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Abstract: It is more effective to maintain good health than to regain it after losing it. This work
focuses on the biochemical defense mechanisms against free radicals and their role in building and
maintaining antioxidant shields, aiming to show how to balance, as much as possible, the situations
in which we are exposed to free radicals. To achieve this aim, foods, fruits, and marine algae with a
high antioxidant content should constitute the basis of nutritional elements, since natural products
are known to have significantly greater assimilation efficiency. This review also gives the perspective
in which the use of antioxidants can extend the life of food products, by protecting them from damage
caused by oxidation as well as their use as food additives.
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1. Introduction

Antioxidants are a class of a multitude of chemical substances clearly associated with
large health benefits and lower risks of various age-related diseases.

They also can stop the damaging actions of reactive oxygen species (ROS) [1,2], which
include partially reduced or “energized” forms of oxygen, some of them as “free radicals”,
with an unpaired electron included in an orbital, while others as “nonradical species”,
such as hydrogen peroxide and singlet oxygen, whose reactivity is even greater than that
of the ground state of molecular oxygen [1,3]. A schematic way of antioxidants action
neutralizing free radicals by reacting together is shown in Figure 1, adapted from [2,4–6].

Endogenous and exogenous sources of free radicals are presented in Figure 2, while
some of their damaging actions are schematically presented in Figure 3 (adapted from [7]).

ROS are produced by normal aerobic metabolism, via environmental factors, such
as smoke and radiation, an excess of drugs, or an incorrect nutritional style [8–10]. Free
radicals damage nuclear DNA, proteins, and the lipid matrix of cells [11–13]. Once they
enter the body, they not only cause aberrant cell development but can also cause genetic
changes that are the basis of relentless disease [14,15].

Studies have shown that reactive oxygen molecules are involved in more than 50 medical
conditions, including various forms of cancer [16], heart disease [17,18], premature aging [19],
cataracts [20], and even AIDS [21], or in pregnancy [22] (Figure 4).
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Figure 1. Biochemistry of antioxidants (formation and equilibrium reactions in Ref. [4]; oxyl radical 
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Figure 3. Damaging actions of free radicals (most organic radicals have short lifetimes; many radicals
spontaneously dimerize; however, during their short lifetime, due to the presence of unpaired
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thiobarbituric acid reactive substance (formed as a result of lipid peroxidation).
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It is estimated that a single cell is exposed to free radical damage 10,000 times a
day [23]. Many of the resulting injuries are repaired by the body, but some accumulate.
Some researchers claim that aging is due to the accumulation during the life of unrepaired
damage to the deoxyribonucleic acid inside the mitochondria, damage caused mostly by
the action of free radicals [24,25]. Free radicals are usually destroyed by our body’s natural
antioxidant system [26]. There are both stable and unstable molecules of oxygen in the
body: While stable oxygen is essential for sustaining life, unstable oxygen molecules (free
radicals) can also be useful because they can be harnessed to fight inflammation, and
bacteria, and control muscle tone, regulating the functioning of internal organs and blood
vessels [26,27].

The problem with free radicals lies in their imbalance, their regulation often being
compromised [28]. Many of the body’s natural biological processes, such as breathing,
digesting food, neutralizing alcohol, and drugs, and converting fat into energy produce
harmful free radicals [8–10]. These free radicals can trigger a negative chain reaction in the
body, a reaction that destroys the cell membrane, blocks the action of the main enzymes,
prevents cellular processes and normal cell division, destroys cellular DNA, and blocks
energy generation [26–28].

Understanding these mechanisms and their biochemistry at the molecular level allows
us to further explain and emphasize the importance of antioxidants intake for combating the
negative effects of ROS, which belong to the category of oxidants. With this purpose, in our
review, we elaborate on these causes and effects situations (ROS vs. antioxidants) and the
health benefits of these. In this regard, we will further present in the next sections, numerous
studies that have highlighted the importance of a diet rich in antioxidant compounds (i.e.,
polyphenols, thiols, vitamins C and E, as well as some minerals) for the prevention of
various chronic-degenerative diseases related to an increase in oxidative stress, caused by
free radicals, but also we will present the aspects of promising studies currently elaborated
for delivering new resources of antioxidants, such as the marine extracts.

More than this, another important aspect that we considered in this review is to clarify
the antioxidants terminology, since this refers to multiple sides and has different meanings
in food and health science as follows [29].

2. Biochemistry of Antioxidants and Their Mode of Action

Endogenous antioxidants are body products. In contrast with the exogenous an-
tioxidants, the body possesses enzyme systems with an antioxidant action (superoxide
dismutase, glutathione peroxidase, and catalysis), co-participating in the deactivation of
some free radicals that are formed in the body [30,31]. As a defense against oxidative
stress imbalances, the body has produced so-called endogenous antioxidants, enzyme sys-
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tems capable of annihilating free oxygen molecules, preventing the production of negative
effects in the body [32,33]. Among the endogenous antioxidants, we mention superoxide-
dismutase, catalase, glutathione peroxidase, and hydropersulfides [34,35]. Some subtypes
of glutathione peroxidase are selenium (Se)-dependent, and recent studies [36–40] show
that an increased intake of Se is associated with protection against the development of
cancer and other chronic diseases.

Antioxidants as food additives are referring to some natural or synthetic (established)
antioxidants which are also widely used in the food industry to prevent a reduction
in the oxidation of fats or other components present in food, during the preservation
period [41,42].

Exogenous antioxidants are introduced with food and are referred to the established
or natural antioxidants. Because it is much more effective, and cheaper, to maintain good
health rather than to regain it, the best protection against free radicals is to build and
maintain “antioxidant shields”, through a regimen of adequate food with little fat, rich
in digestive fibers, and in antioxidant substances, such as vitamin E, vitamin C, and beta-
carotene, combined with regular exercise [43,44], and through a life program [45] aimed
at avoiding, as much as possible, the situations in which we are exposed to the attack of
free radicals. Foods with a high content of antioxidants constitute the basis of nutritional
strategies that we can take from external sources [46,47]. Food of plant origin was associated
with a high content of antioxidants [47,48]. Importantly, exogenous antioxidants that can
be taken in the diet have the same role in reducing the excessive number of free radicals.
The most important of these external (or exogenous) antioxidants are vitamin C, vitamin E,
and beta-carotene [49].

Taking the example of vitamin C’s different pathways to biosynthesis in marine
algae or plants, animals, and the human bodies, we can emphasize the importance of the
exogenous addition of antioxidants such as vitamin C in the human body. The Smirnoff–
Wheeler pathway, in which vitamin C is synthesized from D-mannose and L-galactose (D-
mannose/L-galactose pathway) [50], represents the major route of vitamin C biosynthesis
in marine algae and plants, at the cellular level (Figure 5), the other three involved routes
being the glucose, myoinositol, and the galacturonate pathways [51–54]. Most animals
produce relatively high levels of ascorbic acid from glucose in the liver via the glucuronic
acid pathway (Figure 5) [55–58]. Humans are unable to synthesize vitamin C and must
ingest this vitamin [59,60].
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reductase; GulL oxidase (GULO), L-gulonolactone oxidase. This figure is based on information from
references [61–65].
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As shown in Figure 5, in certain vertebrates (i.e., dogs), L-Ascorbate synthesis involves
three enzymatic steps starting from the conversion of D-Glucuronate, with L-Gulonate and
L-Gulono-γ-lactone (L-Gulono-1,4-lactone) as intermediate metabolites [61–66]. If in this
case, the final enzymatic step is catalyzed by L-Gulono-γ-lactone oxidase (GULO), convert-
ing L-Gulonate to L-Ascorbate, in humans, the GULO enzyme is mutated (Figure 5) and
not functional in primates also including guinea pigs and some spontaneous mutant mouse
and rat models [65,67]. Instead, the conversion of L-Gulonate to L-Gulono-1,4-lactone oc-
curs via Senescence-Marker Protein-30 (SMP30) (Figure 5) also known as regucalcin [62,65].
Likewise, in the humans’ case, the conversion of D-Glucuronate to L-Gulonate occurs
mainly through aldehyde reductase (GR) and to a smaller extent with aldose reductase’
(AR) contribution (Figure 5) [51,65,66]. Considering that the common molecular mecha-
nism of the body’s limited ability to synthesize vitamin C is the absence of GULO [68–71],
genetically, it is considered that the loss of synthesizing the ascorbic acid is likely due to
the complete loss of the L-gulono-γ-lactone oxidase (GULO) gene.

Combinations of all these facts bring us to the conclusion of an important balanced diet
associated with antioxidant supplements, potentiating each other’s effects and influencing
the prevention of diseases, such as heart disease, arthritis, visual impairment, stroke, and
premature aging of the skin, enhancing well-being.

Membrane lipids represent a major target of the radical attack, due to the presence of
double bonds in the structures of the polyunsaturated fatty acids which comprise them.
Membrane phospholipids most frequently contain unsaturated fatty acids, i.e., linoleic
acid, linolenic acid, and arachidonic acid [27,28]. Membrane lipid peroxidation affects the
structure and functions of the plasma membrane and the membranes of intracytoplasmic
organelles so that transmembrane potentials, ion fluxes, and transmembrane transport are
disturbed, and membrane receptors are inactivated and signaling pathways are deregu-
lated [71,72].

The process of lipid peroxidation changes not only the lipid components of membranes
but also the proteins, following the reaction of some amino acids with the aldehyde products
of peroxidation [71]. Oxidative changes in proteins under the action of reactive oxygen
species can also cause the inactivation of enzymes and membrane proteins [73], thereby
producing structural changes that lead to the destabilization of cell morphology. The
products generated because of lipid peroxidation are involved in inflammatory diseases [74],
aging [75], hepatotoxicity [76], hemolysis [77], and all phases of carcinogenesis during the
appearance of malignant tumors and metastases [78].

The effect of reactive oxygen species on enzymes includes, for the most part, decreased
catalytic capacity, often caused by the oxidation of sulfhydryl groups and the modification
of amino groups [79,80]. Some free radicals result from normal cellular processes, for
example, when cells use oxygen as fuel for energy production, free radicals appear as
secondary products of this metabolic process necessary to sustain life [9]. On the other
hand, both the environment, in which we live, and the living environment are other main
factors causing reactive oxygen species [9,12]. Antioxidants can interrupt the sequence of
oxidation reactions before it is initiated. In general, antioxidants have a high reduction
potential, releasing hydrogen ions, with the inhibition process proceeding as shown in the
following representation (Equation (1)) [81]:

InH + RO2
− → RO2H + In− (1)

where InH is an antioxidant, RO−2 is a free hydroperoxide radical ion, RO2H is hydroper-
oxide of, e.g., a fatty acid, and In− is an inactive or weakly active radical ion.

But in all cases, with the increase in the inactivation duration, there is a decrease in the
number of antioxidants—the increase in the peroxide index is found only after there has
been a significant decrease in the added antioxidant [2,82,83]. Taking here the α-tocopherol
(Vitamin E) as an example of lipid-soluble antioxidant, which acts as a “chain breaker”
to intercept lipid peroxyl radicals (LOO˙) and to terminate the lipid peroxidation chain
reactions (Equation (2)) [79], it can be seen that the mechanism of action is much more
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complex, as the antioxidants can act at successive steps of initiation, propagation, and chain
termination of the oxidative radical process [80].

OO˙ + α-tocopherol-OH→ LOOH + α-tocopherol-O˙ (2)

It can be explained that there is a close correlation between the structure of antioxidants
and their mode of action, determined by factors as follows [84,85]:

• The presence of the aromatic nucleus of phenol or naphthol, of a secondary or ter-
tiary hydroxyl group which increases the effectiveness (most antioxidants have a
phenolic structure).

• The presence of allylic groups in the ortho or para position compared to the hydroxyl
groups which have a favorable effect.

• The antioxidant effect increases proportionally with the length of the chain.
• Alkylation in the meta position is less effective.
• The esterification of the hydroxyl groups which causes a total disappearance of the

antioxidant activity.

A classification of antioxidants according to their mode of action is presented in
Table 1 [83,86].

Table 1. Inhibitors of lipid oxidation reactions.

Type Mode of Action Examples

“Metal scavenger”
Chelates metal ions such as
copper and iron,
forming inactive complexes

Chelating agents such as EDTA,
citric acid,
phospholipids, polyphosphates

“Oxygen scavenger” Reacts with oxygen; reduces
oxygen

Ascorbic acid,
ascorbyl-palmitate

Antioxidant (AH)

Interrupts propagation stages
in the case of oxidation
reactions; donates a hydrogen
atom

Phenolic compounds such as
BHA, BHT, TBHQ, PG,
tocopherols, hydroxytyrosol,
caffeic acid, carnosol, etc.

Reducing agents (RSH) Regenerates phenols
(synergism) Ascorbic acid

Enzymatic antioxidant Removes dissolved oxygen or
oxidative species

Superoxide dismutase,
glutathione peroxidase,
glucose-oxidase-catalase

Antioxidants with multiple
functions

Regenerates primary
antioxidants chelated with
metals; reduces
hydroperoxides

Phospholipids
(phosphatidyl-ethanol amine-
fish oil), products of the
Maillard reaction

Methyl-silicone and
ethylidene phytosterols

They prevent oxidative
polymerization in
heated oils

Polydimethylsiloxane,
citrostadienol

Glutathione peroxidase (GSHPx), catalase (CAT), and superoxide dismutase (SOD)
(mentioned in Figure 1) act as the first-line defense antioxidants, as their importance
is especially related to superoxide anion radical (*O2) which is perpetually generated
in normal body metabolism, particularly through the mitochondrial energy production
pathway (MEPP) and their fundamental role in preventing oxidative stress and the cellular
damage [31,79,82].

Glutathione is a nonenzymatic antioxidant that is found in most cells, and tissues
of plants and animals, and in humans, the highest levels are in the liver, lens, pancreas,
spleen, and kidney [87,88]. It is mainly synthesized by the body [88], and it can increase
the level of cytotoxic T cells in lymphocytes and neutralize free radicals [89,90]. Given
that glutathione has a tripeptide composition of cysteine, glutamate, and glycine, it has an
active thiol (SH−) within the cysteine structure [32,34]. In the cell, >98% of glutathione
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is found in the reduced thiol form (GSH) [31,88], but due to the cysteine residues that
can be easily oxidized nonenzymatically by various electrophilic substances (free radicals,
reactive oxygen, and nitrogen species), it is also present in the oxidized form as glutathione
disulfide (GSSG) or glutathione peroxidase [31,88]. After synthesis, it is distributed to intra-
cellular compartments and the extracellular space for use by other cells and tissues [88,90].
The rate of GSH synthesis is largely controlled by the degree of expression and catalytic
activity of the enzyme γ-glutamyl-cysteine synthetase (GCS) and the cellular availability
of cysteine [31,82,88–90]. Oxidative stress, inflammatory cytokines, cancer, chemotherapy,
ionizing radiation, heat shock, inhibition of GCS activity, GSH depletion, GSH conjugation,
heavy metals, antioxidants, and insulin increase γ-glutamyl-cysteine synthase transcription
or activity in a wide variety of cells [91,92]. In contrast, protein deficiency, dexamethasone,
erythropoietin, TNF-β (tumor necrosis factor), hyperglycemia, and GCS phosphorylation
decrease GCS transcription or activity [91,93,94]. The glutathione system also represents a
“capture system” for peroxides from water metabolism and lipid peroxides permanently
formed in the cell, metabolizing them with the formation of water and oxygen [31,88–90]. It
provides important protection for the mitochondrial and cell membrane against the harmful
effects of reactive oxygen species (oxidative stress) [31], protects the tertiary structure of
proteins, and activates the transport of amino acids through the cell membrane [31,95].
The cellular level of glutathione is stimulated by alpha lipoic acid, glutamine, colostrum,
selenium, and vitamins C, B6, and B2, and the effectiveness of vitamins C, E, and coenzyme
Q10 depends on the level of glutathione in the body [96]. Food sources rich in GSH are gen-
erally green leafy vegetables, such as spinach, parsley, and broccoli. However, glutathione
from food is only partially absorbed, being mostly hydrolyzed by peptidases [96–98]. How-
ever, the diet plays an important role in the exogenous intake of glutathione by providing
important cofactors, such as Se, Mn, Zn, and S-containing amino acids. GSH has a dual
role in our health and pathology as an antioxidant and in the detoxification of certain
xenobiotics [96–98].

Catalases. While GSHPxs are cytosolic residents, catalases are mainly found in perox-
isomes, in the liver, and erythrocytes, but some catalases are found in all tissues [82,99],
being the first characterized antioxidant enzymes [88] and being one of the crucial antioxi-
dant enzymes that mitigate oxidative stress to a considerable extent by destroying cellular
hydrogen peroxide to produce water and oxygen by using either iron or manganese as
a cofactor [31,100]. Basically, they are present in almost all living tissues that utilize oxy-
gen [31]. Due to its chemical structure of four subunits, each containing a heme group and
a molecule of NADPH, catalase basically catalyzes the conversion of hydrogen peroxide to
water and oxygen [82], while superoxide dismutase (one of the most potent intracellular
enzymatic antioxidants) catalyzes the conversion of superoxide anions to dioxygen and
hydrogen peroxide [82]. Hence, all three, catalase, glutathione peroxidase, and superoxide
dismutase, are functionally interconnected due to the hydrogen peroxide (H2O2), which is
produced as a result of the reaction catalyzed by SOD, H2O2 being the substrate of both
CAT and GSHPx [87]. Deficiency or malfunction of catalase causes aging disorders and
pathogenesis of degenerative diseases, such as diabetes mellitus, hypertension, anemia,
vitiligo, Alzheimer’s disease, Parkinson’s disease, bipolar disorder, cancer, schizophrenia,
or even male infertility [100,101].

Superoxide dismutase. Depending on its expressed activity, superoxide dismutase may
act either as an antioxidant or as a prooxidant [88] as exists in several isoforms, differing
in the active metal center, amino acid composition, cofactors, and other properties [82],
and neutralizes superoxide ions by going through successive oxidative and reductive
cycles of transition metal ions at its active site [82]. In humans, three forms of SOD
are present: cytosolic Cu, Zn-SOD (consisting of a dinuclear metal cluster with copper
and zinc ions, which catalyzes the dismutation of the superoxide anion to oxygen and
water), the mitochondrial Mn-SOD (a homotetramer that includes one manganese atom per
subunit, which partitions the superoxide anion), and the extracellular superoxide dismutase
containing copper and zinc (a tetrameric secretary glycoprotein having a high affinity
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for certain glycosaminoglycans) [82,102,103]. In contrast with the fact that superoxide
dismutase is indispensable to cellular health, that is protecting body cells from oxidative
stress, and that helps in the process of aging or cell death, superoxide dismutase enzyme
deficiency is quite common, and more than this, levels of superoxide dismutase decline
with age, whereas free radical formation increases [31]. As a result, plant sources of SOD
and SOD supplementation became of interest for health enhancement [103,104]. It has
been reported that a considerable and adequate daily SOD supplementation protects the
immune system and significantly reduces the chances of degenerative diseases and aging
pathogenesis, and there are several natural resources that can assure the daily intake of
SOD, such as cabbage, Brussels sprouts, wheat grass, barley grass, or broccoli [31].

If the first-line antioxidants act to suppress or prevent the formation of free radicals
or reactive species in cells being very fast in neutralizing molecules with the potential of
developing into a free radical or neutralizing any free radical with the ability to induce
the production of other radicals [31], the second-line defense antioxidants (scavenging
antioxidants) are neutralizing or scavenging free radicals by donating an electron to them,
becoming free radicals themselves but of lesser damaging effects [31,82]. These are mainly
represented by hydrophilic antioxidants, such as ascorbic acid, uric acid, and glutathione,
and by lipophilic antioxidants, such as alpha-tocopherol (vitamin E) and ubiquinol [31,82].

After free radical damage has occurred, a third category of antioxidants (de novo
enzymes), such as polymerases, glycosylases, nucleases, proteinases, proteases, and pepti-
dases, are acting towards repairing the damage caused to biomolecules and reconstitute
the damaged cell membrane [31], while a fourth-line defense antioxidants can prevent the
formation or reaction of free radicals [31,82].

3. Antioxidants as Food Additives

Food additives that are approved for use in Europe are annotated with an E, which
is followed by at least three digits. There are several categories of additives, one being
antioxidants. According to the directives of the European Parliament and the Board
of Directors 95/2EEC and 98/85/EEC, the antioxidants authorized to be used in food
products are those between E-300 and E-321 and include a series of natural compounds (E-
300, L-ascorbic acid; E-306, the natural extract rich in tocopherols) but especially synthetic
compounds, with toxic potential [103]. Table 2 lists those antioxidants commonly used as
food additives using the nomenclature of [6].

Table 2. Inhibitors of lipid oxidation reactions.

Annotation Antioxidant Annotation Antioxidant

E300 Ascorbic acid E310 Propyl gallate
E301 Sodium ascorbate E315 Erythorbic acid
E302 Calcium ascorbate E316 Sodium erythorbate

E304 Fatty acid esters of
ascorbic acid E319 Tertiary-butyl hydroquinone

(TBHQ)
E306 Tocopherols E320 Butylated hydroxyanisole

(BHA)
E307 α-tocopherol E321 Butylated hydroxytoluene

(BHT)
E308 γ-tocopherol E392 Extracts of rosemary
E309 δ-tocopherol E586 4-Hexylresorcinol

A wide range of antioxidants can be used to stabilize food products, but their use is
limited by health regulations. The conditions that an antioxidant must fulfil to benefit from
the legal permission for use in food products are the following [42,105–108]:

â The addition of the antioxidant must be authorized by the legislation of the country
where the food products will be consumed.
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â The action of the antioxidant must not be limited only to finding it as such and must
be limited to food products in which the respective fat was later incorporated as
an ingredient.

â The addition of the antioxidant must be simple, without lengthy or complicated
manipulations.

â The appearance or taste of the respective product must not be modified in any way by
the presence of the antioxidant.

â No negative effect on the human body is allowed even after continuous and prolonged
incorporation in the daily food ration.

â The antioxidant must be effective in very small quantities so that its addition exerts
an insignificant influence on the cost price of the respective product.

â The presence of the antioxidant in fats or other food products must be able to be
determined through simple analysis, preferably both quantitatively and qualitatively.

Currently, the focus in industry and research is not only to find new antioxidants to
further fulfil these legal conditions but also to replace as many synthetic food additives [109]
as possible with ones based on natural antioxidants [110] from vegetable sources, and
special attention is given to the ones of marine origin [111] for lipid systems. From the
biochemical point of view, it is known that antioxidants can be for lipid systems or for
hydrophilic systems [82,87,110], the ones for lipid systems are widely used in the food
industry [109], and some examples are given below [86,109].

Butylhydroxyanisole (BHA) is composed of a mixture of two isomers 2 and 3 tributyl-4-
hydroxyanisole (C11H16O2). It is a white-yellow crystalline substance insoluble in water,
but soluble in ethyl alcohol and other organic solvents [112,113]. It has good resistance to
high temperatures, and as a result, it can be used for frying, boiling, and baking products. It
is carefully used in lower concentrations of 0.01%–0.02% for its antioxidant effect [112,113].
Despite its favorable properties, rational use of BHA must be considered [114], as at
higher concentrations, it can cause carcinogenicity, cytotoxicity, oxidative stress induction,
endocrine disruption [114,115], and important side effects of tert-butylhydroxyanisole,
such as reducing hepatic enzymes or toxic effects in lung tissue [116].

Butylhydroxytoluene (C15H24O), also known as BHT, is presented in the form of white
crystals or sequins, with a weak phenolic smell. It is insoluble in water, but soluble in
alcohol [114]. A dose-related increased incidence of the severity of toxic nephrosis, nephro-
toxicity, and pneumotoxicity, and marked congestion of the liver and kidney [114], as
well as diffuse enlargement of the liver with rounded borders and rupture with hemor-
rhaging, were cited as toxic effects of BHT in mice [117,118] or in rats [119,120]. Fourteen
metabolites or degradation products of BHT were at an increased level of concern about
their toxic effects (BHT-CH2OH, BHT-CHO, BHT-COOH, BHT-Q, BHT-QM, DBP, BHT-OH,
BHT-OOH, TBP, BHQ, BHT-OH(t), BHT-OH(t)QM, 2-BHT, and 2-BHT-QM), with reviewed
effect on in vitro DNA cleavage for BHT-Q at the lowest concentration [121]; BHT-CHO
and BHT-OOH were also cited with such ability to cause DNA cleavage, but not for BHT,
BHT-CH2OH, BHT-COOH, and BHT-QM [121]. Mice-fed dietary BHT for a year were
known to develop marked hyperplasia of the hepatic bile ducts with associated subacute
cholangitis [117,118]. Dose-related increases in hepatocellular adenomas and carcinomas
were also cited in the case of rats [119–121].

Gallic acid esters are widely used as antioxidants [122–125], being derivatives of a
naturally occurring low-molecular-weight triphenolic compound, the gallic acid (3,4,5-
trihydroxy-benzoic acid) has a strong antioxidant and an efficient apoptosis-inducing agent
effects [125]. Some reports on their contact-sensitizing ability (using topically applied
products) correlated with the side chain length were documented, while a maximum of
sensitization occurrence was tested for 12 carbon atoms length of the molecule (dodecyl
gallate) [126,127]. Currently, the use of long-chain gallic acid esters, such as octal and
dodecyl gallates, is preferred [122–127], which have a much better distribution coefficient
and are more effective for the protection of fat/water systems.
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Tocopherols are widely distributed in nature, having the role of natural antioxidants,
and being represented by vitamin E. Among the isomers of tocopherol, δ-tocopherol has
the greatest effectiveness as an antioxidant [128,129]. It is presented in the form of viscous,
yellowish oil [128]. ∆-tocopherol was reported as more active than α- or γ-tocopherol in
inhibiting tumor growth, possibly through trapping reactive oxygen and nitrogen species
and inducing apoptosis [130,131].

Ascorbyl palmitate is the ester of palmitic acid with ascorbic acid and is obtained by
the synthesis of two components that are naturally found in food [132]. Concentrations of
0.01% ascorbyl palmitate [133] were reported to provide a useful increase in the shelf-life
of vegetable oils [132], with a better action in this regard when compared to butylated
hydroxytoluene and butylated hydroxyanisole [134]. Moreover, combinations with other
known antioxidants were shown to improve the shelf-life of all vegetable oils, as well as
potato chips [135,136].

Among the antioxidants for hydrophilic systems, especially for use in wines, juices,
and fruit derivatives, two have found a wide application so far: SO2 and ascorbic acid [137].
The sulfur dioxide exerts a double effect as it inhibits oxidizing enzymes and at the same
time has a strong reducing action [138]. It has been established that the oxidizing enzymes,
polyphenoloxidases, peroxidases, and ascorbinoxidases are inhibited in the case of using
large doses of sulfur dioxide, acting on the prosthetic groups found in the enzymes [138].
Sulfur dioxide has a bleaching effect, a process that is, however, irreversible. In human
consumers, allergies caused by sulfites (SO2-derived compounds) were documented, in-
cluding symptoms of their expression, such as headaches, nausea, gastric irritation, and
breathing difficulties in asthma patients [139].

Ascorbic acid, due to its reducing properties, achieves the inhibition of oxidation
processes in concentrations of 100–200 mg/L. It is used at lower concentrations than sulfur
dioxide to avoid toxicity, since at higher concentrations the ascorbic acid was cited to act
as an antioxidant, while at lower concentrations, as a pro-oxidant [140,141]. Although
the combined use of ascorbic acid and sulfur dioxide was initially assumed as with many
advantages over the use of either compound alone, later reviewed studies suggested that
ascorbic acid may not be the ideal complement to sulfur dioxide as first considered [142].

Along with antioxidants, in the food industry, synergistic substances are also used,
which do not have antioxidant action, but promote it, including citric acid, phosphoric acid,
and ethylenediaminetetraacetic acid (EDTA) [143–145].

There are also those known as antioxidant combinations meant to ensure an optimal
effect, in which mixtures of two or more antioxidants are used, associated with synergists,
ensuring optimal product stability [143–145]. Thus, for animal fats, a solution containing
20% BHA, 6% propellant gallate, and 4% citric acid is used. French fries and fries with a
high fat or oil content can be very well protected by a mixture of BHA, BHT, propellant
gallate, and citric acid. In the case of meat dishes, the mixture of BHA and citric acid works
best. Antioxidants can also be used to extend the shelf life of frozen fish, preventing the
appearance of yellow-brown color due to the oxidation and polymerization of fats [110].

As industry tends to shift from synthetically produced preservatives to natural preser-
vatives, more and more studies are established in this direction, the interest being to lower
the unnecessary chemical burden on health and to naturally prevent food degradation.
There are reports showing that natural antioxidants from fruits (grapes, pomegranate,
date, kinnow, plums, avocado, and tomato), herbs and spices (tea, rosemary, oregano,
cinnamon, sage, thyme, mint, ginger, and clove), vegetables extract from broccoli, potatoes,
drumstick, pumpkin, curry, and nettle are used as additional additives or antioxidants in
food preservation [146,147].

Due to their high content of phenolic compounds, they provide alternatives to cur-
rently used conventional antioxidants, prolonging the shelf life of foods [146,147]. For
example, in the meat industry, these natural antioxidant extracts are used for improving
the quality of fresh and processed meat and meat products by decreasing lipid oxida-
tion [146,148–151]. Other examples are the use of terpenoids and polyphenols in the
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prevention of lipid oxidation of meat, fish, or vegetable food with different amounts
of saturated/polyunsaturated fat for ensuring high sensorial quality and food preserva-
tion [107,152]. Moreover, it was shown that powdered leaves of matcha green tea and
moringa added to white chocolate during the tempering process improved its antioxidant
capacity due to the high amounts of polyphenols in green tea [146,153]. Another recent
study showed that lemongrass essential oil has a higher applicability as a food preservative
due to its content in terpenes [154]. From natural marine algae, seaweeds are known to
have several properties to act as natural preservatives extending the shelf life of perishable
foods and at the same time not affecting their quality or causing side effects. An applicable
example is the seaweed gel coating used to protect tomatoes from perishing [155].

On the other hand, active food packaging containing natural antioxidants, such as
α-tocopherol, caffeic acid, catechin, quercetin, carvacrol, and plant extracts (e.g., rosemary
extract), has been implemented in recent years as there is more advantage than the addition
of antioxidants directly to the food [156]. One important interest is in active biodegrad-
able/compostable packaging and edible films to reduce environmental impact, minimize
food loss and contaminants from industrial production, and reutilize by-products [156],
active packaging being biocompatible and eco-friendly [157], having also other properties,
such as antimicrobial, antioxidant, UV blocking, oxygen scavenging, and water vapor
permeability effects [158].

4. Natural Antioxidants and Their Benefits

In addition to established antioxidants, which fall into the category of additives, there
are natural antioxidants that can be obtained through extraction from different plants [86].
Extracts from rosemary, aloe vera, fenugreek (Trigonella foenum), ginseng, mustard, sage,
oregano, horseradish, hyssop, basil, marjoram, mint, thyme, ginger, cumin, cloves, nutmeg,
curry, cinnamon, black pepper, green tea, coffee, grape skin and seeds, and pine bark have
been used with various food groups [86], giving equivalent or better results than those
obtained with synthetic antioxidants (BHA, BHT, and gallates). However, the use of these
extracts is limited by the intensity of their flavor which influences the taste and smell of
the products to which they are added. Essential antioxidants include vitamins A, C, E, and
beta-carotene, which are helpful in slowing down the aging process and protecting the body
from cancer, heart disease, and pollution. They also help strengthen the immune system
and increase the body’s resistance to infections. Every year, more and more antioxidants
are discovered [110,111,159]. Among them, there are substances from forest fruits, grapes,
tomatoes, broccoli, and mustard, as well as those from medicinal plants, such as turmeric
and Ginkgo Biloba but also algae extract. In addition to the already well-known antioxidant
role of vitamins A, C, and E, there are other important antioxidants, including lipoic acid,
carnitine, lutein, and lycopene [160–162], and currently, there is still a high interest in
discovering novel antioxidants from fruits and vegetables as they are a main source of
antioxidants, known by their antioxidant expression values.

One way of expressing the antioxidant values of food products is in ORAC units (the
oxygen radical absorption capacity expressed in units), a unit of measure approved by the
National Institute for the Elderly within the National Institute of Health (INS) [163]. An
ORAC unit is expressed in micromoles of Trolox equivalents (TE) per 100 g of sample. The
ORAC scale presents in ascending order the antioxidant values that foods have up to the
present time. Recently, an evaluation of antioxidant capacity (ABTS and CUPRAC) and
total phenolic content (Folin–Ciocalteu) assays of selected fruits, vegetables, and spices
has also been established [164,165]. While the ORAC value is a method of measuring the
antioxidant potential of different food products and supplements [163], these recent scales
highlight the common foods that have increased antioxidant effects.

One ORAC unit destroys free radicals in addition to the fact that our body naturally
destroys free radicals only through its production of antioxidant enzymes. FDA’s rec-
ommendation of ORAC units per day administration is the amount between 3000 and
5000 µmol TE per day (ORAC) from plant foods, especially in the presence of constant
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pro-oxidant factors [166] but has been shown that ≥10,000 µmol TE per day (ORAC) has
positive health effects [163]. This amount is necessary for the prevention of various dis-
eases and to maintain health. Moreover, in the situations of people with diseases, such as
degenerative diseases, acute diseases, cancer, lymphomas, leukemias, and AIDS, a higher
intake of ORAC units/day is recommended [163,166].

In order to inform about the total antioxidant content of foods, there is an available
database that comprises antioxidant food content [167], based on several assays, such as
6-hydroxy-2,5,7,8-tetramethylchroman-2-carboxylic acid (Trolox-equivalent antioxidant
capacity (TEAC)) assay, the ferric-reducing ability of plasma (FRAP), and the oxygen radical
absorbance capacity assay (ORAC) [168].

4.1. Food and Fruits Antioxidants

Various studies on nutritional issues have revealed that a diet rich in fruits and
vegetables is important due to their sources of nutrients and nonnutritive food constituents,
showing that a high daily intake of fruits and vegetables promotes health [169]. In the
meantime, it is known that low fruit and vegetable consumption is linked with an increased
risk of death from vascular disease and cancer; these benefits are attributed in part to
antioxidants, vitamins, and phytochemicals [170]. Although phytotherapeutic substances
and antioxidants exist in their purest form in fruits, vegetables, and cereals, a balance of
the daily calories’ intake must be considered as well, as to metabolize calories, the body
burns oxygen, generating free radicals [12,171,172]; hence, the more calories are consumed,
more free radicals are generated. A balance in the antioxidant uptake, as well as certain
pathological conditions such as cancer, must be considered since there are studies showing
risks of an imbalanced antioxidant uptake for cancer patients, since both excess and lack of
antioxidants can affect and negatively influence the normal cellular processes [173–175].

There are over 2000 phytotherapeutic substances contained in food, and these are
defined as natural compounds that act as a plant defense system [176]. Various types of
food are rich in antioxidants and phytotherapeutic substances such as:

Tomatoes—One medium tomato contains 26 calories and 0 g of fat. Biochemically
speaking, tomatoes are rich in lycopene and are a great source of vitamin C [176,177].

Spinach—100 g of spinach contains 41 calories and 0 g of fat and is rich in iron, folic
acid, and B vitamins [178]. In addition, spinach contains two phytotherapeutic substances,
lutein and zeaxanthin, which are very important for eye health [176,178]. It is recommended
to be eaten, as much as possible, raw or scalded [178].

Nuts—30 g of nuts contain 12 g of fat and 150 calories. Although they are high in
fat, walnuts contain good monosaturated and polyunsaturated fats [179]. When eaten in
place of red meat or high-fat foods, walnuts help lower bad cholesterol (LDL) and increase
good cholesterol (HDL) [176,179]. Nuts also contain a well-known antioxidant, vitamin E.
However, they contain higher calories, and therefore, their consumption is indicated in
limited quantities [176,179].

Broccoli—100 g of cooked broccoli contains 44 calories and 0 g of fat. Broccoli is an
important source of vitamin C, fiber, and calcium [180,181]. This vegetable also provides
phytotherapeutic substances used as natural antibiotics, antiviral drugs, and antimycotics,
contributing to protection from DNA damage and preventing the formation of cancer
cells [176,180,181]. The deep thermal processing of this vegetable destroys the enzymes
and the corresponding nutrients and therefore it is recommended to consume it fresh or
just scalded [176].

Blueberries—100 g of blueberries contain 81 calories and 0 g of fat and represents a
significant source of antioxidants [176,182]. Anthocyanin is the phytotherapeutic substance
that gives the dark blue color, specific to blueberries, which prevents the formation of cancer
cells and has a curative effect on urinary infections [182]. A regular, moderate intake of blue-
berries and/or anthocyanins was associated with a reduced risk of cardiovascular disease,
and type 2 diabetes, and with improved weight maintenance and neuroprotection [182,183].
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Green tea—In Asia, green tea is consumed in the same amount as coffee in the Western
world [176]. Studies correlate the consumption of green tea with the low incidence of
stomach, esophagus, and liver cancers [176,184–187]. Polyphenol, the phytotherapeutic
substance in green tea, has been identified as an anticancer agent [184–187].

Adding to the above examples, Table 3 also displays other foods containing important
antioxidants [168,188–190].

Table 3. Antioxidants in foods.
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Acai berries 4

Almonds 4

Apricots 4

Artichokes 4

Avocados 4 4

Barley 4

Black
currants 4

Black rice 4

Blackberries 4

Blueberries 4

Brazil nuts 4

Broccoli 4 4

Brown rice 4

Brussels
sprouts 4

Butter 4

Cabbage 4

Carrots 4 4

Cauliflower 4 4

Cherries 4

Chicken 4

Chickpeas 4

Chives 4

Citrus 4 4 4

Cocoa 4

Coffee 4

Cottage
cheese 4

Dark
chocolate 4
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Egg yolk 4 4

Eggplant 4

Eggs 4

Extra virgin
olive oil 4

Flaxseed 4

Garlic 4

Grapefruit 4

Grapes 4

Green tea 4

Kale 4 4 4

Kiwi 4

Leeks 4

Lentils 4

Liver 4 4

Lobster 4

Mangoes 4 4

Mushrooms 4

Mustard
seed 4

Oatmeal 4

Onions 4 4

Oregano 4

Oysters 4

Papaya 4 4

Parsley 4 4 4

Peanuts 4

Peas 4

Pecans 4

Pineapples 4

Pinto beans 4

Pistachios 4

Pork 4 4

Pumpkins 4

Raspberries 4

Red bell
peppers 4
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Red grapes 4

Rye 4

Sardines 4

Sesame
seeds 4

Shiitake
mushrooms 4 4

Shrimp 4

Soybeans * 4

Spinach 4 4

Spirulina 4

Squash 4

Strawberries 4

Sweet
potatoes 4 4

Tea 4

Thyme 4

Tomatoes 4

Turnips 4

Watermelon 4

Whole
wheat bread 4

Wine 4

* Soybeans include Tofu, Edamame, and Tempeh. 4 indicates the presence of the compound.

Anthocyanins are part of the phenolic group with the pigments (red, purple, and blue)
in glycosylated forms and are found in black rice, blackberries, blueberries, eggplant,
grapes, and raspberry [191,192] (Table 3) with the most abundant pigment in plants, the
cyanidin-3-glucoside. Apart from being used as a natural food colorant, anthocyanins are
considered pharmaceutical ingredients that give various beneficial health effects, being re-
ported as having antidiabetic, anticancer, anti-inflammatory, antimicrobial, and antiobesity
effects [192–194].

Beta-carotene is part of the carotenoid family. It reaches our body partially transformed
into vitamin A, found mainly in colorful vegetables and fruits [195,196] (Table 3). B-carotene
administered orally was reported to be metabolized in the animal or human body to form
vitamin A, which is subsequently stored in the liver [195,196].

Catechins are flavanols found in wine, green tea, and cocoa [197,198], which have
potent antioxidant properties, in the meantime being known as reactive oxygen species
(ROS) scavengers and metal ion chelators. They have indirect antioxidant activities com-
prising induction of antioxidant enzymes, inhibition of pro-oxidant enzymes, production
of detoxification enzymes and antioxidant enzymes. For these reasons, they are being



Antioxidants 2023, 12, 860 16 of 32

considered beneficial in preventing and protecting against diseases caused by oxidative
stress [197,198].

Cryptoxanthines are found in butter, citrus, egg yolk, papaya, red bell peppers, and
pumpkins [199,200], having relatively high bioavailability from these natural resources [199].
Among other carotenoids, β-cryptoxanthin has high antioxidant activity and promotes free
radical scavenging, protecting against chronic diseases [200].

Copper is found in dark chocolate, liver, lobster, oysters, spirulina, and shiitake mush-
rooms [201,202], and it was shown that dietary copper could improve antioxidant capacity
and immune state [202].

Flavonoids are abundant in broccoli, citrus, kale, parsley, onions, strawberries, and
tea [203–206], and their antioxidant capacity has been intensely proven in the last years [203–206].
They are a large group of diverse polyphenolic compounds of plant origin classified into ma-
jor classes, including flavonols, flavones, flavanones, flavanols, anthocyanidins, isoflavones,
and chalcones [206], and nowadays are considered an indispensable component in a variety
of medicinal, pharmaceutical, nutraceutical, and cosmetic preparations [203–206].

Indoles are found in broccoli, cabbage, cauliflower, mustard seeds, and turnips [207,208].
They are known for their chemopreventive effects on hormone-dependent cancers and
inhibit proliferation, migration, and invasion of cancer cells in vitro studies [207,208].

Isoflavonoids can be found in chickpeas, peanuts, pistachio, and soybeans [209,210],
and they are very well known for their therapeutic properties, having anti-inflammatory,
estrogenic, antiestrogenic, anticancer, antibiotic, and radical scavenging activities [209] and
being involved as well in the prevention of cancer [210].

Lignans, in barley, flaxseed, rye, and sesame seeds [211,212], are used as pharmacologi-
cal agents in disorders related to oxidative stress and inflammation [211], as they possess a
strong anti-inflammatory and antioxidant capacity [211,212].

Lutein is one of the few xanthophyll carotenoids that is found in high concentration in
the macula of the human retina, and as it cannot be de novo synthesis within the human
body, lutein must be obtained from natural food, such as kale, and parsley, peas, spinach,
and tomatoes [213,214].

Lycopene is a carotenoid contained especially in tomatoes, with antioxidant and detox-
ifying properties. It helps the proper functioning of the cell growth process and has a
beneficial influence on the skin and mucous membranes [215,216]. Studies show that ly-
copene inhibits the development of esophageal, stomach, colon, breast, and prostate cancer
cells [215,216]. The antioxidant action of carotenoids includes their ability to capture singlet
oxygen, an action possible due to their chemical structure (Figure 6); lycopene, for example,
is the most effective of carotenoids in capturing the reactive oxygen species [215,216].
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Manganese is found in acai berries, almonds, brown rice, pecans, pineapples, pinto
beans, and whole wheat bread [217,218]. Due to its component integration for Mn su-
peroxide dismutase (MnSOD), it is mainly responsible for scavenging reactive oxygen
species (ROS) in mitochondrial oxidative stress [217]. Avoiding its deficiency and intoxica-
tion is essential as otherwise, the imbalance can lead to associated adverse metabolic and
neuropsychiatric effects [217,218].

Polyphenols stimulate the body’s natural defense capacity and protect human cells
from oxidative stress [219,220]. They prevent skin aging and degenerative diseases, such as
cardiovascular diseases, and osteoporosis [219] and have anticarcinogenic properties by
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suppressing tumor formation and progression [221–223]. Polyphenols, such as quercetin,
resveratrol, and curcumin, are more potent antioxidants than vitamins C and E, having a
faster antioxidant action [224,225], and enhancing the therapeutic profiles [226]. Polyphe-
nols are represented by several thousand plant-based molecules with antioxidant prop-
erties [227], classified into flavonoids (i.e., anthocyanins, flavanols, flavanones, flavonols,
flavonones, flavones, and isoflavones) and non-flavonoids (i.e., phenolic acids, xanthones,
stilbens, lignans, and tannins), and known for their high potential application in food
preservation and for therapeutic beneficial use [227].

Selenium is the main mineral antioxidant and deactivator of free radicals, and it is
effective in preventing degenerative diseases, including cancer and cardiovascular dis-
eases [228,229]. As an antioxidant, selenium acts by intervening in the activation of glu-
tathione peroxidase [230], an enzyme with a role in the detoxification of lipid and organic
peroxides in the cell, thus preventing alterations caused by peroxidation of cellular macro-
molecules [230]. Another action of selenium is influencing the activity of DNA polymerase
and nucleotide kinases or inducing the synthesis of selenoproteins [231,232]. Depending
on the dosage and chemical form of selenium and the nature of the carcinogenic stress, sele-
nium is proposed as an anticarcinogenic agent, owing, among other factors, to reversible or
irreversible inhibition of protein and DNA synthesis [230]. Selenium is an essential mineral
for both humans and animals, found in all types of soil around the world [228,229]. Plants
and small animal organisms convert selenium found in the soil into organic components,
such as seleno-methionine or chelated selenium, the form in which selenium is found in
food [233,234]. It binds to proteins and is absorbed into the body in its original form without
undergoing metabolic changes [233,234]. The human body needs this mineral in a small
amount, as a too high level can have toxic effects on the body, so the recommended daily al-
lowance of selenium is 55 mcg/day for women and 70 mcg/day for men, and the tolerable
upper limit is 400 mcg/day, while the deficiency is defined as less than 30 mcg/day [235].
Selenium deficiency has been reported quite rarely, and the need for selenium supplements
is not necessary and is available only by prescription in some cases [233,234].

Sulphur is a structural component in chives, garlic, leeks, and onions [236,237]. It is
an important element in biological systems as being integrated into proteins as the redox-
active cysteine residue or in vital antioxidant molecules, such as glutathione, thioredoxin,
and glutaredoxin [236,237].

Vitamin A or all-trans-retinal, which accumulates in the retina because of the absorption
of light by visual pigments, is found in carrots, egg yolk, liver, and sweet potatoes [238,239].
Being a liposoluble vitamin, a balance in its intake is to be considered [239].

Vitamin C or L-ascorbic acid is essential in maintaining health as it prevents and fights
infections, promotes wound healing, and prevents stress and fatigue [224,225]. Vitamin
C is also involved in skin health and protection, preventing the appearance of wrinkles
as well [240]. Vitamin C is a water-soluble vitamin and is also considered one of the
most important antioxidants, acting at the level of extracellular fluids [224,225]. Due to
its properties, its lack in the body leads to a drastic decrease in the immune system in
the fight against infections [241]. In contrast to most animals, the human body cannot
synthesize vitamin C, because of a mutation in the last enzyme required for ascorbate
biosynthesis [58,242]. Thus, vitamin C must be obtained from our daily diet [241]. The
oxidized form of ascorbic acid is represented by dehydroascorbic acid (Figure 7), and the
regeneration of ascorbate from this oxidized form is necessary to maintain sufficient tissue
levels of the reduced form of vitamin C [243].

Vitamin E is one of the best natural antiaging remedies, comprising eight forms of
tocopherols and tocotrienols [224,225]. Its action is particularly related to the genital sphere,
having an important role in the fecundity mechanism [244], stimulating cell regeneration,
protecting cells and tissues from the action of free radicals, and having a therapeutic role
in cancer [245]. Depending on the number and position of the methyl groups attached to
the chromanol ring, they are named by joining the Latin letters α, β, γ, and δ; α-tocopherol
(Figure 8) and γ-tocopherol being the most important forms of vitamin E [246] are found in
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vegetable oils, sunflower seeds, vegetables, and fruits [240]. Soybean oil contains a mixture
of γ, δ, and α-tocopherol, with a cited tocopherol content in corn oil and soybean oil of
77% and 70% γ-tocopherol, 2% and 23% δ-tocopherol, and 14% and 7% of α-tocopherol,
respectively [247].
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Zinc is an important mineral as the human body cannot store zinc reserves, so this
needs to be added to the diet, especially because zinc is influencing the immune system,
transcription factors, cell differentiation and proliferation, DNA and RNA synthesis and
repair, enzyme activation or inhibition, the regulation of cellular signaling, and the stabi-
lization of the cell structure and membranes [248,249]. Avocados, chicken, oatmeal, pork,
and Shiitake mushrooms present higher amounts of zinc [248,249].

Coenzyme Q10 is a fat-soluble antioxidant that ensures the transport of oxygen inside
the cells and the production of energy becoming amphiphilic following electron and proton
interactions [250]. Q10 represents its molecular structure, made up of 10 isoprene units
around the quinone ring, and the number of isoprene units in the side chain varies with
the species (Figure 9) [250,251]. Coenzyme Q10 is a natural compound, which is produced
in the body following the consumption of fish, sardines, nuts, green vegetables, soybeans,
and oilseeds [252]. It is a good ally against skin aging [253], and it is effective in preventing
and treating cardiovascular diseases, especially heart rhythm disorders [254,255], and
considerably reduces the risk of breast, uterine, lung, and colon cancers [256–260]. In
addition to the antioxidant function, coenzyme Q10 has the capacity to donate electrons,
contributing to the production of bioenergy by oxidizing glucose in the mitochondria,
where the free radicals are produced during the process of cellular respiration [89–92,261].

The plant-based diet has become the equivalent of many curative and prophylac-
tic treatments [48,109,262,263]. The importance of the consumption of vegetables and
fruits is explained by the beneficial intake of antioxidants as they are being active in nu-
merous biological processes of the body at the cellular level [109,264]. Moreover, most



Antioxidants 2023, 12, 860 19 of 32

studies [265–267] indicate that animal foods should be substantially reduced and replaced
with fresh, minimally processed plant foods to reduce the prevalence of cancer.
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4.2. Marine Algae Antioxidants

Considerable attention must be paid to the algae antioxidants as many recent studies
showed their high beneficial potential and importance (Figures 10 and 11) [268,269].

A classification of marine macroalgae is known as brown algae (Phaeophyceae), red
algae (Phylum Rhodophyta), and green algae (Phylum Chlorophyta), according to their pig-
mentation [270–272]. Representative species of brown, red, and green algae with higher
antioxidant activity are presented in Figure 10. Marine antioxidants from seaweeds have a
very high antioxidant potency, currently being known as the mechanisms of antioxidative
action for at least 301 macroalgal metabolites [270,273].

As shown in Figure 10, the trend of antioxidant potential is going from the highest
antioxidant activity of brown algae extract followed by red and green algae extract as
shown in several studies [270,274,275]. Their high antioxidant activity is probably due to
the synergetic coexistence of polyphenols and alkaloids [276,277].
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The future of marine algae extracts providing resources as food antioxidants additives
is very promising since they are containing compounds from polyphenols to carotenoids,
sterols, vitamins, and several others from at least 50,000 species of known marine microalgal
classes [273,279–281] (Figure 11). Moreover, the favorable biological activities of microalgae
are due to their intrinsic antioxidant, anti-inflammatory, and antitumoral features [279,282].

Their intrinsic mechanism of taking up H2O and CO2 combined with the sunlight, and
converting them to complex organic compounds, makes them subsequently kept inside
or released from the cell. Figure 11 represents the biological background of antioxidant
formation in microalgae as a response to oxidative stress, at the cellular level, listing the
main antioxidant compounds found in microalgae [270,273,279–287].

Fucoxanthin, for example, has a particularly interesting and unique molecular structure,
exhibiting antioxidant properties due to a long-conjugated backbone characteristic of
all carotenoids (Figure 12) [288], but possessing an unusual terminal allenic bond and
conjugated carbonyl groups [289]. Fucoxanthin is a member of the xanthophyll class of
carotenoids and is present at high concentrations in the brown algae Saccharina sp. [288–291],
where it plays a key role in light harvesting and radiation protection [291].
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Astaxanthin (Figure 13) is another fat-soluble xanthophyll carotenoid with a red
pigmentation, which is found in various microorganisms and marine animals and al-
gae [292,293] such as Haematococcus pluvialis, a green microalga, which accumulates high
astaxanthin amounts under stress conditions of high salinity, nitrogen deficiency, high
temperature, and light [294–296]. In a few years, it has been approved to be used as a food
colorant in animal and fish feed such as salmon, trout, and shrimp [292,297] and used as a
nutritional supplement and has been rapidly growing in foods, feeds, nutraceuticals, and
pharmaceuticals [298,299].

Antioxidants 2023, 12, 860 21 of 32 
 

 
Figure 12. The molecular structure of fucoxanthin (cis). 

Astaxanthin (Figure 13) is another fat-soluble xanthophyll carotenoid with a red pig-
mentation, which is found in various microorganisms and marine animals and algae 
[292,293] such as Haematococcus pluvialis, a green microalga, which accumulates high 
astaxanthin amounts under stress conditions of high salinity, nitrogen deficiency, high 
temperature, and light [294–296]. In a few years, it has been approved to be used as a food 
colorant in animal and fish feed such as salmon, trout, and shrimp [292,297] and used as 
a nutritional supplement and has been rapidly growing in foods, feeds, nutraceuticals, 
and pharmaceuticals [298,299]. 

 
Figure 13. The molecular structure of astaxanthin (trans). 

Other potential resources of marine macroalgae components known to exhibit signif-
icant antioxidant activities are marine secondary metabolites such as bromophenols (con-
taining one or several phenols with one or more bromine atoms), present in all three algae 
types, red, brown, and green algae, phlorotannins [273,300], terpenoids, and meroterpe-
noids [301], which are to be further investigated. 

5. Conclusions 
From endogenous to exogenous antioxidants mentioned in this review, we have out-

lined the special importance of the presence of antioxidants in food, fruits, and their con-
sumption, as well as their use as food additives. 

Given that over years, some food additives proved to have carcinogenic effects or to 
cause other health issues, exploring the use of alternative antioxidants in the food industry 
became a high priority. 

Understanding the biochemical defense mechanisms against free radicals and the 
mechanisms of antioxidant activity, altogether with the intracellular antioxidant balance, 
is complex as has been illustrated in this review. 

Marine resources of possible new food antioxidants are of much current interest due 
to their high biodiversity as well as their ability to adapt and colonize very different types 
of aquatic ecosystems. Further exploration of their properties via testing the antioxidant 
activity in vitro, and in vivo, including economic and environmental concerns and possible 
negative side effects such as toxicological issues is hence warranted. 

Figure 13. The molecular structure of astaxanthin (trans).

Other potential resources of marine macroalgae components known to exhibit sig-
nificant antioxidant activities are marine secondary metabolites such as bromophenols
(containing one or several phenols with one or more bromine atoms), present in all three
algae types, red, brown, and green algae, phlorotannins [273,300], terpenoids, and meroter-
penoids [301], which are to be further investigated.

5. Conclusions

From endogenous to exogenous antioxidants mentioned in this review, we have
outlined the special importance of the presence of antioxidants in food, fruits, and their
consumption, as well as their use as food additives.

Given that over years, some food additives proved to have carcinogenic effects or to
cause other health issues, exploring the use of alternative antioxidants in the food industry
became a high priority.

Understanding the biochemical defense mechanisms against free radicals and the
mechanisms of antioxidant activity, altogether with the intracellular antioxidant balance, is
complex as has been illustrated in this review.

Marine resources of possible new food antioxidants are of much current interest due
to their high biodiversity as well as their ability to adapt and colonize very different types
of aquatic ecosystems. Further exploration of their properties via testing the antioxidant
activity in vitro, and in vivo, including economic and environmental concerns and possible
negative side effects such as toxicological issues is hence warranted.
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109. Kurek, M.; Benaida-Debbache, N.; Elez Garofulić, I.; Galić, K.; Avallone, S.; Voilley, A.; Waché, Y. Antioxidants and Bioactive

Compounds in Food: Critical Review of Issues and Prospects. Antioxidants 2022, 11, 742. [CrossRef]
110. Lourenço, S.C.; Moldão-Martins, M.; Alves, V.D. Antioxidants of Natural Plant Origins: From Sources to Food Industry

Applications. Molecules 2019, 24, 4132. [CrossRef]
111. Li, J.; Lin, Y.; He, L.; Ou, R.; Chen, T.; Zhang, X.; Li, Q.; Zeng, Z.; Long, Q. Two New Isoprenoid Flavonoids from Sophora flavescens

with Antioxidant and Cytotoxic Activities. Molecules 2021, 26, 7228. [CrossRef]
112. Naheed, N.; Maher, S.; Saleem, F.; Khan, A.; Wadood, A.; Rasheed, S.; Choudhary, M.I.; Froeyen, M.; Abdullah, I.; Mirza,

M.U.; et al. New isolate from Salvinia molesta with antioxidant and urease inhibitory activity. Drug Dev. Res. 2021, 82, 1169–1181.
[CrossRef]

113. Arab, Z.; Jafarian, S.; Karimi-Maleh, H.; Roozbeh Nasiraie, L.; Ahmadi, M. Monitoring of Butylated Hydroxyanisole in Food and
Wastewater Samples Using Electroanalytical Two-Fold Amplified Sensor. Sustainability 2022, 14, 2169. [CrossRef]

114. Delanghe, T.; Huyghe, J.; Lee, S.; Priem, D.; Van Coillie, S.; Gilbert, B.; Choi, S.M.; Vandenabeele, P.; Degterev, A.; Cuny, G.D.; et al.
Antioxidant and food additive BHA prevents TNF cytotoxicity by acting as a direct RIPK1 inhibitor. Cell Death Dis. 2021, 12, 699.
[CrossRef] [PubMed]

115. Xu, X.; Liu, A.; Hu, S.; Ares, I.; Martínez-Larrañaga, M.-R.; Wang, X.; Martínez, M.; Anadón, A.; Martínez, M.-A. Synthetic
phenolic antioxidants: Metabolism, hazards and mechanism of action. Food Chem. 2021, 353, 129488. [CrossRef]

http://doi.org/10.3390/antiox10040579
http://doi.org/10.1155/2012/736837
http://doi.org/10.1089/ars.2011.4073
http://doi.org/10.1039/c1ra00474c
http://doi.org/10.3892/mmr.2018.8798
http://doi.org/10.1089/ars.2014.6025
http://www.ncbi.nlm.nih.gov/pubmed/25353619
http://doi.org/10.1016/j.mam.2008.08.006
http://www.ncbi.nlm.nih.gov/pubmed/18796312
http://doi.org/10.1515/BC.2009.033
http://doi.org/10.3390/nu11092073
http://www.ncbi.nlm.nih.gov/pubmed/31484368
http://doi.org/10.1016/j.redox.2015.01.002
http://doi.org/10.1155/2019/9613090
http://doi.org/10.3390/antiox9010078
http://doi.org/10.1021/cr4005296
http://www.ncbi.nlm.nih.gov/pubmed/24684599
http://doi.org/10.3389/fphys.2016.00594
http://www.ncbi.nlm.nih.gov/pubmed/27965593
http://doi.org/10.1016/j.jff.2020.103917
http://doi.org/10.1007/s13197-019-03952-x
http://doi.org/10.3390/antiox11091825
http://doi.org/10.3390/biom12101506
http://doi.org/10.3390/antiox11040742
http://doi.org/10.3390/molecules24224132
http://doi.org/10.3390/molecules26237228
http://doi.org/10.1002/ddr.21831
http://doi.org/10.3390/su14042169
http://doi.org/10.1038/s41419-021-03994-0
http://www.ncbi.nlm.nih.gov/pubmed/34262020
http://doi.org/10.1016/j.foodchem.2021.129488


Antioxidants 2023, 12, 860 26 of 32

116. Felter, S.P.; Zhang, X.; Thompson, C. Butylated hydroxyanisole: Carcinogenic food additive to be avoided or harmless antioxidant
important to protect food supply? Regul. Toxicol. Pharmacol. 2021, 121, 104887. [CrossRef] [PubMed]

117. Shamsadin-Azad, Z.; Taher, M.A.; Cheraghi, S.; Karimi-Maleh, H. A nanostructure voltammetric platform amplified with ionic
liquid for determination of tert-butylhydroxyanisole in the presence kojic acid. J. Food Meas. Charact. 2019, 13, 1781–1787.
[CrossRef]

118. Zhang, R.; Li, J.; Cui, X. Tissue distribution, excretion, and metabolism of 2,6-di-tert-butyl-hydroxytoluene in mice. Sci. Total
Environ. 2020, 739, 139862. [CrossRef]

119. Sun, Z.; Gao, R.; Chen, X.; Liu, X.; Ding, Y.; Geng, Y.; Mu, X.; Liu, T.; Li, F.; Wang, Y.; et al. Exposure to butylated hydroxytoluene
compromises endometrial decidualization during early pregnancy. Environ. Sci. Pollut. Res. Int. 2021, 28, 42024–42036. [CrossRef]

120. Mizobuchi, M.; Ishidoh, K.; Kamemura, N. A comparison of cell death mechanisms of antioxidants, butylated hydroxyanisole
and butylated hydroxytoluene. Drug Chem. Toxicol. 2022, 45, 1899–1906. [CrossRef]

121. Abou-Hadeed, A.H.; Mohamed, A.T.; Hegab, D.Y.; Ghoneim, M.H. Ethoxyquin and Butylated Hydroxy Toluene Distrub the
Hematological Parameters and Induce Structural and Functional Alterations in Liver of Rats. Arch. Razi Inst. 2021, 76, 1765–1776.

122. Nieva-Echevarría, B.; Manzanos, M.J.; Goicoechea, E.; Guillén, M.D. 2,6-Di-Tert-Butyl-Hydroxytoluene and Its Metabolites in
Foods. Compr. Rev. Food Sci. Food Saf. 2015, 14, 67–80. [CrossRef]

123. Zhao, M.T.; Liu, Z.Y.; Li, A.; Zhao, G.H.; Xie, H.K.; Zhou, D.Y.; Wang, T. Gallic acid and its alkyl esters emerge as effective
antioxidants against lipid oxidation during hot air drying process of Ostrea talienwhanensis. LWT 2021, 139, 110551. [CrossRef]

124. Choubey, S.; Varughese, L.R.; Kumar, V.; Beniwal, V. Medicinal importance of gallic acid and its ester derivatives: A patent review.
Pharm. Pat. Anal. 2015, 4, 305–315. [CrossRef]

125. Kahkeshani, N.; Farzaei, F.; Fotouhi, M.; Alavi, S.S.; Bahramsoltani, R.; Naseri, R.; Momtaz, S.; Abbasabadi, Z.; Rahimi, R.; Farzaei,
M.H.; et al. Pharmacological effects of gallic acid in health and diseases: A mechanistic review. Iran J. Basic Med. Sci. 2019,
22, 225–237. [PubMed]

126. Badhani, B.; Sharma, N.; Kakkar, R. Gallic acid: A versatile antioxidant with promising therapeutic and industrial applications.
RSC Adv. 2015, 5, 27540–27557. [CrossRef]

127. Keramat, M.; Niakousari, M.; Golmakani, M.T. Comparing the antioxidant activity of gallic acid and its alkyl esters in emulsion
gel and non-gelled emulsion. Food Chem. 2023, 407, 135078. [CrossRef]

128. Perazzoli, M.R.; Perondi, C.K.; Baratto, C.M.; Winter, E.; Creczynski-Pasa, T.B.; Locatelli, C. Gallic Acid and Dodecyl Gallate
Prevents Carbon Tetrachloride-Induced Acute and Chronic Hepatotoxicity by Enhancing Hepatic Antioxidant Status and
Increasing p53 Expression. Biol. Pharm. Bull. 2017, 40, 425–434. [CrossRef] [PubMed]

129. Delgado, A.; Al-Hamimi, S.; Ramadan, M.F.; De Wit, M.; Durazzo, A.; Nyam, K.L.; Issaoui, M. Contribution of Tocols to Food
Sensorial Properties, Stability, and Overall Quality. J. Food Qual. 2020, 2020, 8885865. [CrossRef]

130. Shahidi, F.; de Camargo, A.C. Tocopherols and Tocotrienols in Common and Emerging Dietary Sources: Occurrence, Applications,
and Health Benefits. Int. J. Mol. Sci. 2016, 17, 1745. [CrossRef]

131. Li, G.X.; Lee, M.J.; Liu, A.B.; Yang, Z.; Lin, Y.; Shih, W.J.; Yang, C.S. δ-Tocopherol is more active than α- or γ-tocopherol in
inhibiting lung tumorigenesis in vivo. Cancer Prev. Res. 2011, 4, 404–413. [CrossRef]

132. Jiang, Q. Natural Forms of Vitamin E as Effective Agents for Cancer Prevention and Therapy. Adv. Nutr. 2017, 8, 850–867.
[CrossRef]

133. Tufiño, C.; Bernal, C.; Ottone, C.; Romero, O.; Illanes, A.; Wilson, L. Synthesis with Immobilized Lipases and Downstream
Processing of Ascorbyl Palmitate. Molecules 2019, 24, 3227. [CrossRef]
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