
Citation: San-Millán, I. The Key Role

of Mitochondrial Function in Health

and Disease. Antioxidants 2023, 12,

782. https://doi.org/10.3390/

antiox12040782

Academic Editors: Gina Cavaliere,

Maria Pina Mollica

and Giovanna Trinchese

Received: 1 March 2023

Revised: 16 March 2023

Accepted: 20 March 2023

Published: 23 March 2023

Copyright: © 2023 by the author.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

antioxidants

Review

The Key Role of Mitochondrial Function in Health and Disease
Iñigo San-Millán 1,2,3

1 Department of Human Physiology and Nutrition, University of Colorado, Colorado Springs, CO 80198, USA;
isanmill@uccs.edu or inigo.sanmillan@cuanschutz.edu

2 Department of Medicine, Division of Endocrinology, Metabolism and Diabetes, University of Colorado
Anschutz Medical Campus, Aurora, CO 80045, USA

3 Department of Medicine, Division of Medical Oncology, University of Colorado Anschutz Medical Campus,
Aurora, CO 80045, USA

Abstract: The role of mitochondrial function in health and disease has become increasingly recog-
nized, particularly in the last two decades. Mitochondrial dysfunction as well as disruptions of
cellular bioenergetics have been shown to be ubiquitous in some of the most prevalent diseases
in our society, such as type 2 diabetes, cardiovascular disease, metabolic syndrome, cancer, and
Alzheimer’s disease. However, the etiology and pathogenesis of mitochondrial dysfunction in multi-
ple diseases have yet to be elucidated, making it one of the most significant medical challenges in
our history. However, the rapid advances in our knowledge of cellular metabolism coupled with
the novel understanding at the molecular and genetic levels show tremendous promise to one day
elucidate the mysteries of this ancient organelle in order to treat it therapeutically when needed.
Mitochondrial DNA mutations, infections, aging, and a lack of physical activity have been identified
to be major players in mitochondrial dysfunction in multiple diseases. This review examines the
complexities of mitochondrial function, whose ancient incorporation into eukaryotic cells for energy
purposes was key for the survival and creation of new species. Among these complexities, the tightly
intertwined bioenergetics derived from the combustion of alimentary substrates and oxygen are
necessary for cellular homeostasis, including the production of reactive oxygen species. This review
discusses different etiological mechanisms by which mitochondria could become dysregulated, deter-
mining the fate of multiple tissues and organs and being a protagonist in the pathogenesis of many
non–communicable diseases. Finally, physical activity is a canonical evolutionary characteristic of
humans that remains embedded in our genes. The normalization of a lack of physical activity in
our modern society has led to the perception that exercise is an “intervention”. However, physical
activity remains the modus vivendi engrained in our genes and being sedentary has been the real
intervention and collateral effect of modern societies. It is well known that a lack of physical activity
leads to mitochondrial dysfunction and, hence, it probably becomes a major etiological factor of
many non–communicable diseases affecting modern societies. Since physical activity remains the
only stimulus we know that can improve and maintain mitochondrial function, a significant em-
phasis on exercise promotion should be imperative in order to prevent multiple diseases. Finally, in
populations with chronic diseases where mitochondrial dysfunction is involved, an individualized
exercise prescription should be crucial for the “metabolic rehabilitation” of many patients. From
lessons learned from elite athletes (the perfect human machines), it is possible to translate and apply
multiple concepts to the betterment of populations with chronic diseases.

Keywords: mitochondrial dysfunction; cellular bioenergetics; diabetes; cardiovascular disease;
cancer; Alzheimer’s disease; metabolic flexibility; exercise

1. Introduction

The role of mitochondrial function in health and disease has become increasingly
popular, especially in the past two decades. It is known that the dysregulation of mi-
tochondrial function and cellular bioenergetics are hallmarks of many diseases, such as
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type 2 diabetes (T2D), cardiovascular disease (CVD), metabolic syndrome, cancer, and
Alzheimer’s disease (AD) [1–6]. Although mitochondrial dysfunction is ubiquitous to
many non–communicable diseases (NCDs), the etiology and pathogenesis of mitochondrial
dysfunction remain elusive and the subject of important biomedical research nowadays as
one of the most significant medical challenges in our history.

The energy production of an individual is based on the metabolic demand and
metabolic efficiency during exercise, resting, and fasting and in a postprandial state. Cellu-
lar bioenergetics are quite complex and tightly intertwined with the purpose of producing
the necessary energy for cellular survival as well as achieving cellular homeostasis. Mi-
tochondria are the main cellular organelles in charge of energy production and play a
pivotal role in the control of cellular hemostasis. Under resting conditions, fatty acids and
carbohydrates should be successfully transported into mitochondria and be oxidized to
Acetyl–CoA for posterior oxidation in the Kreb cycle (tricarboxylic acid cycle (TCA)) and
electron transport chain (ETC) through oxidative phosphorylation (OXPHOS) in order
to synthesize the key energetic compound in the human body (ATP). Mitochondria are
also the production site for reactive oxidative species (ROS), which at physiological levels
behave as signaling molecules needed for cellular homeostasis. Hence, mitochondrial
malfunctions will impact cellular bioenergetics, cellular function, and cellular homeostasis,
making mitochondria a key player in health and disease. There are multiple effectors
eliciting mitochondrial dysfunction that have been recognized, including mitochondrial
DNA mutations, infections, aging, and a lack of physical activity. However, the etiology
of mitochondrial dysfunction in the pathogenesis of multiple diseases has yet to be eluci-
dated. The aim of this review is to assemble multiple components involved in the role of
mitochondrial function in health and disease, especially some of the most prevalent NCDs
in our society.

Furthermore, the development of assessments for mitochondrial function in humans
appears imperative in order to detect or diagnose mitochondrial dysfunction or decay. If
signs of mitochondrial impairment or decay are detected early in life, there could be a
significant window of opportunity to intervene in order to prevent diseases or the further
deterioration of existing ones as well as improve multiple diseases through enhancing
mitochondrial function through lifestyle interventions such as exercise. It has been known
for decades that physical activity is probably the only known intervention that can improve
mitochondrial function. The “exercise as medicine” concept continues to grow among
health professionals as a necessity to prescribe exercise in a personalized and individualized
manner, which seems imperative in the decades to come. However, an individualized
exercise prescription should be crucial for the “metabolic rehabilitation” of many patients.
This task remains a challenge due to the current lack of vertical and horizontal integration
of medical systems, including clinicians, multiple providers, exercise specialists, and health
care systems, with the proper means and infrastructures. The scientific and individualized
approach to training elite athletes has been shown to be quite successful over the last
several decades. Hence, the lessons learned from the work done with elite athletes can be
an important “template” to apply to populations with chronic diseases in order to prescribe
individualized exercise with the goal of improving mitochondrial function, disease, and
overall metabolic health.

2. Mitochondria, the Key Aerobic Microbe for Eukaryotic Cell Evolution

Mitochondria originated about 1.5 billion years ago from a prokaryotic origin linked
to archaebacterium (“archae” meaning “ancient bacteria”). According to the endosymbiotic
hypothesis proposed by Dr. Lynn Margulis in 1967, eukaryotic species evolved from aerobic
prokaryotic microbes (mitochondria) that were engulfed by an eukaryotic cell leading to
endosymbiosis [7]. In general, through this symbiotic relationship, mitochondria provided
aerobic energy to eukaryotic cells in exchange for protection. The ability of mitochondria to
conduct aerobic respiration inside the host eukaryotic cell led to a fundamental change in
evolution and the origins of hundreds of new genes and proteins, leading to novel metabolic
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characteristics of eukaryotic cells providing transformational evolutionary advantages to
multiple species including animal life. Mitochondria continued to evolve within eukaryotic
cells and both entities improved their symbiotic relationship of energy and protection.

On the other hand, the Romanian biologist and chemist Eugene Macovschi developed
the biostructural theory [8]. According to this theory, living cells possess a related biological
structure conferring on them living features through a so–called biostructure by which
living matter consists of two distinct and interdependent forms: biostructure matter, which
is the living matter itself, and coexistent molecular matter, which is a combination of
chemicals in non–living matter [9–11]. The biostructure in cells forms an inseparable unit
such that, according to Macovschi, only one uniform cell could be the origin of all forms of
life, contradicting the endosymbiosis hypothesis.

Today, the cell nucleus contains genes encoding for about 1200 proteins involved in
mitochondrial structure, membrane, and mitochondrial DNA (mtDNA) repair [12]. Nu-
clear DNA (nuDNA) is the key to a mitochondrion as its genome only contains 37 genes
that encode 13 proteins, all of them involved in OXPHOS; hence, the symbiotic relation-
ship with nuDNA. Mitochondria are referred to as the “powerhouses of cells” since they
provide the ATP necessary for cellular functions and life. Mitochondria are found in all
cells in the body except for red blood cells, which rely on aerobic glycolysis and lactate
for proliferation and survival. Although it is commonly thought that mitochondria are
individual organelles, in skeletal muscle they probably evolved to become interconnected
in a reticulum or a network [13], most likely penetrating deep into skeletal muscles for
increased bioenergetic efficiency.

3. Mitochondrial Bioenergetics Are Complex and Intertwined

The oxidation of multiple fuels occurs within the matrix of mitochondria through
the TCA cycle and OXPHOS. Mitochondria oxidize all major substrates derived from
macronutrients: pyruvate derived from carbohydrates, fatty acids derived from fat, and
amino acids derived from protein. Lactate, the obligatory byproduct of glycolysis, is also a
very important fuel for mitochondria and could even be the fuel preferred by most cells [14].
Other metabolites, such as ketone bodies, are also commonly oxidized by mitochondria,
especially under stress and fasting conditions. Skeletal muscle comprises the largest
organ in the body and is the largest contributor to aerobic capacity through mitochondrial
respiration [15]. Hence, skeletal muscle mitochondrial function is crucial for whole–body
metabolic function and health.

Under normal, healthy conditions, mitochondrial bioenergetics are complex and
tightly regulated for cellular homeostasis. In general, pyruvate, fatty acids, and a few
amino acids are linked together upon being converted to Acetyl–CoA, which is the first step
in the TCA cycle. The final step in the TCA cycle is the production of reducing equivalents
of NADH and FADH2, which deliver electrons and hydrogen ions (H+) to mitochondrial
complexes through the electron transport chain (ETC) in the inner mitochondrial membrane.
These electrons build up a chemical gradient that drives ATP production. Hydrogen ions
are pumped out from the mitochondrial matrix into the intermembrane space through
mitochondrial complexes (I to IV). The large gradient of protons that accumulate in the
intermediate space will force H+ back to the lower gradient in the mitochondrial matrix to
generate ATP.

Even before oxidation, mitochondrial transport of multiple substrates is of key im-
portance. In general, medium–chain fatty acids (FAs) can freely enter mitochondria, while
long–chain FAs need to be transported through palmitoyltransferase–1 and 2 (CPT–1/2)
located on the outer and inner mitochondrial membranes, respectively. Fatty acids are con-
verted to Acyl–CoA, which through β–oxidation is converted to Acetyl–CoA for oxidation
in the TCA. Pyruvate, on the other hand, is transported across mitochondria by the mito-
chondrial pyruvate carrier (MPC) and oxidized to Acetyl–CoA by pyruvate dehydrogenase
(PDH). Therefore, the dysfunction of any of these elements involved in substrate transport
across mitochondria can severely disrupt cellular bioenergetics and function.
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Substrate kinetics and dynamics are also important in cellular bioenergetics. When
there is increased glycolytic flux, such as in the case of high–intensity exercise or high
CHO ingestion, pyruvate may accumulate even under fully aerobic conditions and have
difficulty being transported across mitochondria and oxidized to Acetyl–CoA, leading to
its reduction to lactate. This is a ubiquitous process in exercise bioenergetics where PDH
and lactate dehydrogenase (LDH) enzyme kinetics as well as MPC transport kinetics are
key players. The LDH–A isoform possess a higher affinity for pyruvate, therefore eliciting
a higher rate of pyruvate reduction to lactate. Further, in the oxidation of 2 Glyceraldehyde–
3–phosphate (G–3–P) to 1,3–Diphosphoglycerate, NAD+ is reduced to NADH and, under
high glycolytic flux, cytosolic NAD+ may be depleted, leading to halted glycolysis and the
disruption of the NAD+/NADH ratio and intracellular redox state. During this stressful
cellular event, NAD+ is “rescued” by lactate through the reduction of pyruvate to lactate
through LDH–A and the oxidation of NADH to NAD+ for the continuation of glycolysis
and the stabilization of the cellular redox state. Furthermore, increased glycolytic flux can
lead to the accumulation of Acetyl–CoA, resulting in inhibition of Malonyl Co–A, which
inhibits CPT1 and, therefore, fatty acid transport across the mitochondrial membrane [16].

Lactate is a canonical component of cell biology and at the crossroads of cellular bioen-
ergetics and intermediary metabolism. Lactate is the obligatory end product of glycolysis
and behaves as a “lacthormone” [14,17] by possessing multiple endocrine, paracrine, and
autocrine properties. Lactate is mainly oxidized in mitochondria through the mitochondrial
lactate oxidation complex (mLOC) [18,19]. Poor mitochondrial lactate oxidation could lead
to a significant dysregulation of cellular bioenergetics. Both lactate accumulation in the
cytosol and exportation to the blood could have significant effects on the regulation of
both fat and carbohydrate metabolism, tightly regulating the intermediary metabolism as
well as having an intimate relationship with mitochondrial function. Lactatemia decreases
the mRNA expression of GLUT 4 in skeletal muscles, therefore decreasing glucose uptake
and oxidation [20]. Furthermore, lactate binds to the G–protein–coupled receptor (GPR81)
on adipocytes, which inhibits lipolysis [21,22]. Moreover, we have recently shown that
lactate decreases the activity of both CPT1 and CPT2 in neonatal rat cardiomyocytes, dis-
rupts cardiolipin species, increases reactive oxidative species (ROS), and disrupts cellular
bioenergetics by decreasing the rate of ATP production [23]. A decrease in lactate and fat
oxidation (FATox) by mitochondria, as in the case of T2D or metabolic syndrome, indicates
a direct relationship between lactatemia and FATox [24].

Metabolic flexibility is a term that has emerged in the last two decades and continues
to evolve due to its involvement in multiple diseases. Mitochondrial flexibility is defined as
the ability to respond or adapt to conditional changes in metabolic demand [25]. However,
the work in metabolic flexibility probably dates back over a hundred years to the pioneering
work by Harris and Benedict, who studied the metabolism of adult males and females,
infants, and patients with diabetes [26,27]. Especially relevant was Benedict’s work in
the 1920s and 1930s on the basal metabolism of both humans and animals [28] as well as
metabolic responses to exercise. Skeletal muscle substrate utilization and bioenergetics are
central to metabolic flexibility. Kelly and Mandarino elegantly demonstrated that skeletal
muscle is central to the study of mitochondrial function. They observed that individuals
with type 2 diabetes (T2D) and obesity showed metabolic inflexibility in postprandial
conditions with altered glucose and fat oxidation [29–32]. Before the innovative studies
by Kelly and Mandarino, DeFronzo and colleagues had shown that under euglycemic
hypersinsulinemic clamp conditions, skeletal muscle uptakes and metabolizes ~85% of all
glucose [33]. Metabolic flexibility and mitochondrial function are closely intertwined as un-
der resting and post–prandial conditions both fat and glucose are oxidized in mitochondria
via OXPHOS.

In summary, mitochondrial bioenergetics are quite complex and the studies continue
to show that the disruption of mitochondrial and, in general, cellular bioenergetics is central
to the pathogenesis of multiple diseases. The following decade will be decisive in unveiling
further crucial aspects of mitochondrial bioenergetics as well as therapeutic targets.
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4. Mitochondria, the Main Producers of Reactive Oxygen Species (ROS)

Oxygen consumption and reactive oxidative species (ROS) are ubiquitous to mito-
chondrial respiration. As electrons flow through the ETC, an estimated 0.4–4% of them
leak before reaching Complex IV [34–36]. Hence, mitochondria are considered to be the
main generators of ROS and, within mitochondria, Complex I is the main ROS–generating
site [37,38]. Historically, ROS were previously thought to only cause cellular damage.
However, it is well known that at physiological levels ROS generation is necessary and
highly involved in the regulation of cellular homeostasis, key signaling pathways, cell pro-
liferation, cell differentiation, cell migration, angiogenesis, and increased lifespan [39–43].
The process by which physiological ROS are involved in cellular homeostasis and signaling
has been named “oxidative eustress” [40,44] and also mitohormesis [45–48]. Superoxide
anions (O2

−) and hydrogen peroxide (H2O2) are the main ROS and cells have specific
mechanisms for counteracting excessive ROS production as well as scavenging free radi-
cals through antioxidants such as superoxide dismutase (SOD), catalase (CAT), reduced
glutathione (GSH), glutathione peroxidase (GPx), and glutathione reductase (GR). When
ROS production exceeds the antioxidant capacity, ROS accumulate and can cause multiple
cellular disruptions involved in multiple diseases [49–58]. Excess ROS production by mi-
tochondria can cause damage to mtDNA, proteins, and lipids [35,59], which in turn can
disrupt mitochondrial function and cellular homeostasis.

Although ROS production and mitochondrial dysfunction are intimately associated
in multiple diseases, the mechanisms by which either primary ROS production leads to
mitochondrial dysfunction or vice versa need to be elucidated. Could “faulty” mitochon-
drial function be responsible for excessive ROS production, or could it be the opposite?
ROS generation occurs in the mitochondrial inner membrane, which is proximal to the
mtDNA that depends on nuDNA for maintenance and repair. Therefore, the proxim-
ity of mtDNA to the ROS generation site makes mtDNA more vulnerable to oxidative
damage [60]. A primary mitochondrial dysfunction may lead to a further increase in the
generation of ROS, leading to exacerbated oxidative stress, which, in turn, may lead to
further mitochondrial dysfunction in a self–perpetuating, feed–forward, and vicious cycle.
As an example of the mitochondrial dysfunction and ROS balance for cellular homeostasis,
deficiencies in the pyruvate dehydrogenase complex (PDC) lead to the accumulation of
pyruvate and lactate, which has been shown to increase ROS levels [23] and decrease the
antioxidant capacity [61]. On the other hand, lactate is an important signaling molecule as
it stimulates a modest amount of ROS production, which elicits an antioxidant response
for pro–survival cellular pathways such as PI3K/AKT and endoplasmic reticulum (ER)
chaperones [62]. Moreover, different events and external effectors have been shown to elicit
mitochondrial ROS generation. Tumor necrosis factor alpha (TNF–α), an inflammatory
mediator, has been associated with increased ROS generation [63]. Several toxic metals,
such as mercury, damage mtDNA and elicit lipid peroxidation as well as the depletion of
glutathione, leading to increased ROS generation and further mitochondrial damage [64,65].
Iron–deficiency anemia can cause a decrease in the activity of Complex IV, eliciting a higher
level of oxidative stress [66].

In summary, mitochondria are the main site for ROS generation and for an extended
period of time it was thought that ROS production was exclusively detrimental to human
cells. However, it is well known that ROS act as key signaling molecules necessary for
cellular and mitochondrial homeostasis. Nevertheless, an understanding of the exact
balance between homeostatic and pathological ROS production remains elusive and is
currently an area in which important research efforts are being made.

5. Etiologies of Mitochondrial Dysfunction

It is important to note that the term “mitochondrial dysfunction” might not be com-
pletely appropriate. In most cases where the term “mitochondrial dysfunction” is coined,
mitochondria still work but not at full or an appropriate level of potential compared with
healthy states, hence the term “mitochondrial dysfunction”. However, in many situations,
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“decreased mitochondrial capacity” or “mitochondrial impairment” could be more appro-
priate. From genetic mutations to aging, infections, and a lack of physical activity, the
etiology of mitochondrial dysfunction/impairment (Figure 1) is multiple and currently an
important field of research due to its implications in health and disease.

Antioxidants 2023, 12, x FOR PEER REVIEW 6 of 31 
 

5. Etiologies of Mitochondrial Dysfunction 
It is important to note that the term “mitochondrial dysfunction” might not be com-

pletely appropriate. In most cases where the term “mitochondrial dysfunction” is coined, 
mitochondria still work but not at full or an appropriate level of potential compared with 
healthy states, hence the term “mitochondrial dysfunction”. However, in many situations, 
“decreased mitochondrial capacity” or “mitochondrial impairment” could be more ap-
propriate. From genetic mutations to aging, infections, and a lack of physical activity, the 
etiology of mitochondrial dysfunction/impairment (Figure 1) is multiple and currently an 
important field of research due to its implications in health and disease. 

 
Figure 1. Representation of multiple effectors involved in the pathogenesis of mitochondrial dys-
function. (Up arrows indicate increased and down arrows indicate decreased). 

5.1. Genetic Mutations 
As previously mentioned, the mitochondrial genome contains 37 genes that encode 

for 13 proteins, all of which are involved in OXPHOS. Therefore, any mutation of those 13 
genes could result in a significant disruption of mitochondrial function and cellular bio-
energetics. The incidence of inherited mitochondrial mutations is considered to be quite 
rare (1 in 5000 individuals). Most mutations occurring in mtDNA are mainly point muta-
tions and deletions [67]. Other mutations occur in the nucleus, including to autosomal 
recessive, dominant, or X–linked mtDNA maintenance genes [68]. Most mitochondrial 
genetic diseases are involved in neurological disorders, including myopathy, ataxia, and 
neuropathy [68]. 

It is important to highlight the importance of the relationship between nuDNA and 
mtDNA. As part of the ancient “symbiotic pact” of aerobic energy for protection between 
eukaryotic and prokaryotic cells, nuDNA encodes all the genes necessary for mitochon-
drial maintenance, repair, and replication. Hence, inherited or acquired mutations of 
nuDNA can contribute to mitochondrial instability [69]. Unlike germline mutations, so-
matic mutations evolve over the life cycle of an individual and exposure to endogenous 
and exogenous mutagens could lead to potential errors in nuDNA repair and replication. 
The symbiotic genetic relationship between nuDNA and mtDNA remains largely unex-
plored and could confer significant insights into the etiology of multiple diseases.  

Figure 1. Representation of multiple effectors involved in the pathogenesis of mitochondrial dysfunc-
tion. (Up arrows indicate increased and down arrows indicate decreased).

5.1. Genetic Mutations

As previously mentioned, the mitochondrial genome contains 37 genes that encode
for 13 proteins, all of which are involved in OXPHOS. Therefore, any mutation of those
13 genes could result in a significant disruption of mitochondrial function and cellular
bioenergetics. The incidence of inherited mitochondrial mutations is considered to be
quite rare (1 in 5000 individuals). Most mutations occurring in mtDNA are mainly point
mutations and deletions [67]. Other mutations occur in the nucleus, including to autosomal
recessive, dominant, or X–linked mtDNA maintenance genes [68]. Most mitochondrial
genetic diseases are involved in neurological disorders, including myopathy, ataxia, and
neuropathy [68].

It is important to highlight the importance of the relationship between nuDNA and
mtDNA. As part of the ancient “symbiotic pact” of aerobic energy for protection between
eukaryotic and prokaryotic cells, nuDNA encodes all the genes necessary for mitochondrial
maintenance, repair, and replication. Hence, inherited or acquired mutations of nuDNA can
contribute to mitochondrial instability [69]. Unlike germline mutations, somatic mutations
evolve over the life cycle of an individual and exposure to endogenous and exogenous
mutagens could lead to potential errors in nuDNA repair and replication. The symbiotic
genetic relationship between nuDNA and mtDNA remains largely unexplored and could
confer significant insights into the etiology of multiple diseases.

Other mutations at the mitochondrial structural level can also affect cardiolipin (CL),
which is a phospholipid in the inner mitochondrial membrane that regulates multiple
mitochondrial processes [70,71] and is also involved in mitochondrial dysfunction [72].
As an example, Barth syndrome (BTSH) is a rare X–linked genetic disease caused by a
mutation of the tafazzin gene, encoding for phospholipid transacylase, which is neces-
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sary for CL remodeling and characterized by cardiomyopathy, skeletal myopathy, and
neutropenia [72–74]. BTSH is a classic example of a disruption to mitochondrial bioenerget-
ics due to genetic mutations, leading to metabolic reprograming in the heart characterized
by a significant decrease in the capacity for mitochondrial oxidation of fatty acids and
pyruvate (~40–60%) [75].

Cancer is another important disease characterized by decreased/impaired mitochon-
drial function. mtDNA is more susceptible to DNA damage than nuDNA as it has no
introns, histones, or non–histone proteins and, therefore, it is continually exposed to en-
dogenous and exogenous mutagens, ROS, and different carcinogens [76]. This vulnerability
is substantial and in cancer it has been shown that mtDNA mutations are significantly
higher in number than nuDNA mutations [77,78]. Vogelstein’s group was the first to de-
code the mitochondrial genome in tumors, where they found mtDNA mutations in seven
out of ten human colorectal cancer cell lines [79]. In a study by H.C. Lee and colleagues
with 20 different types of cancer in 859 patients, 66% of those cancers carried at least one
somatic mtDNA mutation [80]. In cancer, the term “mitochondrial dysfunction” refers
to a significant mitochondrial impairment leading to aberrant metabolic reprograming of
cellular bioenergetics characterized by accelerated glucose uptake and lactate production.
It was discovered by the Nobel Laureate Otto Warburg one hundred years ago [81].

5.2. Aging

The process of aging has been extensively studied over decades if not centuries. Aging
is an inescapable biological process characterized by decreased physiological and cellular
function across the body. A decrease in mitochondrial capacity has been observed with
aging and is already considered a hallmark [82–89].

Briefly, damaged and aging mitochondria are controlled by the process of mitophagy,
which is the internal cellular autophagy of mitochondria. Mitophagy and mitochondrial
biogenesis are indispensable to the regeneration of new mitochondria and achieve a balance
for mitochondrial health. Mitochondrial fission and fusion are key processes for the regen-
eration and maintenance of mitochondrial networks, structure, and function. In general,
mitochondrial fission splits mitochondria, where the damaged structures of mitochondria
are degraded through mitophagy. The healthy fragments of mitochondria are attached
together by the fusion process, allowing for the regeneration of mitochondrial structure
and function, including normal metabolic bioenergetics. A decrease in the mitochondrial
dynamics between fission and fusion is typical of aging processes, including increased
fission and decreased fusion, which can lead to metabolic changes resulting in increased
glycolysis [90,91] and the metabolic reprogramming of multiple cells.

As part of the aging process and exogenous mutagens, mtDNA mutations become
more frequent and could disrupt mitochondrial dynamics and bioenergetics over time. One
particular mitochondrial deletion, mtDNA4977, accumulates in multiple organs and is highly
correlated with increased O2 consumption [92], which is a sign of increased glycolysis
and metabolic reprograming. The GEHA EU project was an ambitious project whose goal
was to compare the mtDNA variability in 2200 nonagenarian Europeans and the same
number of younger individuals as a control [93]. The study showed that the association
with longevity was only present when mtDNA OXPHOS complexes co–occurred [93,94].

It is also well known that, in aging, ROS and mitochondrial dysfunction are highly
interconnected [95]. According to the free radicals theory of aging first proposed by
Harman in 1956 [96], the ETCs inside mitochondria produce intracellular ROS that elicit
mitochondrial damage and eventually cellular dysfunction. Mitochondrial ROS production
can also interfere with mitophagy by disrupting the balance between fusion and fission,
promoting the latter and activating intrinsic apoptotic pathways [97]. However, over
the last decade the emphasis on ROS production as the underlying mechanism of the
pathogenesis of aging has evolved to mitochondrial bioenergetics and turnover [86], where
ROS generation could be a consequence of aging and mitochondrial dysfunction instead of
the primary cause of mitochondrial injury [94]. Moreover, aging elicits an accumulation
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of damaged mitochondria in the brain, leading to a lower degree of metabolic efficiency,
producing less ATP, and increasing the production of ROS, which can result in a disruption
of cellular bioenergetics triggering neurogenerative disease [98].

5.3. Infections

Mitochondria play an important role in regulating the immune response to infections
as they trigger multiple modulators involved in the innate immune system, including the
transcriptional regulation of cytokines, chemokines, and inflammasomes [99]. Multiple bac-
teria and viruses modulate cellular bioenergetics in order to increase their survival rate and
establish a proliferative niche. One main way by which microbes hijack cellular functions
is by targeting mitochondria. Bacteria–like listeria monocytogenes, helicobacter pylori,
shigella flexneri, legionella pneumophila, and chlamydia trachomatis cause mitochon-
drial fragmentation, mainly by increasing fission [100]. Viruses also target mitochondria
through different mechanisms. The Hepatitis C virus targets mitochondria by increasing
mitophagy [101]. The HIV virus disrupts the mitochondrial fission–fusion balance in the
brain by increasing mitochondrial fusion, causing damage to neurons [102]. PB1–F2, an
Influenza A protein, is translocated into the mitochondrial inner membrane, disrupting the
membrane potential and leading to mitochondrial fragmentation [103].

Of recent importance is the pandemic caused by the SARS-CoV-2 virus. Although still
under investigation, it would seem that SARS-CoV-2 also targets mitochondrial function
for survival and replication by downregulating OXPHOS, increasing the elongation and
overproduction of ROS [104,105]. Recently, we observed both metabolic and mitochondrial
dysregulation in 50 patients infected with SARS-CoV-2 and affected by post–acute sequelae
of COVID–19 (PASC), referring to extreme chronic fatigue. About half of these patients had
previous comorbidities, but the other half were healthy and moderately active individuals.
We observed significant metabolic dysregulation with an extremely poor capacity to oxidize
fatty acids and clear lactate compared with individuals with metabolic syndrome, sug-
gesting mitochondrial dysfunction [106]. In a subsequent study deploying metabolomics,
we were able to find robust signatures of mitochondrial dysfunction and impaired fatty
acid metabolism in PASC [107]. While mitochondrial function is normally restored when
infections cease, patients affected by SARS-CoV-2 and suffering from long–lasting effects
may have a significant and long–lasting alteration to muscle mitochondrial function, which
needs to be studied in more depth.

Septicemia (sepsis) due to bacterial infection can also cause metabolic and bioenerget-
ics disruptions in multiple organs that can ultimately lead to multi–organ failure and death.
Mitochondrial dysfunction in sepsis has attracted an increasing amount of attention over
the last decade in order to explain the bioenergetic dysfunction of organ failure character-
istic of patients with sepsis. Impaired perfusion early on in the sepsis process, increased
ROS generation, hormonal alterations, and altered transcription of mitochondrial genes
can significantly affect mitochondrial function during sepsis [108]. Recently, it has been
shown that mitochondrial transcription factor A (TFAM), which is key in mitochondrial
biogenesis, is significantly decreased in sepsis. Rahmel and colleagues have shown that
intramitochondrial TFAM levels were ~80% lower compared with controls and accompa-
nied by decreased mtDNA copy numbers and cellular ATP content [109]. This finding is
relevant as many sepsis survivors suffer from “post–sepsis syndrome”, which includes
neuropathies, energetic dysfunction, and muscle weakness and wasting. The metabolic
derangements in sepsis survivors also include hyperglycemia, which is a risk factor for the
development of T2DM post–sepsis [110] and CVD [111].

In summary, although long–term effects of viral or bacterial infections in general are
rare, a decrease in mitochondrial function caused by certain infections can elicit signifi-
cant metabolic dysregulation through mitochondrial dysfunction increasing the risk of
metabolism–related diseases.



Antioxidants 2023, 12, 782 9 of 30

5.4. Lack of Physical Activity

Physical inactivity has been associated with multiple diseases, including cardiovascu-
lar disease, cancer, Alzheimer’s disease, type 2 diabetes, and Parkinson’s disease [112–125]
In fact, low cardiorespiratory fitness is considered to be responsible for the highest percent-
age of all attributable fractions for all–cause mortality [126].

The effects of a lack of physical activity on mitochondrial function have been known
for decades. In 1979, Houston and colleagues found a 24% decrease in a mitochondrial
function surrogate, succinate dehydrogenase (SDH), after 15 days of detraining in distance
runners [127]. Coyle et al. observed that 56 days of detraining elicited a 40% decrease in
mitochondrial oxidative enzyme levels and a 22% increase in lactagenic enzyme lactate de-
hydrogenase (LDH) levels with increased blood lactate accumulation during exercise [128].
Fritzen et al. found that 4 weeks of detraining in healthy male subjects elicited a decrease
of 32% in the activity of another mitochondrial function surrogate, citrate synthase (CS),
and a 29–36% decrease in mitochondrial complexes I–IV [129]. Houmard and colleagues
showed a decrease in CS activity of 25% with just 14 days of detraining [130].

Bed studies have contributed significantly to our understanding of the loss of proper
mitochondrial function and metabolic flexibility [131,132]. Alibegovic and colleagues
elegantly showed that 9 days of bed rest altered more than 4500 genes and downregulated
34 metabolic pathways mainly associated with mitochondrial biogenesis, function, and
OXPHOS [133]. In this study, the most downregulated pathway was OXPHOS (54% of
all genes involved in OXPHOS were downregulated). Further, bed rest elicited changes
in the DNA methylation of the PPARGC1A gene, which encodes for PGC–1α, a master
regulator of mitochondrial biogenesis. In this same study, upon retraining for four weeks,
82% of the genetic expression that was altered with bed rest was restored, showing that
physical activity restores major losses in genetic expression in a relatively short period
of time. Furthermore, bed rest also induces changes in substrate partitioning favoring
glycolysis instead of OXPHOS with a decrease of 37% in fat oxidation and an increase
of 21% in CHO in the post–absorptive state [134]. Moreover, bed rest increases insulin
resistance [135–139], which primarily occurs in skeletal muscle [139].

Finally, as described in Section 7 (vide infra), there are many studies showing that
physical activity can efficiently increase mitochondrial function. Hence, the levels of daily
physical activity (or the lack thereof) are significantly involved in mitochondrial function,
the prevention of multiple diseases, and decreasing the risk of all–cause mortality.

6. The Role of Mitochondrial Function in Multiple Diseases
6.1. Type 2 Diabetes

Type 2 diabetes has become an unstoppable epidemic affecting millions around the
world and in various countries, regardless of their degree of development and sociocultural
characteristics. Currently, in the United States alone, ~52% of the adult population has
either pre– or type 2 diabetes [140]. China is experiencing the largest increase in T2DM
in the world [141] and Europe is also experiencing a significant increase in T2DM [142].
Other parts of the world, including developing countries such as Cuba [143] and highly
developed countries such as the United Arab Emirates [144], are also being affected by
this epidemic.

Insulin resistance is the hallmark of T2D and central to its pathogenesis. As previously
mentioned, skeletal muscle is central to the study of mitochondrial function and its relation-
ship to the pathogenesis of T2D. Although the mechanisms remain elusive, multiple studies
over the last two decades have implicated skeletal muscle mitochondrial dysfunction in
the development of insulin resistance (IR) [145–150]. It is widely known that individu-
als with T2DM and metabolic syndrome are characterized by decreased mitochondrial
content in both intermyofibrillar and subsarcolemmal skeletal muscle regions [151,152],
mitochondrial oxidative enzymes [153], mitochondrial DNA, transcriptional factors and
genes [154–156], and overall mitochondrial function [149,151,153,157–160]. Furthermore,
dysregulated muscle bioenergetics are a prevalent feature in individuals with type 2 dia-
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betes, characterized by a poor capacity to oxidize fats and carbohydrates [25,29,161,162].
The decreased capacity to oxidize both FAs and CHO in mitochondria leads to metabolic
inflexibility [32,163] and metabolic reprogramming with increased reliance on cytosolic
glycolysis and lactate production to generate ATP. Furthermore, a lack of mitochondrial
capacity for fat oxidation may lead to an accumulation of lipids in skeletal muscle adja-
cent to mitochondria, which is correlated with increased diacylglycerols, sphingolipids,
ceramides, and insulin resistance [164–167]. In individuals with IR, insulin signaling is
disrupted, resulting in a decrease in AKT phosphorylation and the translocation of skeletal
muscle glucose transporter (GLUT–4) to the sarcolemma, leading to a decrease in glucose
uptake [168]. Fernandez and colleagues developed a transgenic mouse model with the
dominant–negative insulin–like growth factor–I receptor (KR–IGF–IR) in skeletal mus-
cle. Expression of KR–IGF–IR abrogated IGF–1 and insulin receptors, resulting in insulin
resistance in skeletal muscle [169].

Since skeletal muscle seems to be the tissue with the highest uptake of glucose, De-
Fronzo and Tipathy as well as Fernendez and colleagues proposed that T2D debuts in
skeletal muscle and that muscle insulin resistance is the primary mechanistic event involved
in the development of T2D [169,170].

6.2. Cardiovascular Disease

The role of mitochondrial dysfunction in cardiovascular disease has been receiving
increasing attention in recent years [171]. The heart can suffer from severe metabolic repro-
graming and mitochondrial dysfunction with a decrease in oxidative capacity, oxidative
phosphorylation, and ATP synthesis and an increase in ROS production [172,173]. The heart
is the most oxidative tissue in the body and ~50–70% of ATP is synthesized through the
β–oxidation of fatty acids [174] with 30–40% derived from aerobic glycolysis. Consequently,
decreased mitochondrial function of the heart could lead to a disruption of the cellular
bioenergetics of cardiomyocytes through increased glycolysis as in the case of cardiac
hypertrophy and heart failure [175–179]. Furthermore, it has been shown that cardiomy-
ocytes of patients with coronary artery disease possess 8–2000 more mtDNA deletions than
healthy patients [180], which can significantly alter mitochondrial function and increase
ROS production, leading to cellular damage and a dysregulated cellular metabolism. More-
over, even a small increase in glucose metabolism as a result of mitochondrial dysfunction
can lead to cardiomyocytes with metabolic inflexibility [181].

Vascular tissue is also affected by mitochondrial dysfunction. mtDNA mutations
and mitochondrial damage have been correlated with atherosclerosis [182,183]. Specifi-
cally, atherosclerotic plaques are characterized by mitochondrial dysfunction and reduced
mtDNA copy numbers [184]. In the process of angiogenesis, vascular endothelial cells
(VECs) possess a high degree of metabolic flexibility in order to adapt to the changing
microenvironment of sprouting angiogenesis [185,186]. Although the mitochondrial compo-
sition of VECs is only 2–6% of the cell volume as opposed to 32% in cardiac myocytes [187],
a small percentage of the volume of mitochondria in VECs may be key to maintaining
their homeostasis [187]. Because of this specific phenotype, VECs rely on glycolysis and
lactate for cell proliferation and angiogenesis [188,189]. In fact, about 99% of the glucose
is reduced to lactate in VECs [187] as lactate is a major regulator of vascular endothelial
vascular growth factor (VEGF) [190] and hypoxia–inducible factor HIF–1 [191], which are
both key processes in angiogenesis. The remaining ATP synthesis is derived from fatty
acids and glutamine via OXPHOS [192]. Although minor, the role of fatty acid oxidation
may be of importance to control and balance VEC proliferation as disruptions in VEC
bioenergetics could lead to pathophysiological conditions, including atherosclerosis and hy-
pertension [192]. VECs also suffer from senescence associated with intrinsic mitochondrial
impairments involving mtDNA mutations, ETC dysfunctions, changes in the fission–fusion
balance, excessive ROS production, and decreases in antioxidant capacity [193–199].
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6.3. Mitochondrial Dysfunction at the Crossroads of the Connection between Type 2 Diabetes and
Cardiovascular Disease

The connection between T2D and CVD has received much attention, especially over
the last two decades, as a large number of patients with T2D also develop CVD and vice
versa [200]. In many cases, this connection has led to the confluence of both diseases into
one emerging disease: cardiometabolic disease. At this point, the connection between
these two diseases is mainly epidemiological as the mechanisms behind the relationship
remain elusive. As a possible hypothesis, a primary mitochondrial dysfunction in skeletal
muscle could be important to understanding the connection between both diseases. A
significant histological finding pertaining to skeletal fat metabolism occurs in physically
fit individuals as well as in individuals with T2D, where both populations show an ac-
cumulation of intramuscular triglycerides. This phenomenon is known as the “skeletal
muscle lipid paradox” [164,201] as both physically fit individuals as well as individuals
with T2D are characterized by the presence of a “lipid droplet” adjacent to mitochondria.
However, the presence of skeletal muscle lipid or intramyocellular lipid (IMCL) content in
highly metabolically fit individuals accounts for a significant source of fat oxidation during
exercise [202–205]. On the other hand, in individuals with T2D, this accumulation of fat pos-
sesses different metabolic properties and lipid profiles compared with fit individuals [167].
In the case of individuals with T2D, the composition of intramuscular triglycerides is
high in ceramides [164,167,206,207], which belong to a family of lipids consisting of sphin-
gosines, which are bioactive lipid molecules and are involved in skeletal muscle insulin
resistance [164,165,167,206,208–211], and mitochondrial dysfunction [212–215]. Circulating
ceramide levels are already considered to be a biomarker of insulin resistance, T2D, and
CVD [216–221]. Further, in the field of CVD research, it is well known that ceramides are
key players in the atherosclerotic process [184,222–226]. Historically, circulating ceramides
have been thought to primarily originate in the liver, where they are packed in lipoprotein
particles and transported to different tissues [227]. However, it could be possible that the
decrease in mitochondrial fat transport and oxidation in individuals with T2D could lead to
chronic muscle lipid accumulation characterized by an increase in the content of ceramides
that could be released into the blood and, consequently, contribute to the atherosclerotic
process. Furthermore, as a possible cross–talk and transport mechanism, it has been shown
that extracellular vesicles (EVs) can contain ceramides and that skeletal muscle is very
active in secreting EVs [228]. Could the skeletal muscles of people with T2D secrete EVs
containing ceramides to the blood in a way that could influence the atherosclerotic process?
Could other components of EVs (mRNA, microRNA, proteins, enzymes, etc.) be implicated
in the dysregulation of the metabolic function of the endothelial tissue? Although the
relationships between CDV and T2D are quite strong, the mechanisms behind the link
between these diseases remain elusive and a significant amount of research is needed.

6.4. Alzheimer’s Disease, Is It the Brain’s Diabetes?

Over the past two decades, an increasing number of studies have linked T2D to
AD and cognitive impairment [229–240]. It is known that individuals with T2D have a
1.5–2–fold higher risk of developing CVD compared with people without T2D [230,231].
Moreover, a study by Janson and colleagues found that 81% of patients with AD had either
T2D or impaired fasting glucose [229]. The same study showed that individuals with
T2D possessed a higher frequency of islet amyloids and a greater extent of islet amyloids
compared with control subjects.

The hypothesis of beta amyloid plaque as being the main culprit in the etiology of AD
has prevailed since the mid–1980s [241]. However, the therapeutic approaches to treating
AD by targeting amyloid plaque have proven to be unsuccessful. Consequently, and due
to the necessity of developing novel therapies, innovative pathways and approaches to
understanding the pathogenesis of AD have emerged. Consequently, research on brain
metabolism and bioenergetics has emerged and attracted a significant amount of attention
over the last two decades. Glucose and lactate are the main energy substrates for the
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brain [14,242,243]. A metabolic characteristic of patients with AD is diminished cerebral
glucose metabolism characterized by a decreased capacity to uptake and oxidize glucose,
signaling dysregulated brain bioenergetics [244–248]. A traditional methodology for study-
ing cerebral glucose metabolism is the use of an 18–F–Fluorodeoxyglucose (18F–FDG) PET
scan. Early studies from the 1990s showed decreased glucose metabolism in AD patients
despite normal blood flow [248]. Recently, Hammond and Lin proposed that glucose
metabolism is a better marker for predicting AD than amyloid or tau [245]. Further, there
has been a recent tendency in clinical practice to incorporate 18F–FDG–PET in the diagnosis
and progression assessment of AD [245,249–252].

The plethora of studies showing decreased cerebral glucose metabolism in patients
with AD have led multiple researchers to inevitably explore the role of IR and mitochondrial
dysfunction in the pathogenesis of AD. These pronounced novel interests have shown
that, indeed, two main metabolic hallmarks of patients with AD are IR and mitochondrial
dysfunction [253–257]. Since IR and mitochondrial dysfunction are also the main hallmarks
of T2D, there seems to be a metabolic connection. Hence, novel terminologies such as
“type 3 diabetes”, “brain diabetes”, and “end–stage type 2” have emerged in efforts to
describe the pathogenesis of AD using a metabolism–centric approach.

Furthermore, like skeletal muscle, the brain possesses a lactate shuttle key to brain
bioenergetics [243]. Although glucose historically has been thought to be the main fuel for
the brain, it is now well known that lactate is a key fuel for neurons, possibly the preferred
fuel for the brain [242,243,258,259], and essential for long–term memory [260,261]. In skele-
tal muscle, the discovery of the lactate shuttle by Dr. George Brooks was instrumental in
understanding skeletal muscle glucose and intermediary metabolism [14]. Briefly, lactate is
shuttled from fast to slow–twitch muscle fibers, where lactate is oxidized in the mitochon-
dria of slow–twitch muscle fibers via the mitochondrial lactate oxidative complex (mLOC)
for fuel purposes [262,263]. Like skeletal muscle, the brain possesses its own lactate shuttle,
which is called the “astrocyte–neuron lactate shuttle” [243,264,265]. Astrocytes play a key
metabolic role in glucose metabolism as they receive glucose from the blood as well as
store glycogen and break it down to glucose. Glycolysis is the main metabolic pathway for
astrocytes, where most of the pyruvate is reduced to the lactate that is exported to neurons
for fuel. From lessons learned from skeletal muscle metabolism, it is possible to observe
similarities in brain metabolism through intracellular and extracellular lactate dynamics
associated with mitochondrial function. While in skeletal muscle lactate is shuttled from
fast–twitch muscle fibers to the mitochondria of slow–twitch fibers, in the brain, lactate is
shuttled from astrocytes to neurons [243,265], where lactate is oxidized in the mitochondria
of neurons via pyruvate oxidation. As a possible hypothesis, a mitochondrial dysfunction
in neurons might lead to reduced astrocyte–derived lactate oxidation resulting in decreased
pyruvate oxidation and a disruption of neuronal bioenergetics, as is the case with skele-
tal muscle, which is ultimately limited not only by glucose transport but by pyruvate
oxidation.

The etiology of mitochondrial dysfunction in AD patients remains largely unknown.
Although the mechanisms behind the pathogenesis of AD remain elusive, novel and excit-
ing advances in our understanding of brain metabolism have been made in the last decade,
opening the door towards the generation of novel diagnostic methods and therapeutics.

6.5. Cancer

The lack of progress in targeting genes to cure cancer has led to the development
of novel areas of research and clinical applications with exciting therapeutic possibilities.
These therapies include immunotherapy and targeted therapies, particularly those that use
tyrosine kinase inhibitors (TKIs). Both immunotherapy and TKIs have helped to extend
the lives of and even cure disease in (as in the case of immunotherapy) millions of people.
Although they have efficacy in only a relatively small number of tumors and people, we
can expect that new and more efficient generations of these therapies will be developed.
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As a result of the necessity of expanding our understanding of cancer, the field of cancer
metabolism has experienced a strong renaissance in the last two decades due to the renewed
interest in the Warburg Effect [266,267]. As previously mentioned, in 1923, the German
cell physiologist and Nobel Laureate Otto Warburg discovered that cancer cells show
accelerated glycolysis and produce significant amounts of lactate [81,268]. Although cancer
cells increase their glucose uptake, they may not oxidize pyruvate correctly in mitochondria,
reducing it to lactate. The observation of the significant amount of lactate that accumulates
in cancer cells led Warburg to posit that cancer is an injury to the cellular respiratory system
(mitochondria). However, one century ago, DNA and genetic mutations were not known
to exist, as DNA was discovered by Watson and Crick in 1953 [269]. It is widely recognized
that genetic mutations are ubiquitous to cancer, especially the overexpression of genes
such as RAS, MYC, and hypoxia inducible factor 1 alpha (HIF–1–alpha) and the loss of
function of the tumor suppressor factor TP53, which confers on cancer cells a selective
growth advantage for aberrant cell growth and proliferation [270–273]. Hence, not all types
of cancer necessarily possess a mitochondrial dysfunction.

As mentioned above, the Warburg Effect is characterized by accelerated glycolysis
and increased lactate production, which was probably what struck Warburg the most.
According to the “lactagenesis hypothesis”, the exacerbated lactate production due to
cancer cells observed by Warburg one hundred years ago could be the explanation for
and purpose of the Warburg Effect [274]. According to this hypothesis, lactate could be
a major regulator of the main elements involved carcinogenesis: angiogenesis, immune
escape, metastasis, and self–sufficient metabolism. Moreover, it has been shown recently
that lactate is an oncometabolite capable of regulating histone acetylation [275] as well
as the expression of the main genes involved in ER+ breast cancer cells, including RAS,
MYC, and HIF–1–alpha [191]. Since lactate is a canonical element in most cancers, the
transcendental question is: why is lactate so ubiquitous to cancer metabolism? As Warburg
described a century ago, an injury to mitochondria could be one possible answer. The
question of whether this injury is due to a genetic etiology, a metabolic dysregulation, or
both will be fundamental to answer and even crucial to finally conquering cancer in the
next decade.

As previously mentioned, it is known that many cancers have some form of mitochon-
drial impairment/dysfunction that could be attributable to somatic mtDNA mutations
(as already observed by Vogelstein’s laboratory in the late 1990s [79]) as well as mtDNA
depletion [276]. Furthermore, other authors have observed direct disruptions of the mito-
chondrial structure affecting cristae (cristolysis) in glioblastoma multiforme (GBM) [277],
which should have devastating consequences for cellular bioenergetics and homeostasis
and could possibly be a reason for the high aggressiveness of GBM.

Furthermore, as previously mentioned, mitochondria highly depend on nuDNA as it
encodes for ~1200 proteins necessary to mitochondrial repair, maintenance, and biogenesis.
Hence, any mutation of any of the mitochondrial nuDNA–dependent genes could lead to
dysregulation of the mitochondrial bioenergetics resulting in metabolic reprogramming
through decreased OXPHOS as well as increased glycolysis and lactate production, leading
to carcinogenesis. The crucial symbiotic relationship between the cellular nucleus and the
mitochondrion dates back ~1.5 billion years and any disruption of this relationship by
either external/internal mutagens or epigenetic effectors could lead to severe consequences
for cellular homeostasis. Although the enduring symbiotic relations between the nucleus
and the mitochondrion remain largely unexplored in cancer, they may provide us with a
better understanding of cancer.

In summary, the implications of mitochondrial function in some of the most common
NCDs are quite prevalent and central to the pathogenesis of these diseases (Figure 2).
Furthermore, there is growing evidence of strong relationships between several diseases,
where mitochondrial dysfunction could not only be the etiology behind the pathogenesis of
these diseases but also a nexus, which, if true, would elevate medical research to horizons
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never before reached. Undoubtedly, the research that will be conducted during the next
decade holds much promise.
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7. Exercise, the Only Known “Medicine” for Maintaining and Improving
Mitochondrial Function

It has been known for decades that exercise is the best physiological stimulus for
improving mitochondrial function in skeletal muscles and possibly other organs. In this
regard, we have learned many lessons from elite athletes that can be translated to multiple
populations. Well–trained athletes possess the highest mitochondrial function of any
humans [278–281]. The typical characteristic of elite endurance athletes is an increased
capacity to oxidize fatty acids as well as carbohydrates [24,282–284], making them highly
metabolically flexible.

Since the late 1960s and early 1970s, multiple studies have demonstrated improve-
ments in mitochondrial biogenesis and function after training. Twelve weeks of endurance
training (5 days/week) increased the number of mitochondrial enzymes by 2–fold and
the total amount of protein content by 60% [285]. Ten weeks of daily endurance training
increased the mitochondrial concentration in the gastrocnemius muscle by ~30% [286] and
1 h of cycling for 4 days/week over five months at an intensity of 70–90% of the VO2max
increased the oxidative capacity and glycolytic capacity by 95 and 117%, respectively [287].
Exercise can improve mitochondrial health by increasing mitochondrial content [288], in-
creasing the transcriptional activity of mitochondrial proteins such as PGC–1α [89], and
decreasing ROS production [289]. A 16–week aerobic exercise program as an intervention
in both men and women showed an increase in CS and cytochrome c oxidase of 45 and 76%,
respectively, as well as an increase in the expression of genes involved in mitochondrial
biogenesis, such as PGC1a (55%), NRF–1 (15%), and TFAM (85%) [290].

Different studies have also used the model of training followed by detraining in order
to measure muscle and mitochondrial plasticity and as a stimulus for physical activity
and detraining. Moore and colleagues observed an increase of ~38% in CS activity in
sedentary subjects after 7 weeks of training followed by a decrease of ~25% in CS activity
and an increase of ~10% in the respiratory exchange ratio (RER) after 3 weeks of detraining,
reflecting a decrease in mitochondrial oxidative capacity and flexibility [291]. Klausen
et al. observed an increase of 30–40% in SDH and mitochondrial cytochrome c oxidase
(COX) after 8 weeks of training, followed by a decrease to basal levels after 8 weeks
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of detraining [292]. Wibom et al. found an increase of 70% in the mitochondrial ATP
production rate after 6 weeks of training followed by a decrease to between 12 and 28%
after 3 weeks of detraining [293].

Regarding the beneficial effects of exercise on mitochondrial function in multiple
diseases, there are multiple studies demonstrating the benefits of exercise on mitochondrial
function. For example, a 16–week aerobic training program in sedentary, overweight/obese
individuals resulted in a significant increase in mitochondria (76%) in the myofiber volume
accompanied by improvements in insulin resistance that were highly correlated with
mitochondrial size and content (r = 0.88 and 0.72, respectively, p < 0.01) [294]. Toledo and
colleagues also showed that diet and weight loss alone are insufficient to stimulate the
mitochondrial capacity in skeletal muscle compared with diet plus exercise [295]. In this
study, both groups showed similar improvements in insulin resistance but the exercise
group was the only one in which improvements in mitochondrial density, cardiolipin
content, and ETC were observed. The same group of researchers showed that, in individuals
with T2D, a moderate–intensity exercise program for 4 months elicited significant increases
in mitochondrial density (67%), cardiolipin (55%), and mitochondrial oxidative enzymes
and improved glycemic and metabolic flexibility [296]. In diabetic mice, eight weeks
of aerobic exercise significantly improved the expression of mitofusin–2 (Mf2n), which
improves fusion, increases the expression of the mitochondrial transcription factor PGC–1α
for mitochondrial biogenesis, increases overall mitochondrial respiration, and decreases IR
and ROS production [297].

In patients with mitochondrial myopathies, due to mtDNA mutations, endurance
exercise has been shown to elicit significant improvements in mitochondrial function.
Taivassalo and colleagues elegantly showed that 14 weeks of endurance training signifi-
cantly increased the mitochondrial oxidative capacity, with increases in CS activity (~50%),
SDH activity (~40%), and Complex IV (~25%) and a decrease in blood lactate accumulation
(p < 0.05) [298,299].

In CVD, exercise is known to improve cardiomyocyte, muscle, and platelet mitochon-
drial biogenesis, the oxidative capacity, and the antioxidant capacity [300,301]. In patients
with chronic heart failure, a six–month exercise program improved the total volume density
of mitochondria by 19% [302] and the surface density of mitochondrial cristae by 43% [303].
Exercise has also been shown to significantly improve OXPHOS in the platelets of patients
with stroke [304] and with peripheral artery disease [305]. Furthermore, exercise was shown
to inhibit the pathological mitochondrial remodeling in rats with myocardial infarction
(MI) by improving mitochondrial fusion and decreasing mitochondrial fission [306]. Fur-
thermore, eight weeks of exercise post–MI improved the mitochondrial O2 consumption,
bioenergetics, and oxidative capacity in mice [307].

Exercise can also improve the mitochondrial function and biogenesis in the brain
as well as cognitive function [308,309], which opens an exciting door of opportunity to
further understand the mechanisms behind the pathogenesis of AD and to improve the
therapeutics against this disease. Therefore, we should stress the importance of physical
activity not just for the prevention of T2D but possibly for mitigating the severity of and
risks associated with AD as has already been shown in [310–315].

In aging, some studies have obtained promising results. Sustained endurance training
over time is also quite effective at maintaining mitochondrial function and flexibility in ag-
ing populations. Dubé et al. showed that the muscle oxidative capacity, metabolic flexibility,
and insulin sensitivity in older endurance–trained master athletes (average age, 65 years
old) were similar to those of young recreational athletes (average age, 28 years old) [316].
Another recent study comparing the effects of exercise between elderly (average, 80 years
old) and young (average age, 24 years old) cohorts found that 6 weeks of aerobic exercise
increased CS activity by 31% in elderly individuals and by 45% in younger individuals.
Complex I, II, III, and IV increased in both groups by between 51 and 163%. The study
found that both elderly individuals and younger individuals have the capacity to improve
their mitochondrial function after 6 weeks of aerobic training [317].
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In summary, there are many studies demonstrating the benefits of exercise on mi-
tochondrial function in many types of populations, including populations with chronic
diseases. However, if we consider exercise to be a therapy that we can use to improve
mitochondrial and metabolic function, it is essential to optimize and individualize the dose
and duration of the exercise that is prescribed [318]. Over the last decade, this is an area
where we have gained a wealth of knowledge by working with elite athletes to whom pre-
scribing the right training regime is key to improving athletic performance. Translating this
knowledge to populations with chronic diseases is a challenge due to the lack of vertical and
horizontal integration of medical systems, including clinicians, multiple providers, exercise
specialists, and health care systems, with the proper means and infrastructures. However,
all stakeholders should (must) be able to materialize this multidisciplinary partnership
in order to achieve proper and individualized exercise prescription programs as exercise
continues to be the most important intervention that is known to improve mitochondrial
function, metabolic flexibility, and, thus, metabolic health.

8. Assessment of Mitochondrial and Metabolic Function in the Clinical Setting

Historically, the assessment of mitochondrial respiration and function has focused
on the measurement of relevant oxidative enzymes involved in OXPHOS. CS and SDH
have been traditionally used in multiple studies as surrogates for mitochondrial function
and content [319]. More modern technologies have been developed to measure mitochon-
drial respiration and substrate utilization in skeletal muscle through two predominant
techniques: the Oroboros and Seahorse technologies [320–323]. These modern techniques,
as well as the traditional ones, require muscle biopsies or cell cultures, which are not
feasible to obtain on a large scale in humans in order to assess mitochondrial function
and respiration. Non–invasive techniques based on nuclear magnetic resonance (NMR)
and magnetic resonance spectroscopy (MRS) techniques have become popular for research
purposes as a valid way to assess mitochondrial respiration in vivo [324–327]. However,
the application of these new techniques to the general population would be very costly
and infeasible.

Recently, we proposed a novel and simple methodology for indirectly measuring
mitochondrial function and metabolic flexibility that can be performed on a large scale in
an ambulatory manner [24]. Our methodology is based on the combination of measuring fat
oxidation through indirect calorimetry using stoichiometric equations and the measurement
of blood lactate levels during exercise, both important mitochondrial substrates. The concept
is similar to cardiology stress tests where the heart is stressed through exercise in order
to measure its activity and detect pathologies. Through our methodology, we use similar
protocols with incremental exercise stages in order to stress the mitochondrial capacity and
detect changes in mitochondrial and muscle bioenergetics. As shown in Figure 3, during
exercise, both fat oxidation and lactate are oxidized in mitochondria as they are important
mitochondrial substrates. A decrease in fat oxidation capacity and an increase in blood
lactate during exercise could indicate decreased mitochondrial function. We have recently
applied this methodology to indirectly assess mitochondrial and metabolic function in
long–COVID–19 patients (PASC) as described earlier [106] and posteriorly confirm the
results with metabolomics analyses [107]. Furthermore, this methodology can be used to
extract individual training zones in order to structure an individualized exercise program
for a wide range of populations. Figure 4 shows an example of a person diagnosed with
pre–T2D who, after one year of individualized endurance exercise, improved their lactate
clearance capacity and fat oxidation significantly and was able to reverse pre–T2D.
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exercise program. After the individualized exercise program was completed, there was a significant
improvement in lactate clearance capacity and FATox, indicating an improvement in mitochondrial
function (Source: San–Millan’s laboratory).

As novel techniques arise, especially in the field of wearable biosensors, the possi-
bilities for measuring mitochondrial function in a continuous form will become much
more accurate and available to the general population as well as to clinicians. These
soon–to–arrive advances in biometrics could be transformational in terms of monitoring
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an individual’s metabolic health status and prescribing individualized exercise programs
destined, along with proper nutrition, to improve metabolic health.

9. Summary and Future Directions

Mitochondrial function is key in health and disease. Any effect on mitochondrial func-
tion can result in the disruption of cellular bioenergetics and the development of different
pathologies. The etiology of the pathogenesis of mitochondrial disruption/impairment is
diverse and multifaceted, although sedentarism seems to be a major factor. Skeletal muscle
plays an instrumental role in mitochondrial function in both health and disease as it is
the most bioenergetically active organ with the highest mitochondrial content. Although
mitochondrial dysfunction has traditionally been linked to type 2 diabetes, it is also a
hallmark of multiple diseases, including cardiovascular disease, cancer, and Alzheimer’s
disease. A deeper understanding of the mechanisms behind mitochondrial function and
the disruption of cellular bioenergetics in multiple diseases appears to be a major medical
challenge in our history and would result in the discovery of novel biomarkers for earlier
detection as well as targeted therapeutics.

In the meantime, exercise continues to be the only known stimulus for the mainte-
nance and improvement of mitochondrial biogenesis and function. However, if exercise
is prescribed as a therapeutic treatment to improve mitochondrial function (“exercise as
medicine”), the correct exercise prescription will be key, as in any other therapy. In order to
provide the right therapeutic benefits, individualization of the exercise prescription should
be performed in order to target cellular and metabolic adaptations. This individualization
of the exercise prescription has existed for decades in the world of sports performance and
there are many lessons that have been learned from working with elite athletes that can be
translated to exercise prescriptions for multiple populations. This task is a challenge as it
involves the integration of multiple clinical providers, exercise specialists, and healthcare
systems. However, this effort should be a priority in every society in order to improve
our population’s health, decrease mortality rates, increase longevity, and decrease the
unsustainable social and economic burden imposed by the non–communicable diseases
that most countries in the world will face in the coming decades.
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