [6]. Activated nerves transport
neurotransmitters to the synaptic gap where neurotransmitters release transducer signals
and motor functions mediated by neural networks. Bioactive compounds are transported
to the brain by efferent vagal fibres to stimulate specific brain regions. Vagal stimulation
has been used to treat neuropsychiatric disorders [7].

Although controversial, psychedelic drugs belong to a general class of compounds
known as psychoplastogens, which robustly promote structural and functional neural
plasticity in key neural circuits that in practice have been shown to be beneficial to brain
health [8]. Progress in this branch of medicine has historically been hampered by legislation
banning the use of such psychotropic medications [9]. Psychedelics are serotonin 2A recep-
tor agonists that can lead to profound changes in perception, cognition, and mood, and
display a potential in the treatment of mental health brain disorders that is unlike any other
treatments currently available [10]. Psychedelics can produce sustained therapeutic benefit
following a single administration, and also have broad therapeutic value and efficacy in
the treatment of disorders, such as depression, post-traumatic stress, anxiety disorders,
and addictive substance and alcohol abuse disorders [11]. A number of flavonoids have
been identified with an ability to regulate neural functional properties of potential thera-
peutic value in the treatment of neurological disorders [10,12–35]. One class of flavonoid
metabolite (urolithins) shows particular promise in the treatment of neurodegenerative
disorders and in the provision of general health and wellbeing [20,36–38]. Elligatannins
are degraded to ellagic acid, which is further processed to the urolithins by gut bacteria.
Human intestinal bacteria capable of producing isourolithin A from ellagic acid have been
isolated [33].

Traditional complimentary medical herbal infusions have been used for centuries to
treat pain symptoms in the treatment of headaches [39,40], as antipyretics in the treatment
of fevers [41], and have also been shown to be beneficial in the treatment of neurological
symptoms in disorders of functional cognitive decline [42–44]. In Chinese traditional
medicine, the liver is considered to be of central importance in the regulation of the Qi
vital life force, which in therapeutic procedures is re-directed through the meridians to
organ systems to re-balance vital life forces [45,46] Chinese medicinal herbal preparations
are considered to re-balance the harmony of the opposing life elements of the yin and
yang [47,48]. The Qi represents the functional activities of the body classified as yin, while
the vital control of these bodily functions is provided by the yang component [49]. The
gut-liver-brain axis thus has a central role in Chinese medicinal doctrine and the benefits
provided by Chinese herbal formulations. While there are no equivalent or plausible
explanations of this abstract theory in Western medicine [50], the existence of a gut-liver,
gut-lung, and gut-brain regulatory connection that exerts some measure of control over
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linked organ systems has received considerable attention [51–58]. Many studies have
proposed gut-liver, gut-lung, and gut brain axes as potential routes of intervention in
disease resolution. The vagus nerve provides communication between the brain and gut,
facilitating cross-talk between the brain and gut microbiota, and is a major parasympathetic
heart regulatory nerve. In the intestines, the vagus nerve regulates the contraction of
smooth muscles and glandular secretions. The vagus nerve thus oversees crucial bodily
functions, such as mood control, immune response, digestion, and heart rate [59,60].
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Figure 1. Schematic of the gut-brain axis: (a) demonstration of bidirectional communication by
the parasympathetic vagus nerve, and some of the neurodegenerative conditions treated by vagal
stimulation; (b) the vagal nerve transports compounds (generated from dietary flavonoids by the
gut microbiome) of therapeutic value in the treatment of neurological disorders. Neurodegenerative
conditions treated successfully by vagal stimulation are also shown (c).



Antioxidants 2023, 12, 663 4 of 47

2. Therapeutic Vagus Nerve Stimulation

The microbiota, gut, and brain bidirectionally communicate via the microbiota-gut-
brain axis [5]. The vagus nerve transports microbiota metabolites through its efferent
fibres to the CNS where a number of responses in neuronal cell populations occur. A
cholinergic anti-inflammatory pathway in the vagus efferants dampens peripheral inflam-
mation; flavonoid metabolites have antioxidant and anti-inflammatory properties and
are bioavailable to neural cells thus positive outcomes can also be expected on brain cell
populations. The vagus nerve of the parasympathetic nervous system oversees a vast array
of crucial bodily functions, including control of mood, immune response, digestion, and
heart rate [4]. It establishes a crucial connection between the brain and the gastrointestinal
tract and sends information about the state of the inner organs to the brain, which aids
in homeostasis of bodily functions. Vagus nerve stimulation is a promising supportive
treatment for refractory depression, posttraumatic stress disorder, and inflammatory bowel
disease, inhibits cytokine production, and positively effects beneficial monoaminergic brain
signaling in psychiatric conditions, such as mood and anxiety [61–63], and also for the
treatment of traumatically injured brain tissues [64–69]. Gut bacteria have beneficial effects
on mood and anxiety through the bioactive factors they produce, which are transported by
the vagus nerve to the brain. The transfer of information between the gut and the brain via
the vagus nerve is a two-way communicative highway with afferent vagal fibers actually
outnumbering efferent fibres to a significant degree [70,71]. Vagus nerve stimulation has
been used to treat epilepsy [6,72,73] and depression [6,72–75], and to improve learning and
memory [76]. Thus positive functional outcomes are achievable when the vagus nerve is
used as a conduit to stimulate brain tissue [77].

Preclinical evidence firmly establishes bidirectional communication between the brain,
gut, and the gut microbiome through at least three nerve communication channels [78].
The vagus nerve has a cholinergic anti-inflammatory pathway that dampens peripheral
inflammation, decreases intestinal permeability, and may also modulate the microbiota cell
populations [5]. A large number of studies highlight potential roles for microbial dysbiosis
as a contributing factor in many chronic disorders [79]. The gut microbiota and brain
communicate through the gut-brain axis [80], when disturbed this may contribute to the
pathophysiology of neurodegenerative disorders [81–83]. Methylation of ingested dietary
flavonoids increases their lipophilic character, facilitating transport by the vagal cholinergic
pathway from the gut to the brain. Flavonoids have anti-inflammatory and antioxidant
properties that inhibit neuroinflammation and improve brain health. Microbiome dysbiosis,
including a low abundance of Faecalibacterium and Bacteroides sp. and decreased production
of butyrate in the gut, may foster inflammation and may contribute to the underlying
pathophysiology of bipolar disorder [84]. A disturbance in the autonomic nervous system
may provoke and maintain gastrointestinal dysbiosis in autism spectrum disorder [85].
Emerging data has identified a link between gut microbiota dysbiosis and neurodegen-
erative disorders, such as PD, AD, and ALS [86]. Neuroinflammation is, therefore, now
being increasingly recognized as a driver of neurodegenerative disease pathology [87,88].
Gut bacteria also have crucial roles to play in the maintenance and regulation of the im-
mune system, thus alterations in gut microbial cell populations may detrimentally affect
neuro-immune interactions, synaptic plasticity, and regulation of skeletal muscle activity.
This opens up the possibility of translational interventional studies in the treatment of
neurodegenerative disorders and the emergence of psychobiotic programmes [89–92].

3. Transporter Proteins in the Afferent Fibres of the Vagus Nerve

Gastrointestinal vagal afferent fibres outnumber efferent fibres in the vagus nerve,
however, these convey sensory signals from the gastrointestinal tract to the brain. Numer-
ous subtypes of gastrointestinal vagal afferents have been identified [93]. Stimulation of
the vagus nerve has been used in the treatment of epilepsy and seizures, but also shows
therapeutic potential in a range of other serious neurodegenerative disorders [4] and has
found application in the treatment of inflammation [94], and also to combat the cytokine
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storm of ARDS in the COVID-19 disease [95]. Vagus nerve stimulation limits cytokine
production and dampens systemic inflammation and inflammation-induced lung tissue
damage [1]. Neurotransmitters are synthesized in the cytoplasm of nerves and by the
gut microbiota and are transported in secretory vesicles in nerves for regulated release
at synaptic membrane interfaces with communicating neural networks (Figure 2) [96].
Neurotransmission depends on the efficient regulation of the transport and release of
chemical transmitter molecules. Neurotransmitters are packaged into specialized secre-
tory vesicles in neurons and neuroendocrine cells, and these are transported by specific
vesicular transporter proteins [97]. The vagus nerve contains transporter proteins that send
amino acids and sugar nutrients to the brain generating satiety responses to hunger [98]
and signals that regulate hunger responses/food intake and the production of gastric and
pancreatic secretions [99]. Relatively little is published, however, on transport systems for
flavonoid or flavonoid metabolites generated in the gut to the brain. Most of the flavonoid
metabolites generated by the gut microbiota are of a similar size and chemical composition
to neurotransmitter compounds and nutrient derived components, and thus may also be
shuttled by these transporter systems in the efferent fibres of the vagus nerve to the brain
(Figure 3). In vitro experiments show that many of the flavonoid and flavonoid metabolites
have antioxidant and anti-inflammatory effects on neurons, stimulate the biogenesis of
mitochondrial components, and have vasodilatory properties beneficial to the brain mi-
crovasculature. Transport of these gut components to the brain may thus be the therapeutic
basis of vagal stimulation and its beneficial properties in the treatment of neurodegener-
ative conditions, and a link between the diet and autism, bipolar and other neurological
disorders [4,51,57,59,80,81,83,84,88,92,100].

Neural transmitters are small bioactive molecules that are carried in synaptic vesicles
in nerves. When a nerve is activated (Figure 2) a number of proteins transport and release
neurotransmitters at the synaptic gap. Figure 3 shows some bioactive flavonoid metabolites
that we propose are transported by nerves and have stimulatory effects when delivered to
neural cell populations in the brain.
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Figure 2. Schematic of neural signal transduction. Depiction of a neuron and its functional com-
ponents (a) and the processes that occurs when a nerve is activated and signal transduction occurs
(b–e). Specific features of the neuron are annotated, including the neural dendrite processes (1) where
signal input occurs, the nucleus (2), which regulates neural activity in the neural cell body or soma
(3). The myelinated sheath (4) covering the axon (5) ensures neural signal transmission efficiency is
maintained. Neural synapses (6) communicate with other neurons in the neural network. Neural
transmitters, such as dopamine (7), are stored in a smart gel matrix within the synaptic vesicle
supplied by a 12 span transmembrane KS-storage and transport proteoglycan, SV-2 (8). The synaptic
vesicle also has a calcium sensing glycoprotein: synaptotagmin (9). When a nerve becomes activated,
the cell membrane becomes depolarized in the soma and a wave of membrane depolarization travels
down the axon to the synapses. An influx of Ca2+ (10) into the nerve cytosol occurs in neuronal
activation; this increase in Ca2+ is detected by synaptotagmin, which mobilises the transport of
synaptic vesicles to the synaptic gap by SV-2 (11), and the synaptic vesicles fuse with the de-polarised
pre-synaptic membrane (12). This fusion process is regulated by synaptotagmin and SNARE complex
(SNAP Receptor) proteins and the neurotransmitters are released into the synaptic gap (14) to be
taken up by neurotransmitter receptors on a communicating neuron in the network and the signal is
successfully transduced. This is an extremely rapid process occurring in ~50–60 milliseconds.
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Figure 3. Neurotransmitters and flavonoid metabolites. A comparison of the structure of neuro-
transmitters (a–f) conveyed by nerves by vesicular transport, as shown in Figure 2. A few selected
flavonoid metabolites generated by the gut microbiome are also shown for comparison (g–k). These
flavonoid metabolites display a range of activities against neurons and cerebrovascular endothe-
lial cells, and have beneficial properties that combat neuroinflammation, are neuroprotective, and
have vasodilatory properties that promote cerebral blood flow in neurological disorders. Some of
these metabolites have also been shown to promote mitochondrial biogenesis, improving neural
bioenergetics and neuronal function in disorders, such as AD and PD, where a cognitive decline has
been observed.

4. Neuroregulatory Properties of Flavonoids

Figure 2 demonstrates the crucial role of Ca2+ entry into neurons in their activation
and transport of neurotransmitters that transduce signals in neural networks. Phenolic
compounds (numbering in excess of 8000 compounds) have long been known to have
medicinal properties. In this review, we concentrated on a sub-category of the phenolics
flavonoids), which have been categorized into six sub-categories (Figure 4a,b). These have
a generic 3 ring structure, as shown in Figure 4c.
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Figure 4. The flavonoids. Classification of the flavonoids, a major sub-category of phenolic com-
pounds (a), showing the diverse modifications (b) that occur on the A, B and C flavone ring struc-
tures (c).
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Some flavones and flavone metabolites have been observed to modulate neural pro-
cesses. Catechin and procyanidin flavan-3-ols are transported by nerves and effect adipose
tissue mediated nerve activation [101]. The flavonoid isoliquiritigenin activates GABAB
receptors, decreasing entry of Ca2+ into rat cerebrocortical nerves through voltage-gated
Ca2+ channels, affecting glutamate transport and release from synaptic vesicles, and the
transduction of neurotransmitters in neural networks [102]. Genistein isoflavone, a tyrosine
kinase inhibitor, reduces Ca2+ influx through T-type CaV3.3 voltage-gated ion channels
affecting nerve activation [103]. Dysfunction of T-type calcium channels is associated with
epilepsy, neuropathic pain, cardiac problems, and major depressive disorders. Molecular
agents that modulate the T channel function may thus be therapeutic. Baicalin amelio-
rates neuropathic pain by suppressing TRPV1 up-regulation and ERK phosphorylation
in DRGs [104] and modulates the dopamine system, thus modulating behavior seen in
attention deficit hyperactivity disorder [105]. The pharmacological properties of baicalin
are associated with the synthesis, vesicular localization, transport, and release of dopamine
from synaptic vesicles. Naringenin has antinociceptive analgesic effects through its ability
to inhibit NaV1.8 voltage-gated sodium channels preventing nerve activation and the gen-
eration of neuropathic pain signals [106]. Green tea EGCG has vasodilatory effects, reduces
blood pressure, and activates zebrafish TRPA1 channels in sensory neurons triggering
CGRP release, a potent vasodilator [107]. Diabetic peripheral neuropathy and neuropathic
pain are major public health issues impacting on quality of life. TRPV1 has a crucial role in
nociceptive transmission of pathological pain. Baicalin is an antioxidant flavonoid whose
analgesic effects on spinal neuropathic pain are apparently mediated through TRPV1 [108].
The excessive release of glutamate critically effects the neuropathology of acute and chronic
brain disorders. Apigenin reduces presynaptic Ca2+ entry mediated by the Cav2.2 (N-
type) and Cav2.1 (P/Q-type) channels, thereby inhibiting glutamate release from the rat
hippocampal nerve terminals [109]. Myricetin, a natural neuroprotective flavonoid, also
inhibits the release of glutamate from nerve terminals (synaptosomes) of the rat cerebral
cortex through effects on Cav2.2 (N-type) and Cav2.1 (P/Q-type) channels by attenuating
voltage-dependent Ca2+ entry and activation of nerves that generate pain responses [110].
Kaempferol-3-rhamnoside and rosmarinic acid also inhibit synaptic glutamate release,
inhibiting nerve activation and generation of pain responses [111,112].

Neuroinflammation has detrimental effects on neurons and contributes to the pathol-
ogy of neurodegeneration. The beneficial antioxidant properties of flavonoids [113,114] is
attributable to their ability to inhibit lipoxygenase (LOX), cyclooxygenase (COX), myeloper-
oxidase (MPO), NADPH oxidase, and xanthine oxidase (XO). Flavonoids also stimulate
free radical scavenging enzymes, such as superoxide dismutase (SOD) and catalase (CAT),
which reduce levels of free radical oxygen species (ROS), including superoxide radical,
hydroxyl radical, and singlet oxygen. This involves conversion of the superoxide ion
into hydrogen peroxide by SOD, and this is converted into water and oxygen by CAT.
The nuclear factor erythroid 2-related factor 2 (Nrf2)/antioxidant response element (ARE)
pathway is an important cell signaling pathway responsible for the maintenance of redox
homeostasis in humans [115,116]. Nrf2 is a master regulatory pleiotropic transcription
factor that controls hundreds of genes in the phase II antioxidant response, controlling a
multitude of cytoprotective genes responsive to oxidative stress and inflammation. Activa-
tion of Nrf2 produces antioxidant, anti-inflammatory, and neuroprotective effects, and is a
critical component in the regulation of oxidative stress and anti-inflammatory responses
in the CNS [117]. Luteolin, apigenin, quercetin, myricetin, rutin, naringenin, epicatechin,
and genistein are all capable of activating the Nrf2/ARE pathway contributing to neuro-
protection and the homeostasis of the CNS [118]. Table 1 illustrates further examples of
flavonoids that also induce Nrf2 expression and its protective effects.

Quercetin occurs in plants as a glycosylated compound called rutin (Figure 5a), how-
ever, when ingested, rutin is converted to the aglycone form (Figure 5b) and modified by
glucuronidation (Figure 5c) or sulfation (Figure 5d).
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Figure 5. The many forms of quercetin. As a representative flavonoid, quercetin occurs as a glycosy-
lated form (rutin) in plant tissues (a), which, when ingested, is converted to the aglycone form (b),
isorhamnetin-3-glucuronide (c), quercetin also undergoes sulfation (d), or glucosidation (e,f), and
glucuronidation (g,h), as shown at specific locations in the flavone A, B, and C rings (i). The C-ring
may undergo cleavages at the positions shown when the flavone is processed by the gut microbiome.
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Table 1. Flavonoids that induce Nrf2 expression.

Compound Flavonoid Class Reference

Quercetin

Flavonol

[119–121]
Myrcetin [122]

Kaempferol [123,124]
Catechin [125]

Gallocatechin [126]

Apigenin

Flavone

[127]
Luteolin [128–130]
Wogonin [131,132]
Chrysin [133,134]
Baicalin [135]

Diadzein
Isoflavone

[135]
Genistein [136–138]

Biochanin A [139]

Hesperidin
Flavonone

[139,140]
Hesperitin [141–143]
Naringenin [144,145]

Pelargonidin

Anthocyanidin

[146]
Cyanidin [147]

Delphinidin [148]
Petunidin [149]

Cardamonin
Chalcone

[150,151]
Xanthohumol [152,153]

Isoliquiritigenin [154]

5. Natural Flavonoids Used in the Treatment of Neurodegenerative Conditions

Traditional Chinese medicine using herbal preparations have been used for centuries
in complementary alternative medical practices [155,156]. Traditional Chinese herbal
preparations are extremely complex mixtures of pharmacological agents often derived
from up to seven different herbs. With the modern analytical techniques now available,
attempts have been made to demystify these preparations to identify specific compounds
and their mechanisms of action and to better understand their operational pharmacologic
networks. The aim is to put these traditional medical practices on a more scientific basis
to determine if they can be applied in Western medical practices. Network pharmacology,
molecular docking, and in vitro cell-based investigations have identified a number of
active components in these herbal preparations that could potentially provide a therapeutic
effect [157–161].

6. Traditional Chinese Medicinal Formulations Used to Treat Alzheimer’s Disease
6.1. LeZhe

The Menispermaceae are small woody flowering climbing shrubs that contain a wide
range of pharmacologically active benzylisoquinoline alkaloids, lignans, flavones, flavonols
and pro-anthocyanidins. Tinospora sinensis is a member of the Menispermaceae family used
in traditional Chinese medicine to treat AD. The formulation used, LeZhe, is a nerve cal-
mative detoxifying antipyretic. Network pharmacology and molecular docking studies
have identified LeZhe’s active compounds and molecular targets. Screening of DrugBank,
Therapeutic Target Database and published AD studies have been used to identify phar-
macological agents of interest. Kyoto Encyclopedia of Genes and Genomes (KEGG) target
pathway enrichment analyses using Database for Annotation, and Visualization and In-
tegrated Discovery (DAVID) have been undertaken and the neuroprotective properties
of T. sinensis bioactive compounds have been evaluated in PC12 primary hippocampal
neural cultures where injury had been induced using Aβ25-35. A total of 105 T. sinensis com-
pounds and 38 molecular target proteins were identified. The main bioactive compounds
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of LeZhe include alkaloids such as berberine, a tetracyclic isoquinoline alkaloid derived
from tyrosine, the aromatic amide aurantiomide, a quinazoline alkaloid; coumaroyl tyra-
mine, hydroxycinnamic acid; trans-syringin, a β-D-glucoside derivative; and 3-dimethyl
phillyrin phenylpropanoids. Phillyrin is a lignan produced by the endophytic fungus
Paraconiothyrium sp. associated with the Chinese medicinal plant Forsythia suspensa with
reported anti-pyretic detoxifier, antioxidant, anti-infective, anti-inflammatory, and antiviral
properties [162] (Figure 6a–f). Many of these compounds can penetrate the blood brain
barrier. Molecular targets of T. sinensis herbal compounds include Protein kinase B (AKT),
Phosphoinositide 3-kinase (PI3K), Tyrosine-protein kinase JAK1 (JAK1), mammalian tar-
get of rapamycin (mTOR), TNF-α, Neuronal NOS, and the cholinergic function-related
proteins, α4-Nicotinic acetylcholine receptor (α4 nAChR) and Muscarinic acetylcholine
receptor M1 (Muscarinic M1). Inflammation and cholinergic dysfunction are targeted
through PI3K/Akt, neurotrophic factor (NTF), Hypoxia-inducible factor 1 (HIF-1), mTOR,
TNF and insulin resistance (IR) signalling pathways [160]. Significant improvement in
PC12 cell survival and inhibition of apoptosis of Aβ25-35 injured primary hippocampal
neuron cell cultures demonstrates the therapeutic potential of T. sinensis preparations in AD
through a complex multi-compound-multi-target regulatory network however details still
need to be unraveled of the mode of action of specific bioactive compounds [161]. Several
bioactive flavonoid components have been identified in LeZhe preparations (Figure 6a–f)
Berberine has anti-diabetic, anti-inflammatory properties, lowers blood sugar levels, causes
weight loss and lowers blood pressure [163]. Berberine protects against TNF α induced
inflammation in adipocytes [164] and is neuroprotective suppressing NF-κB-mediated
neuroinflammation and pyroptosis [165]. Aurantiomides A-C isolated from the sponge-
derived fungus Penicillium aurantiogriseum await detailed characterisation [166]. Syringin is
a natural anti-inflammatory glucoside that attenuates NO production in LPS-stimulated
RAW264.7 cells and has anti-oxidant and anti-cancer properties [167]. Phillyrin is a hetero-
cyclic lignan glycoside flavonoid that attenuates TNF α-mediated insulin resistance and
accelerated lipolysis by adipocytes [168,169].
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Figure 6. Examples of some of the pharmacologically active complex polyphenolic compounds that
have been identified in LeZhe Chinese complimentary medicine herbal preparations (a–f) and Shuang-
Huang-Lian herbal preparations (g–i) used to treat neurodegenerative conditions and respiratory
infections.

6.2. Shuang-Huang-Lian Herbal Preparations

Shuang-Huang-Lian is listed in the Chinese pharmacopeia for the treatment of respi-
ratory infections and has purported antiviral SARS-CoV-2 activity [170]. Baicalin and its
aglycone form, baicalein, are two ingredients of Shuang-Huang-Lian herbal preparations
(Figure 6g,h), and have been identified as BBB penetrating noncovalent, nonpeptidomimetic
inhibitors of SARS-CoV-2. 3CLpro and may also be beneficial in the treatment of attention
deficit hyperactivity disorder. Baicilin and baicalein are positive allosteric modulators of
the benzodiazepine/non-benzodiazepine sites of the GABAA receptor, [171,172] providing
anxiolytic [173–175] and anticonvulsant properties [176–178] and are neuroprotective prolyl
endopeptidase inhibitors [179]. Prolyl endopeptidase/oligopeptidase (PEO) is implicated
in a number of neurological disorders of the CNS, such as amnesia and stages of depression,
and has roles in lithium sensitive signal transduction and depression [180,181]. PEO is im-
plicated in neurodegeneration and neuroinflammation, and is considered a drug target for
the enhancement of memory in dementia [182]. Inhibition of PEO reduces α-synuclein ag-
gregation in PD [183]. increases α-synuclein degradation by neural cells [184]. and reduces
α-synuclein toxicity [181]. In silico approaches inspired by the natural flavonoid baicilin,
baicalein, and wogonin PEO inhibitors, are being used to produce synthetic PEO inhibitors
of improved efficacy to reduce α-synuclein expression [185] (Figure 6i). A deficiency of
PEO in mice reduces anxiety-like behavior and improves cognitive function [186], thus this
approach is likely to be successful in the treatment of human neurological disorders. Such
PEO inhibitors are of a small molecular weight similar to that of the neurotransmitters
that are known to be transported by the vesicular transport system of nerves and are also
expected to be transported by a similar mechanism.

6.3. Chaihu-Shugan-San

Chaihu-Shugan-San (CSS) is another well-known herbal antidepressant Chinese
medicine that may also be beneficial in the treatment of cognitive dysfunction in AD [159].
Active compounds in CSS have been screened using the Traditional Chinese Medicine Sys-
tems Pharmacology database. Compound-related targets retrieved using the SwissTarget
Prediction database identified major depressive disorder (MDD)-related targets using the
DisGeNET Therapeutic Target and DrugBank databases. The identification of the active
compounds in CSS affecting MDD targets has permitted the construction of a MDD target
network in chronic unpredictable mild stress (CUMS) mice. Molecular docking established
the binding affinities of these bioactive CSS compounds. Multi-target mechanisms of action
of CSS compounds in network pharmacology identified a total of 152 active compounds,
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520 predicted biological and 160 AD-specific targets. Sixty key targets providing bene-
ficial effect in AD treatment were nuclear or cytoplasmic proteins with regulatory roles
in PI3K-Akt, MAPK, and HIF signaling pathways in GO function and KEGG pathway
enrichment analysis. Pre-treatment of PC12 neural cell cultures with CSS reduced Aβ-
induced neural cell death and apoptosis. Increased phosphorylation of Akt and decreased
pGSK3β/GSK3β levels in the hippocampus of CUMS mice established effects on PI3K/Akt
signalling, and improved depressive-like behavior and neurogenesis of CSS in CUMS mice.
Flavonoids identified in CSS include quercetin, luteolin and kaempferol; these warrant
further examination in the treatment of AD.

6.4. Qingfei Paidu and Ma Xing Shi Gan

Qingfei Paidu and Ma Xing Shi Gan antiviral decoctions used to treat COVID-19
and AD in traditional Chinese medicine are also of considerable complexity. Molecular
networking of mass spectrometry data has identified a number of bio-active flavone and
chalcones present in these formulations [187] (Figure 7). Hesperidin, glycyrrhizic acid,
baicalin, baicalein, naringin, phillyrin, quercetin, luteolin, kaempferol, licochalcone B, and
mangiferin have all been identified in these formulations. Further studies are required
to fully decipher all therapeutic bioactive component combinations and their interactions
in the pharmacological networks. This initial study, however, made significant inroads
into better understanding the complex therapeutic basis of these traditional Chinese herbal
medications, but further work is required to fully understand how these components
provide their therapeutic effect. 
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Figure 7. Examples of the varied ring structures of some of the flavonoids covered in this review.
Structures of bioactive phenolic compounds identified in Chaihu-Shugan-San, Qingfei Paidu, and
Ma Xing Shi Gan traditional Chinese complimentary medical formulations. Identification of phillyrin
glycoside, quercetin, glycyrrhizic acid, luteolin, baicalin, baicalein, hesperidin, hesperitin, naringin,
naringenin mangiferin, and licochalcone A (a–l) as bioactive components of such herbal formulations.

7. Complex Heterocyclic Polyphenolic Precursor Compounds That Are Processed by
the Gut Microbiome Releasing Bioactive Metabolites
7.1. Eligatannins

Ellagitannins (ETs) are polyphenol compounds that are abundant in some fruits (black-
berries, raspberries, strawberries), nuts (walnuts and almonds), and pomegranatesm,
and have been used in complimentary medicine for centuries. ETs represent one of the
most diverse groups of plant phenolics encompassing over 1000 natural bioactive com-
pounds [188,189]. The gut microbiome converts ETs to ellagic acid (EA). EA has a variety of
health benefits related to the protection it provides from oxidative stress [20,188,190–192].
EA is reported to have a low water solubility and bioavailability, however, when it is
converted to urolithin A (UA) by the gut microbiome, UA retains the biological activities of
EA and has high solubility and bioavailability (Figure 8). Urolithins are biologically active
compounds exhibiting strong antioxidant effects [193–196] and anti-inflammatory [196,197]
and neuroprotective properties [100,198]. Punicalagin, chebulinic acid, and chebulagic
acid are complex polyphenolic ellagitannins that occur in pomegranate and are degraded
to form EA by the gut microbiome (Figure 8). EA is further degraded to the urolithins;
these are not synthesised or generated by mammalian cells and have antioxidant and
anti-inflammatory properties [20,100,190–198]. Panduratin A is an antioxidant polycyclic
chalcone phenolic that has also been identified in pomegranate and in the Thai medicinal
plant Boesenbergia rotunda that has reported antiviral properties against SARS-CoV-2 [199].
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Figure 8. Generation of Urolithins: complex heterocyclic elligatannin compounds, such as chebulagic
acid (a), chebulinic acid (b), and punicalagin (c) occurring in plant foods are converted to ellagic acid
(d) and a number of urolithin metabolites by the gut microbiome. Urolithin A (e) and B (f) are active
in neural tissues.

EA is a candidate drug for the treatment of traumatic brain injury and neurode-
generative disorders, due to its neuroprotective properties mediated by inhibition of the
PI3K/Akt/mTOR and Akt/IKK/NFκB signaling pathways, reducing neuroinflammation
and enhancing autophagy [20,200–203]. The urolithins may be the bioactive metabolites that
provide these beneficial therapeutic properties for EA [100,204–206]. EA can modulate the
expression of the proinflammatory cytokines IL-1β,TNF-α, and IL-17 [20,193,196,197,206].
EA down regulates IL and lipid peroxidation, improves cognitive functions, and is pro-
vides neuroprotective benefits by scavenging free radicals and regulating antioxidant
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enzymes [100,198]. Urolithin species have neuroprotective properties through their an-
tioxidant properties and ability to inhibit Aβ25-35-induced neurotoxicity and monoamine
oxidase [20,201,207,208].

7.2. The Urolithins

Urolithin A is a benzocoumarin metabolite produced by the gut microbiome by
digestion of ellagic acid and ellagitannins found in dietary pomegranates, strawberries,
raspberries, and walnuts. Urolithin A does not occur freely in dietary foods, nor is it
produced by mammalian enzyme systems [33,195]. Urolithin A is a natural prebiotic that
promotes mitophagy, mitochondrial biogenesis, and metabolic function, impacting on
muscle health in preclinical models of aging and in the elderly and middle-aged. Urolithin
A improves mitochondrial function in the articular chondrocytes of diarthrodial joints,
reducing disease progression in a mouse OA model, and inhibits cartilage degeneration,
synovial inflammation, and the pain associated with this condition [36].

7.3. Hydroxybenzoic Acids

Protocatechuic acid has potent anti-inflammatory properties [209] and activates the
master transcription factor, nuclear factor erythroid 2-related factor 2 (Nrf2), [210] through
Jun kinase (JNK) modification of the Nrf2 signalling system [210]. Nrf2 binds to antiox-
idant response elements in the promoter regions of a large number of genes encoding
cytoprotective proteins [211]. Activation of Nrf2 results in the induction of a large range of
phase II detoxifying antioxidant enzyme systems [212] and also inhibits the NLR family
pyrin domain containing 3 (NLRP3) inflammasome [213]. NLRP3 operates as part of the
innate immune response as a pattern recognition receptor recognizing pathogen associated
molecular patterns (PAMPs). Inflammasomes are multiprotein complexes in the innate
immune system that induce inflammation in response to pathogenic organisms and stress.
Activation of proinflammatory caspases, such as caspase-1, leads to an upregulation in
proinflammatory cytokine levels, such as IL-1, -18, and -33, which promote neuroinflam-
mation and pathological changes in brain tissues [214]. The NLRP3 inflammasome has
important roles in the pathology of neurodegeneration and is a logical therapeutic target to
alleviate the damaging aspects of neuroinflammation. Protocatechuic acid has significant
potential in the inhibition of the NLRP3 inflammasome. Urolithin A is reported to improve
mitochondrial and neuronal cell health [36,200,215–217].

8. Vasodilatory Flavonoids

Flavonoids exert positive beneficial effects on the cardiovascular system through their
vasodilatory properties and ability to regulate apoptotic processes in the endothelium [218].
Hesperidin has been used for decades to treat vascular insufficiency in tissues [219].

The potential use of flavonoids and flavonoid metabolites to improve cerebrovascu-
lar circulation could prove to be useful to improve the treatment of neurodegenerative
conditions.

Quercetin displays useful cardiovascular properties, however, its low bioavailability
may limit its therapeutic application. The bioavailability of quercetin in the systemic
circulation is low, with maximum plasma concentrations rarely exceeding 1 µM after
consumption of 80–100 mg quercetin equivalents [220,221]. However when non-absorbed
quercetin reaches the colon, it is subjected to further processing by the gut microbiome [218].
This includes C-ring cleavage, dihydroxylation, and decarboxylation, generating quercetin
metabolites, such as 3,3-dihydroxyphenyl propionic acid and 3,4-dihydroxyphenyl acetic
acid, which display vasodilatory properties in animal models and decrease arterial blood
pressure [222,223].

EGCG catechins and epicatechins have beneficial effects on vascular function [224],
cardioprotective effects through the reduction of systolic and diastolic blood pressure, and
positive effects on the cerebrovascular circulation, which improves therapeutic treatment
of neurodegenerative disorders [225,226]. Studies have also shown that flavonoid metabo-
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lites can have different biological and antioxidant properties and efficacy than the parent
flavonoid. Modifications of the ingested flavonoid by methylation, glucuronidation, or
sulphation also influences the biological activity of the flavonoid and has significant effects
on their antioxidant and anti-inflammatory properties, and how they affect expression of
cell-adhesive proteins [227]. NF-κB activation is the main transcription factor mediating
TNFα-induced expression of inflammatory genes [228]. Pharmacological inhibitors of
NF-κB activity, however, may also act through the stimulation of the Nrf2 pathway [229].
(-)-Epicatechin (EC) is metabolized by microbiota in the large intestine producing a major
metabolite 5-(3′,4′-dihydroxyphenyl)-γ-valerolactone (3,4-diHPV). EC and 3,4-diHPV both
activate Nrf2-mediated gene expression, however, 3,4-diHPV shows higher potency in the
upregulation of Nrf2 gene expression than EC. Conversion of EC to 3,4-diHPV by the gut
microbiota improves the overall health-promoting effects of EC consumption due to this
ability to selectively promote Nrf2 pathway activation [230].

The Anthocyanidins

Anthocyanins are antioxidant plant flavonoids with reported beneficial health-promoting
effects in a number of chronic diseases [231]. Studies investigating anthocyanin absorption
by Caco-2 intestinal cells report very low absorption of these compounds. The gut micro-
biome, however, converts the anthocyanins to protocatechuic acid and phlorglucinaldehyde,
and these may be the pharmacologic bioforms that exert the purported therapeutic effects
of the anthocyanins [232] (Figure 9).

Alzheimer’s disease (AD) is a serious and progressive neurodegenerative disorder of
the elderly. Genetic, environmental, and lifestyle factors are associated with the pathogene-
sis of AD, leading to deleterious effects on the brain’s neuronal cell population manifested
as cognitive dysfunctions, behavioural disability, and psychological impairment. Accumu-
lation of amyloid beta (Aβ) peptides and neurofibrillary tangles in AD-affected brains are
hallmarks of this disease. Several reports indicate flavonoids improve cognitive functions,
inhibit or delay the formation of pathological amyloid beta aggregates and neurofibrillary
tangles, thus improving neural function.

Current research has uncovered that dietary use of flavonoid-rich food sources es-
sentially increases intellectual abilities and postpones or hinders the senescence cycle and
related neurodegenerative problems, including AD [233]. During AD pathogenesis, mul-
tiple signalling pathways are involved, and to target a single pathway may relieve the
symptoms but not provide a permanent cure [233,234]. Flavonoids scavenge free radical
species (ROS), however, upon reaction with ROS, the antioxidant capacity of flavonoids
can become compromised. Recent evidence for at least some flavonoids shows that the
oxidation of reactive phenolic residues can in fact enhance their antioxidant properties.
This antioxidant activity arises from generation of metabolites that activate the Nrf2-Keap1
pathway [233,234], upregulating the cell’s endogenous antioxidant capacity, by the preven-
tion of activation of prooxidant and proinflammatory NF-κB pathways [235]. Flavonoid
metabolites, such as protocatechuic acid [236,237] and urolithin A [33,36,195] generated by
the gut microbiome, also have potent direct antioxidant activities or provide mitochondrial
protection by promoting mitochondrial biogenesis and metabolic activity, enhancing neural
cell activity in the CNS in neurodegenerative conditions [203,238].



Antioxidants 2023, 12, 663 19 of 47
Antioxidants 2022, 11, x FOR PEER REVIEW 20 of 48 
 

 
Figure 9. Multicyclic structural forms of the anthocyanins and their bioactive protocatechuic acid 
and phlorglucinaldehyde metabolites generated by the gut microbiota. Cyanidin-3-O-glucosied (a); 
Delphinidin-3-O-glucosied (b); Malvidin-3-O-glucosied (c); Pelargonidin-3-O-glucosied (d); 
protocatechuic acid (e); Phloroglucinaldehyde (f). 

Alzheimer’s disease (AD) is a serious and progressive neurodegenerative disorder of 
the elderly. Genetic, environmental, and lifestyle factors are associated with the 
pathogenesis of AD, leading to deleterious effects on the brain’s neuronal cell population 
manifested as cognitive dysfunctions, behavioural disability, and psychological 
impairment. Accumulation of amyloid beta (Aβ) peptides and neurofibrillary tangles in 
AD-affected brains are hallmarks of this disease. Several reports indicate flavonoids 
improve cognitive functions, inhibit or delay the formation of pathological amyloid beta 
aggregates and neurofibrillary tangles, thus improving neural function. 

Current research has uncovered that dietary use of flavonoid-rich food sources 
essentially increases intellectual abilities and postpones or hinders the senescence cycle 
and related neurodegenerative problems, including AD [233]. During AD pathogenesis, 
multiple signalling pathways are involved, and to target a single pathway may relieve the 

Figure 9. Multicyclic structural forms of the anthocyanins and their bioactive protocatechuic acid
and phlorglucinaldehyde metabolites generated by the gut microbiota. Cyanidin-3-O-glucosied (a);
Delphinidin-3-O-glucosied (b); Malvidin-3-O-glucosied (c); Pelargonidin-3-O-glucosied (d); protocat-
echuic acid (e); Phloroglucinaldehyde (f).

9. Natural Flavonoids and Multifunctional Analog Derivatives Used in Western
Medicine to Treat Neurodegenerative Conditions
9.1. Hesperidin/Hesperitin

Hesperidin’s antioxidant, anti-inflammatory, and neuroprotective properties are useful
in the treatment of neurodegenerative conditions [239] and have inspired the development
of therapeutic multifunctional flavone and chalcone analogs of improved efficacy. Hes-
peritin also has considerable potential in the treatment of neurological disorders and has
inspired the development of multifunctional agents of improved efficacy [26,233,234]. The
central position of chalcones in medicinal chemistry, and its amenability to chemical mod-
ification, facilitates its use as a template for the development of multifunctional analog
chalcone/flavone forms of improved efficacy in a number of depressive neurodegenera-
tive disorders, including PD and AD. A multi-tier flavone screening protocol employing
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molecular docking for BACE1 inhibitory, and antiamyloidogenic and antioxidant activities,
demonstrates hesperidin as a multi-potent phytochemical in AD therapeutics [240,241].

Hesperidin is a high affinity BACE1 inhibitor providing complete inhibition of amy-
loid fibril formation, moderate ABTS(+) radical scavenging, and strong hydroxyl radical
scavenging activity [240]. Inhibition of BACE1 and Aβ aggregation occurs by binding
close to the catalytic aspartate dyad-constraining BACE1, precluding APP recognition and
inhibiting amyloid fibril formation, Aβ25-35 induced ROS generation, and mitochondrial
dysfunction [242]. Mitochondrial dysfunction and oxidative stress both induce pathologi-
cal neurodegenerative changes contributing to the development of AD [242]. Hesperidin
inhibits Aβ-induced cognitive dysfunction, oxidative damage, and mitochondrial dys-
function in mice, reduces learning and memory deficits, and improves locomotor activity.
Increased phosphorylation of GSK-3β by hesperidin, reduced mitochondrial dysfunction,
and increased antioxidative defence improve cognitive function in the APPswe/PS1dE9
transgenic mouse model of AD [242]. Hesperidin also inhibits the development of neu-
rodegenerative disease by elevating expression of neural growth factors and endogenous
antioxidant defence, reducing the impact of neuroinflammatory and apoptotic pathways.
A limited number of human clinical trials have shown that hesperidin-enriched dietary
supplements significantly improved cerebral blood flow, cognition, and memory perfor-
mance [243]. Cerebral ischaemic injury and degenerative pathology in AD are linked,
hesperidin downregulates Bcl-2 and Akt/PI3K, protecting against Aβ25-35-induced apop-
totic neurotoxic effects [243]. Oxidative stress and inflammation have pivotal roles in the
pathophysiology of AD and are attenuated by hesperidin in APP/PS1 mice, resulting in
a reduction in ROS, LPO, and increased activity of HO-1, SOD, catalase, and GSH. This
inhibits neuroinflammation by decreasing TNF-α, C-reactive protein, MCP-1 levels, and
NF-κB activity [244]. Phosphorylation of Akt and GSK-3β are decreased by hesperidin
and RAGE expression is inhibited, while the enhanced phosphorylation of IκBα and the
nuclear translocation of NF-κB/p65 in APP/PS1 mice evidences neuroprotective properties
by suppressing neuroinflammation [245].

9.2. Kaempferol and Luteolin

Plant secondary metabolite inhibitors that target monoamine oxidases may be useful
in the treatment of depressive neurodegenerative disorders such as PD and AD [246].
Kaempferol and luteolin are selective human MAO-A inhibitors [247,248].

10. The Potential of Flavonoids in Tissue Repair Processes in a Biodiverse Range of
Diseases in Linked Organ Systems

Literally hundreds of in vitro studies have demonstrated the antioxidant and anti-
inflammatory tissue protective properties of flavonoids. A number of flavonoids have
also been shown to have neuroprotective and neuroregenerative properties. Preclinical
studies in rodent, pig, and monkey models of AD, PD, HD, and ALS [34,249–255] have also
demonstrated that flavonoids have properties that counter neuroinflammation, prevent the
neurotoxic effects of pathological protein aggregates of amyloid and hyperphosphorylated
tau protein, free radical generation from peroxidation of lipids, and that brain tissues are
rich in phospholipids that are susceptible to oxygen radical release during neuroinflam-
mation. Some flavonoids act as monoamine oxidase inhibitors, combat apoptosis, are neu-
roprotective, promote neurogenesis and memory, and reduce cognitive decline [256–267].
Examination of the clinical trials that have been conducted on flavonoids demonstrates
their diverse areas of action and therapeutic potential.

Despite their low bioavailability, positive responses have nevertheless been observed
with several flavonoids in many clinical trials indicating their therapeutic potential.



Antioxidants 2023, 12, 663 21 of 47

11. Flavonoid Clinical Trials
11.1. Hesperidin/Hesperitin Trials

Hesperidin has antioxidant tissue protective properties [268] and may improve cere-
brovascular circulation, cognitive function, and the clinical manifestations associated with
ocular disorders [269]. Hesperidin can improve vascular health and treat hypertension,
improves cardiovascular function, has tissue protective properties in type 2 diabetes [270],
and may be useful in the control of obesity, acute hemorrhoidal disease [271], muscle
metabolism [272,273], and has skin antiaging properties [274].

Hesperidin, alone or in combination with other citrus flavonoids, such as diosmin,
has been used to treat vascular defects, such as hemorrhoids, varicose veins, and poor
circulation (venous stasis). Preclinical studies have also demonstrated its beneficial effects
in the treatment of neurodegenerative disorders [275]. A review of preclinical trial data
showed the beneficial neuropharmacological potential of hesperidin, including anticonvul-
sant, antidepressant, antioxidant, anti-inflammatory, memory, and locomotor enhancing
activities [275].

11.2. Epigallocatechin Gallate Clinical Trials

A significant number of clinical trials have been conducted on the EGCG polyphenolic
flavonoid component of green tea. An examination of a selection of these trials [265,276–285]
amply demonstrate the diverse biological properties of EGCG and its potential thera-
peutic applications. EGCG can potentially improve cognition in children with Down
syndrome [276]. EGCG prevents skin dermatitis in skin cancer patients receiving radio-
therapy [277], and topical application of EGCG improves the treatment of vitilago [278].
EGCG improves surgical skin scarring reducing mast cell numbers, improving blood flow,
angiogenesis and the elastin content of skin samples (ISRCTN70155584) [282]. In an in-
ternational standard randomized controlled trial (registration number ISRCTN 18643079),
EGCG improved scar repair, scar thickness, hydration, and elasticity [280]. EGCG acutely
enhances muscle microvascular blood flow in healthy young adults [281]. Combination
therapy of EGCG with hesperidin prevents obesity [282]. EGCG supplementation improves
blood pressure, lipid profiles, plasma atherogenic index, and oxidative status in type 2
diabetes [283] when used in a controlled clinical trial on subjects receiving a high fat diet
improved lipid profiles. EGCG has been described as a potent natural inhibitor of fatty acid
synthase [284]. EGCG shows promise in an animal model of AD in the regulation of α-, β-,
γ-secretase activity, inhibiting tau phosphorylation, has antioxidative, anti-inflammatory,
antiapoptotic activity, and inhibits AChE activity, all contributing to EGCG’s neuropro-
tective properties [265]. A double-blind placebo-controlled phase I clinical trial of the
cognitive effect of EGCG on Fragile X syndrome (TESXF; NCT01855971) also showed
improved memory and cognition [285].

The gut microbiome generates metabolites from EGCG that improve cerebrovascular
function and have therapeutic utility in the treatment of neurodegenerative disorders.

Epicatechin is known to improve cognitive functions, lowering the risk of AD or
stroke, however, the biologically active molecular forms of epicatechin that are responsi-
ble are poorly understood. γ-Valerolactone metabolites of EGCG are biologically active
and can simultaneously modulate the expression of protein-coding and non-coding genes
to effect cellular regulation, effecting cell adhesion, cytoskeleton organization, focal ad-
hesion, cell signaling pathways, regulation of endothelial cell permeability, and their
interactions with immune cells [225]. Two major EGCG metabolites generated by the gut
microbiome and detected in plasma are 5-(4′-hydroxyphenyl)-γ-valerolactone-3′-sulfate
and 5-(4′-hydroxyphenyl)-γ-valerolactone-3′-O-glucuronide [286]. γ-valerolactones have
high bioavailability and anti-inflammatory properties, decrease blood pressure [287], and
improve cerebrovascular blood flow, improving cognitive impairment in neurological dis-
orders [288]. Cerebrovascular dysfunction can accelerate brain atrophy with ageing, reduce
cognitive capability, and lead to an increased risk of stroke and neurodegenerative diseases,
such as AD and dementia. Flavonoids, including EGCG, have been shown in animal
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models [286,289,290] to maintain neurocognitive function in aging rats, decrease the risk of
development of AD and stroke in humans, and exert beneficial effects on cerebrovascular
blood flow in dementia [291–293].

11.3. Anthocyanin Clinical Trials

A randomised placebo-controlled trial of the effect of purified anthocyanins on cog-
nition in individuals at increased risk for dementia has been undertaken [294]. A phase
II clinical trial (ClinicalTrials.gov, NCT0341903) also assessed intervention strategies to
prevent or delay the onset of dementia, and a further phase III trial of anthocyanins is
also planned [295]. A trial has also examined the effect of dietary anthocyanins on en-
dothelial function and arterial stiffness in individuals of excess body weight [296]. The
consumption of anthocyanin is reported to improve memory in older adults with mild cog-
nitive impairment [297,298]. The effects of anthocyanins on inflammatory and metabolic
responses in a high-fat diet with cyanidin and delphinidin reported to exert beneficial
effects in unhealthy diets [299]. Cyanadins were also reported to improve lipid profiles
and lowered systemic inflammation in subjects with cardiovascular risk factors (ClinicalTri-
als.gov, NCT number: NCT04084847) [300]. The effects of anthocyanin supplementation
on platelet function in subjects with dyslipidemia are shown to attenuate platelet function
dyslipidemia [301]. The beneficial effects of berry anthocyanin consumption on cognitive
performance, vascular function, and cardiometabolic risk markers uncovered in clinical
trials has recently been reviewed [302]. A randomized controlled trial of consumption of
tropical fruits rich in anthocyanins has also shown improvement in cognitive function, learn-
ing, memory, mental acuity, flexibility, and visual-motor skills in middle-aged women [303].
A clinical trial of anthocyanins has been shown to decrease concentrations of TNF-α in
older adults with mild cognitive impairment (Australian New Zealand Clinical Trials Reg-
istry: ACTRN12618001184268) [304]. A cross-over, randomized, double-blind clinical trial
(Australian New Zealand Clinical Trials Registry, identifier no. ACTRN12620000437965)
showed anthocyanins attenuated vascular and inflammatory responses in overweight older
adults [305].

11.4. Quercetin Clinical Trials

Quercetin exhibits many beneficial properties in cell and tissue protection in disease
processes and optimal tissue function. A significant number of clinical trials have been
undertaken examining the therapeutic efficacy of quercetin. These include potential roles
in the treatment of cognitive function and cerebral blood flow [306] and modulation of
the progression of AD [307] and CNS viral infection [308]. The efficacy of quercetin
in muscle physiology has been evaluated [309] and its roles in the modulation of IGF-
I and IGF-II levels following muscle damage [310]. Quercetin antioxidant effects have
been examined in metabolic syndrome [311], and its efficacy in the treatment of blood
pressure and endothelial dysfunction and regulation of lipid profiles and inflammatory
biomarkers in metabolic syndrome [312,313]. A meta-analysis has been conducted on
randomised controlled human trials assessing the impact of quercetin on systemic levels
of inflammation [314]. Quercetin has been used to target IL-1β and suppress apoptosis
in vascular endothelial cells in the treatment of atherosclerosis [315,316], in the treatment
of cardiovascular disease [317], and in inflammatory processes effecting quality of life
in post-myocardial infarction [318]. Quercetin has also been examined in inflammatory
processes in polycystic ovary syndrome [319], combination therapies in the treatment of
endometriosis [320], and in antiviral applications in COVID-19 [321]. Quercetin has been
examined in combination therapy with green tea polyphenols in the treatment of prostate
cancer [322], and the safety of quercetin supplementation assessed in the treatment of
chronic obstructive pulmonary disease [323].
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12. Bioactive Quercetin Metabolites

The gut microbiome members Escherichia coli, Streptococcus lutetiensis, Lactobacillus
acidophilus, Weissella confusa, Enterococcus gilvus, Clostridium perfringens and Bacteroides
fragilis have all been shown to degrade quercetin into a number of metabolites with C.
perfringens and B. fragilis having the strongest degradative capability in vitro [324]. Peng
et al. also demonstrated the presence of 3,4-dihydroxyphenylacetic acid production by C.
perfringens and B. fragilis demonstrating their quercetin degradative capacity [325]. Fecal
gut bacteria also degrade rutin as a substrate in-vitro releasing 3,4-dihydroxyphenylacetic
acid as a metabolite [326].

Quercetin metabolites produced by C perfringens and B fragilis display a strong statisti-
cally significant inhibitory effect on HCT-116 human colorectal carcinoma cells. Weissella
confusa produces quercetin metabolites with strong cytostatic tumor inhibitory activity
over the growth of both A549 human lung carcinoma cells and HeLa cells comparable to
or stronger than the tumor inhibitory activity displayed by intact quercetin but are more
readily bio-available [327]. Eubacterium ramulus isolated from human feces is a strictly
anaerobic bacterium of the gastrointestinal tract. E. ramulus cleaves the ring system of
several flavonols and flavones giving rise to the corresponding hydroxyphenylacetic and
hydroxyphenylpropionic acids, respectively, as well as acetate and butyrate. E ramulus
generates 3,4-dihydroxyphenyl acetic acid from the biotransformation of quercetin in vitro
and in vivo [328].

Neurodegeneration induced by the pesticide rotenone can be countered by quercetin
in an animal model of PD [329,330], and in a transgenic model of AD [331], it reduced
the neurotoxic effects of β-amyloidosis and decreased tauopathy in the hippocampus
and amygdala, improving cognitive functional recovery. Quercetin is a multifunctional
therapeutic in the treatment of neurodegenerative disorders [12,329,330,332]. Biocon-
version of quercetin by gut bacteria generates bioactive quercetin metabolites, such as
3,4-dihydroxyphenylacetic acid and protocatechuic acid [333]. Protocatechuic acid is also
a major metabolite of complex polyphenols, such as the anthocyanins and proantho-
cyanins [333–336]. Polyphenolic metabolites that also arise during flavonoid metabolism,
such as 3,4-dihydroxyphenylacetic acid, can positively influence beneficial gut bacterial
populations, such as Bifidobacterium spp., Lactobacillus spp. and Bacteroides spp., and inhibit
colonization by the pathogenic bacteria Fusobacterium varium, Bilophila, and Enterobacteri-
aceae, thus promoting gut health [334] and enhancing the expression of several phase II
drug-metabolizing enzymes that lower oxidative species in tissues.

13. Catechin Metabolites

Human phenyl-γ-valerolactone is a major metabolite of flavan-3-ols produced by gut
bacteria. Phenyl-γ-valerolactone has neuroprotective properties and inhibits neurotoxic
protein aggregate deposition, such as amyloid and tau in brain tissues [337], and promotes
memory retention, preventing cognitive decline in an AD mouse model [338]. Phenyl-γ-
valerolactone also improves endothelial cell function and cerebral blood flow [339–341].
Cerebral blood vessels are lined with endothelial cells and these form the blood–brain
barrier (BBB). Endothelial dysfunction constitutes a crucial event in the pathophysiology
of neurodegenerative disorders and cognitive impairment. Neuroinflammation can lead
to neurodegeneration, endothelial cell dysfunction, defective cerebral blood flow, and
deleterious effects on the permeability of the BBB. Phenyl-γ-valerolactone penetrates the
BBB [342] and has functional attributes akin to other catechin catabolites that counter many
of the earlier mentioned deleterious effects on brain tissues. Genomic and proteomic studies
show that catechin metabolites have multimodal properties, modulating cellular pathways
affecting cell adhesion, cytoskeletal organization, focal adhesion, endothelial permeability,
and interaction with immune cells [225,226,343].

Flavonoids have therapeutic properties through their antioxidant and anti-inflammatory
properties demonstrated in vitro. Some of the flavonoids can penetrate the blood–brain
barrier from the systemic circulation to enter the brain directly, however, in general the
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bioavailability of intact flavonoids is limited due to poor absorption [29,344–349]. However,
fortuitous generation of flavonoid metabolites by gut microbes that retain antioxidant and
anti-inflammatory activity also needs to be considered in the overall therapeutic utility of
these compounds [18,341,350–354]. Of the flavonoids, the isoflavones are the most bioavail-
able, however, anthocyanins and galloylated catechins are very poorly absorbed but can be
converted into bioactive metabolites with therapeutic potential by gut microbes [345–347].
Gut microbes thus have important roles to play in the transformation and utilization of
natural dietary flavonoids through the diverse enzyme systems that process these com-
ponents in the gut [351,353,354]. Flavonoids generally cannot be metabolized effectively
by human digestive enzyme systems but they can be transformed by enzymes produced
by gut microorganisms into bioactive metabolites that can be transported by the gut-brain
axis, or they can enter the systemic circulation from the gut and be transported to the brain
where they more effectively penetrate the blood–brain barrier and thus have improved
bioavailability and therapeutic utility [29,351,353,354]. Flavonoid metabolites that retain
or exceed the antioxidant and anti-inflammatory capacity of the intact flavonoid indicate
these have potent therapeutic potential. Furthermore, some flavonoid metabolites display
biological activities not evident in the native flavonoid, which can be of therapeutic utility
in the treatment of pathological neurodegenerative features in AD, PD, and HD by inhibit-
ing the assembly and promoting the disassembly of protein aggregates in these disorders,
reducing apoptosis of neurons and improving memory reducing cognitive decline in these
neurodegenerative diseases [20,36–38,190,194,197,207,355–357].

14. Bioactive Flavonoid Metabolites and Regulation of Microbiome
Bacterial Populations

The gut microbiome is a community of symbiotic microorganisms that inhabit the large
intestine. These microbes have important roles to play in the maintenance of gut barrier
integrity, inflammation, lipid and carbohydrate metabolism, immunity, and protection
from pathogenic organisms. Colonization of the gut by pathogenic bacteria can lead to
gut dysbiosis, significant alterations in gut bacterial populations, and an increase in the
development of several diseases.

15. Metabolites Generated from Ellagic Acid with Bioactive Properties

Urolithin A has recently been approved as a functional food ingredient. Urolithin
A and B have both been shown to improve metabolic functions and the maintenance of
a healthy gut microbiome [358,359]. Uro-A and B also improve liver and kidney func-
tions and induce the growth of Akkermansia muciniphila, a human mucin-degrading bac-
terium with health-promoting properties. Strategies have been developed to increase levels
of Akkermansia muciniphila in the gut that counter obesity, diabetes, inflammation, and
metabolic disorders [360–362]. A number of human and animal studies have shown that
the abundance of A. muciniphila in the gut can be enhanced through dietary intervention. A
muciniphila is available as a probiotic supplement [106].

Gordonibacter urolithinfaciens and Ellagibacter isourolithinifaciens are two human gut
bacterial species that convert ellagic acid into urolithins [363].

16. Bioactive Quercetin Metabolites

Quercetin is a flavonoid that has been extensively examined in many studies that have
demonstrated its antioxidant and anti-inflammatory properties in therapeutic applications.
It is only relatively recently that interest has focused on quercetin metabolites and their
biological properties [364]. The use of quercetin to treat OA rats has also been shown to
influence gut bacterial populations with an elevation in the numbers of members of the
Clostridia, Bacteroidia, and Bacilli families [365]. An increase in the number of quercetin
metabolite species was also noted. A total of 94 human gut bacterial species have been
examined for their ability to biotransform quercetin into different metabolites. Bacillus
glycinifermentans, Flavonifractor plautii, Bacteroides eggerthii, Olsenella scatoligenes, and Eu-
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bacterium eligens were all shown to be capable of transforming quercetin into a number of
metabolites displaying antiproliferative anticancer properties [366].

17. Flavonoids can Induce Neuroinflammation

While flavonoids have been shown to have many favourable properties in the al-
leviation of neuroinflammation and neurodegenerative processes [350,367,368], in a few
cases gut bacteria have also been shown to detrimentally impact on inflammation in the
brain, thus any prospective procedures conducted with flavonoids as therapeutics need
to be carefully evaluated. In these cases of flavonoid-induced neuroinflammation, the
balance of inflammatory cytokines in the gut and changes in intestinal and blood–brain
barrier permeability can all produce detrimental impacts promoting the neuroinflammatory
process. Having a healthy gut microbiome helps to prevent such detrimental effects on
brain health [369–371].

18. Cellular Transport of Flavonoids by ATP-Binding Cassette (ABC)
Transporter Proteins and their Potential Roles in the Modulation of Cellular Influx/Efflux in
Disease Processes

A total of 30 lactic acid bacterial strains transform punicalagin in pomegranate extracts
into ellagic acid and urolithins [372]. Proteomic analysis showed that this resulted in an in-
crease in transglycosylases with potential hydrolytic roles in the target phenolic compound.
An increase in levels of ATP-binding cassette (ABC) transporters was also observed and
these may be relevant cellular transporters for flavonoid metabolites. Nine ABC transporter
genes have been identified with proposed roles in the transport of flavonoid metabolites in
Salvia miltiorrhiza. It is proposed that these control the distribution of pigmentation in this
plant genus, and ABC transporter proteins may have similar roles to play in mammalian
tissues [373]. An increase in ABC transporters has been observed in sows fed a diet rich
in fermented Chinese medicine herbal additives, which also resulted in an increase in
the antibacterial and anti-inflammatory properties of the milk these animals produced,
improving milk quality [374]. ABC transporter proteins have proposed roles in flavonoid
transport in the suppression of colitis and its transformation into colon cancer induced by
kaempferol, increasing its bioavailability and efficacy [375]. Streptococcus suis (S. suis) is a
highly virulent zoonotic pathogen that causes severe economic losses in the swine industry
and is a public health concern with the rise of antibacterial antibiotic resistant strains that
may transfer up the food chain to humans [376]. EGCG has antibacterial and other health
benefits, significantly reducing the hemolytic activity of S. suis, and has been suggested as
a potential treatment of S. suis infection. Laboratory investigations have shown ABC trans-
porters have active roles to play in the mechanism of action of EGCG [376]. Kaempferol
displays antibacterial activity against H. pylori with an action comparable to that of clar-
ithromycin and amoxicillin. ATP-binding cassette transporters, flagellar assembly, and
fatty acid metabolism are the major pathways in which H. pylori cells are responsive to
kaempferol treatment. ABC transporters thus have key roles to play in the antibacterial
action of kaempferol [377]. Inhibition of drug-efflux membrane transporters by prenylated
flavonoids and their interactions with azole antifungals has been suggested as an approach
to chemosensitize multidrug-resistant C. albicans strains that otherwise can be difficult
to treat clinically [378]. The antibacterial basis of flavonoids has been shown to be due
to their disruptive effects on bacterial efflux pumps [379]. Furthermore, the multi-drug
resistance conferred by the P-glycoprotein efflux pump is a major cause of failure of cancer
chemotherapy treatments. The multi-drug resistance-reversing activity of isobavachalcone
through inhibition of the action of P-glycoprotein thus holds promise in the development
of more effective anticancer treatment strategies using specific flavonoids [380].

19. Bioavailability of Flavonoids

Many native flavonoids display beneficial neuro-therapeutic effects and are capable of
penetrating the BBB, however, concerns have been raised on the poor bioavailability of some
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flavonoid members. In general, polyphenolic compounds show a low bioavailability due to
their interaction with other dietary components, and with phase I and II metabolic processes
mediated by the liver, intestine, and microbiota. However, bioactive flavonoid metabolites
generated by the gut microbiome that retain antioxidant and antiphlogistic properties of the
native flavonoid occur, and these are of therapeutic value [381]. Methylation of flavonoid
aglycones upon ingestion may improve their bioavailability to cells compared to the native
glycosylated form [382]. Native anthocyanidins of low bioavailability may be converted
to metabolites with improved bioavailability and are more easily absorbed by the gut
epithelium microcapilleries and by the stomach, kidney and liver [383]. Citrus flavonoids,
such as hesperidin, naringin and nobiletin, display a number of health benefits, including
antioxidative, anti-inflammatory, and neuroprotective properties, however, they also have
limited bioavailability with a large proportion of dietary flavonoids remaining unabsorbed
in the colon [384,385]. Fortunately the gut microbiota convert these into bioactive fragments
that are more readily absorbed.

Protocatechuic acid, a simple phenolic acid, is one such example of a bioactive
flavonoid metabolite (Figure 10). Protocatechuic acid remains in the circulation for signif-
icantly longer periods and at higher concentrations than parent flavonoids, and it easily
crosses the blood–brain barrier. Experimental studies strongly support the role of protocate-
chuic acid in the prevention of neurodegenerative processes affecting AD and PD [386,387].
Protocatechuic acid inhibits detrimental processes leading to cognitive and behavioral
impairment, including accumulation of β-amyloid plaques in brain tissue, hyperphos-
phorylation of tau protein in neurons, excessive ROS generation, and neuroinflammation.
Growing evidence shows protocatechuic acid is efficacious in the treatment of neurodegen-
eration and a safe substance with antineurodegenerative compound warrant further inves-
tigation [237]. Protocatechuic acid is a widely distributed, naturally occurring flavonoid
metabolite active pharmacological component with antioxidant and anti-inflammatory
properties. Protocatechuic acid can be generated from a number of flavonoids. Over the
past two decades, there have been an increasing numbers of publications demonstrating
the importance of flavonoids and their metabolites in biomedical applications [236]. Proto-
catechuic acid can be produced from many flavonoid metabolites in hibiscus but has not
been specifically examined as a biotherapeutic from this tissue source. Phenolic hibiscus
extracts possess inhibitory activities against acetylcholinesterase, butyrylcholinesterase,
monoamine oxidase, and ecto-5′ nucleotidase memory-enhancing, antineuroinflammatory,
antioxidative properties [388].
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Figure 10. Degradative pathways used by C. perfringens and B. fragilis of the human gut microbiome to
process quercetin into bioactive metabolites, as proposed by Peng et al. [325]. Quercetin-4’glucuronide
(a) is initially degraded by β-glucuronidase to form quercetin aglycone (b) then dihydroxyphenyl
acetic acid (e) and dihydroxybenzoic acid (i). Alternatatively C ring internal cleavage of quercetin
aglycone into an intermediate form (c) can also be converted to hydroxyphenyl acetic acid (f) and
phenyl acetic acid (j) or to hydroxyphenyl propionic acid (d) then dihydroxyphenyl acetic acid
(g) then to methoxy phenylacetic acid (k) or protocatechuic acid (h).

20. Conversion of Quercetin to Bioactive Metabolites by the Gut Microbiome

Quercetin is processed by gut microbiome members to a number of metabolites with
improved bioavailability which retain the antioxidant properties of quercetin (Figure 10).

21. Processing of Epigallocatechin Gallate by the Gut Microbiome

As already discussed, the gut microbiome can generate EGCG metabolites that im-
prove cerebrovascular function and have therapeutic value in the treatment of neurode-
generative disorders (Figure 11). Epicatechin improves cognitive functions, lowering the
risk of AD or stroke, however, the biologically active molecular forms of epicatechin re-
sponsible are poorly understood [389]. γ-Valerolactone metabolites of EGCG modulate
cellular regulation, cytoskeleton organization, focal adhesion, cell signaling, endothelial
cell permeability, and interactions with immune cells [225]. Two major EGCG metabolites
generated by the gut microbiome, 5-(4′-hydroxyphenyl)-γ-valerolactone-3′-sulfate and
5-(4′-hydroxyphenyl)-γ-valerolactone-3′-O-glucuronide [286] have high bioavailability and
anti-inflammatory potency, decrease blood pressure and improve cerebrovascular blood
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flow [288]. Cerebrovascular dysfunction accelerates brain atrophy, reduces cognitive ca-
pability and increases risk of stroke, AD and dementia. EGCG in animal models [286,289]
maintains neurocognitive function in aging rats, decreases risk of AD, and improves cere-
brovascular blood flow [291–293]. Gut microbiome members with EGCG transforming
properties include Enterobacter aerogenes, Raoultella planticola, Klebsiella pneumoniae susp.
pneumoniae, and Bifidobacterium longum subsp. Infantis [311].
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Figure 11. Generation of tea EGCG metabolites by the gut microbiome, as proposed by
Lotito et al. 2011 [227] 5(3,4,5-trihydroxyphenyl)-g-valerolactone has therapeutic pharmacolog-
ical properties useful in cancer therapy, antioxidant free radical scavenging, and cerebrovas-
cular therapeutic applications in neurodegenerative disorders. (a) Epigallocatechin gallate
(EGCG); (b) (-)-Epigallocatechin-3-O-gallate-4’-O-glucuroide; (c) 4”O-Methyl-(-)epigallocatechin-3-O-
gallate; (d) (-)-Epigallocatechin; (e) 4’,4”-Di-O-Methyl-(-)epigallocatechin-3-O-gallate; (f) 5, (3’4’5’-
trihydroxyphenyl)-γ-vcalerolactone; (g) 4”O-Methyl-(-)epigallocatechin.
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Table 2 summarises the major beneficial properties of plant flavonoids and gut mi-
crobiome generated flavonoid metabolites clearly showing their therapeutic potential.
particularly in the alleviation of symptoms generated in neurological disorders of cognitive
decline. Studies examining these compounds as biomedicines is warranted based on the
data uncovered in this review. There is some urgency in undertaking these studies, with the
ever increasing incidence of neurological disorders in the ageing global general population.
A global burden of disease study showed the overall burden of global neurological disor-
ders has increased significantly in the last decade from 1990 to 2019 with 10 million deaths
and 349 million disability-adjusted life years due to neurological disorders reported [390],
and very significant projected increases in the incidence of AD and dementia calculated to
increase from 57.4 million cases globally in 2019 to 152.8 million cases in 2050 [391].

Table 2. A summation of the gut microbiome and processing of therapeutic dietary components
which generates bioactive flavonoid metabolites that promote neuronal health and counter neurologi-
cal deficits.

Neurological
Disorder How the Gut Microbiome Impacts the Disorder Ref.

AD

Induction of Nrf2 expression by flavonoids is neuroprotective countering
neuroinflammation. Flavonoids also have intrinsic antioxidant activity against

generation of ROS by COX, LOX, MPO, XO. Many microbiome generated
flavonoid metabolites retain or have enhanced or new bioactive properties not

evident in the native flavonoid and greater bioavailability. Protocatechuic acid is
present in the circulation at higher concentrations for significantly longer than

native flavonoids and easily crosses the BBB, inhibits accumulation of β-amyloid
plaques, hyperphosphorylation of tau protein in neurons and excessive generation

of neuroinflammatory ROS, has potent antioxidant and anti-inflammatory
properties, is neuroprotective, increases neuronal proliferation and inhibits

apoptosis of neural stem cells. Urolithin A potently inhibits the pro-oxidant heme
peroxidases MPO and LPO reducing tissue inflammation and significantly reduces
phorbol myristate acetate stimulated ROS generated by neutrophils. Urolithin B is
a MAO inhibitor and improves cognitive deficits. Urolithin M5 is a neuraminidase

inhibitor, urolithin M6 is an inhibitor of LDH. Urolithins are neuroprotective,
inhibit Aβ25-35-induced neurotoxicity and neurodegenerative MAO activity.

Urolithin A promotes mitophagy and mitochondrial biogenic neuronal function.
γ-valerolactones detoxify the effects of amyloid β oligomers. Some flavonoid

metabolites have vasodilatory properties that improve cerebrovascular circulation
and lower blood pressure.

[20,53,392–399]

PD

Anti-oxidant properties of flavonoids and metabolites and ability to induce Nrf2
expression is neuroprotective. Gut microbiome generated components may

potentially regulate α-synuclein folding lowering the levels of misfolded
α-synuclein deposition in pathological protein aggregates leading to neurotoxicity

and a decline in neural function. Induction of mitochondrial biogenesis by
flavonoid species promotes neuronal bioenergetics and viability.

[54,400–402]

Autism
Modulation of the gut microbiota to deliver high-fat low-carbohydrate ketogenic
products has proven beneficial in countering the deficits in communication and

social interaction evident in autism.
[403–406]

Bipolar
disorder

Diets rich in n-3 fatty acids, folate, S-adenosylmethionine, N-acetyl cysteine and
probiotic mediated effects offer promising interventions in the treatment of

bipolar disorder
[84,407–410]



Antioxidants 2023, 12, 663 30 of 47

Table 2. Cont.

Neurological
Disorder How the Gut Microbiome Impacts the Disorder Ref.

Depression
and

Anxiety

Symptoms of depression and anxiety have been shown to be linked to alterations
in the microbiota and can be treated by probiotic dietary manipulation with

certain food products known as psychobiotics.
[390,391,411–413]

Epilepsy
Manipulation of the gut microbiome to deliver a ketogenic high-fat

low-carbohydrate diet mimics the fasting state of the body and is beneficial in
treatment of drug-resistant epilepsy.

[55,414–416]

Stroke

Anti-oxidant, anti-thrombotic and vasodilatory properties of flavones and flavone
metabolites may lower possibility of stroke and improve vascular repair processes.
The anti-oxidant, anti-inflammatory, neuroprotective properties of quercetin may

minimize the incidence of ischemic stroke. Promotion of endothelial cells by
flavonoids improves vascular repair processes.

[417–422]

Abbreviations used: Nrf2, nuclear factor erythroid 2–related factor 2; ROS, reactive oxygen species; COX,
cyclooxygenase; LOX, lipoxygenases; MPO, myeloperoxidase; XO, xanthine oxidase; LPO, lactoperoxidase; BBB,
blood brain barrier; MAO, myeloperoxidase’ LDH, lactate dehydrogenase.

22. Conclusions

The complexity of phenolic and flavonoid compounds of therapeutic utility in the
prevention of tissue degeneration or infection is huge. The problems of bioavailability
limiting the therapeutic utility of flavonoids may be overcome by potent flavonoid metabo-
lites that retain the antioxidant and anti-inflammatory potency of the native flavonoid.
Furthermore, new biological activities displayed by the flavonoid metabolite not evident in
the native flavonoid may extend the therapeutic utility of this class of compound. Studies
are warranted to examine this aspect of gut microbiome-generated flavonoid metabolites
and may be particularly useful in the treatment of neurological disorders. Therapeutic
probiotics may be a means of engineering microbiome members that produce the beneficial
flavonoid metabolites outlined in this review as a means of selectively treating neurological
disorders. Thus mood, anxiety, and neurological disorders that result in cognitive deficits
and motor dysfunction may potentially be targeted using such an approach. Therapeutic
nutraceuticals that enhance the levels of these beneficial flavonoid metabolites may also be
an approach worth investigation to improve overall health and wellbeing.

The importance of maintaining a dominant population of beneficial gut symbionts to
prevent establishment of pathogenic organisms in the gut microbiome [423,424] has recently
become apparent in a study which showed Klebsiella aerogenes producing 3β-hydroxysteroid
dehydrogenase degraded estradiol leading to depression in menopausal female mice [425].
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