antioxidants

Review

Grape Pomace as a Cardiometabolic Health-Promoting
Ingredient: Activity in the Intestinal Environment

Diego Taladrid (¥, Miguel Rebollo-Hernanz 1-2(5, Maria A. Martin-Cabrejas '>(, M. Victoria Moreno-Arribas !

and Begoiia Bartolomé /*

check for
updates

Citation: Taladrid, D.; Rebollo-Hernanz,
M.; Martin-Cabrejas, M.A;
Moreno-Arribas, M.V.; Bartolomé, B.
Grape Pomace as a Cardiometabolic
Health-Promoting Ingredient:
Activity in the Intestinal
Environment. Antioxidants 2023, 12,
979. https://doi.org/10.3390/
antiox12040979

Academic Editor: Sunmin Park

Received: 3 April 2023
Revised: 18 April 2023
Accepted: 19 April 2023
Published: 21 April 2023

Copyright: © 2023 by the authors.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license (https://
creativecommons.org/licenses /by /
4.0/).

1 Institute of Food Science Research (CIAL, CSIC-UAM), C/Nicolas Cabrera, 9, 28049 Madrid, Spain
Department of Agricultural Chemistry and Food Science, Faculty of Science, C/Francisco Tomas y Valiente, 7,
Universidad Auténoma de Madrid, 28049 Madrid, Spain

*  Correspondence: b.bartolome@csic.es

Abstract: Grape pomace (GP) is a winemaking by-product particularly rich in (poly)phenols and
dietary fiber, which are the main active compounds responsible for its health-promoting effects.
These components and their metabolites generated at the intestinal level have been shown to play an
important role in promoting health locally and systemically. This review focuses on the potential
bioactivities of GP in the intestinal environment, which is the primary site of interaction for food
components and their biological activities. These mechanisms include (i) regulation of nutrient diges-
tion and absorption (GP has been shown to inhibit enzymes such as x-amylase and «-glucosidase,
protease, and lipase, which can help to reduce blood glucose and lipid levels, and to modulate the
expression of intestinal transporters, which can also help to regulate nutrient absorption); (i7) modu-
lation of gut hormone levels and satiety (GP stimulates GLP-1, PYY, CCK, ghrelin, and GIP release,
which can help to regulate appetite and satiety); (iii) reinforcement of gut morphology (including the
crypt-villi structures, which can improve nutrient absorption and protect against intestinal damage);
(iv) protection of intestinal barrier integrity (through tight junctions and paracellular transport);
(v) modulation of inflammation and oxidative stress triggered by NF-kB and Nrf2 signaling pathways;
and (vi) impact on gut microbiota composition and functionality (leading to increased production
of SCFAs and decreased production of LPS). The overall effect of GP within the gut environment
reinforces the intestinal function as the first line of defense against multiple disorders, including
those impacting cardiometabolic health. Future research on GP’s health-promoting properties should
consider connections between the gut and other organs, including the gut-heart axis, gut-brain axis,
gut-skin axis, and oral-gut axis. Further exploration of these connections, including more human
studies, will solidify GP’s role as a cardiometabolic health-promoting ingredient and contribute to
the prevention and management of cardiovascular diseases.

Keywords: grape pomace; (poly)phenols; dietary fiber; intestinal environment; digestive enzymes;
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stress; gut microbiota

1. Introduction

Grape pomace (GP) is the solid residue from the winemaking process and is composed
mainly of grape skins and seeds [1]. Currently, GP is probably one of the food by-products
most commonly used in the formulation of dietary supplements and fortified foods [2,3].
The potential health-promoting properties of GP are mainly attributed to its (poly)phenols
and dietary fiber content, among other components. It is estimated that around 60-70% of
the phenolic compounds of the grape remain in the pomace after winemaking [4], account-
ing for 4.8-5.4% of GP dry matter [5]. GP (poly)phenols encompass non-flavonoids such as
hydroxybenzoic acids (C6-C1) (i.e., gallic, protocatechuic, and vanillic acids), hydroxycin-
namic acids (C6-C3) (i.e., p-coumaric, caffeic, and ferulic acids) and stilbenes (C6-C2-C6)
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(i.e., resveratrol, piceatannol, and resveratrol dimers), and flavonoids (C6-C3-C6) such as
flavanols (i.e., catechins, procyanidins and polymeric proanthocyanidins or condensed
tannins), anthocyanins (i.e., derivatives of malvidin, petunidin, cyanidin, peonidin and
delphinidin) and flavonols (i.e., derivatives of quercetin, myricetin, and kaempferol) [6].
Dietary fiber is the major component of GP, ranging between 29 and 58% in dry weight [7,8].
The fiber present in GP is fundamentally insoluble and is mainly made up of structural
polysaccharides such as cellulose, hemicelluloses (xyloglucans, arabinans, galactans, xy-
lans, and mannans), pectins, and lignin [7]. These polysaccharides are commonly bound
to (poly)phenols and other non-digestible compounds, forming what was denominated
“antioxidant dietary fiber” [9].

For its use in the food industry, fresh pomace usually undergoes a process of extraction,
resulting in the concentration of both (poly)phenols and dietary fiber. Extracts are further
stabilized by adding encapsulation agents such as maltodextrins [10]. For example, Table 1
reports the composition of (poly)phenols and dietary fiber of four GP-derived extracts. In
these products, the (poly)phenols content is normally referred to as the free phenolics solu-
bilized in organic solvents used for their determination. In contrast, the fiber is determined
as the percentage of soluble and insoluble fractions or as alcohol-insoluble residue (AIR)
that might include phenolics bound to polysaccharides. These data give an idea of the
GP’s compositional variability depending on the starting grapes’ diversity (variety, state of
maturity, etc.), the winemaking process, and the extraction and stabilization processes [10].

Table 1. Some examples of industrially manufactured GP-derived extracts: RGPE and RGPE2
(red grape pomace extracts), ORGPE (organic red grape pomace extract), and WGPE (white grape
pomace extract).

RGPE RGPE2 ORGPE WGPE
Total (poly)phenols (mg/g) ? 48.0 £4.1 13.0+23 57+05 35+05
Phenolic acids (ug/g) @ 1843.0 £+ 23.2 652.5 +12.6 853.7 £ 15.2 1211.8 £ 20.1
Flavonols (ug/g) @ 72.7 + 35 nd 87.0+7.6 nd
Flavan-3-ols (ug/g) @ 2763 +7.6 nd 682.8 + 8.7 2952 £ 6.1
Anthocyanins (ug/g) 2 nd nd 1706.2 £ 21.7 nd
AIR (mg/g) ® 930.5 + 18.1 819.4 +18.9 969.8 +22.3 613.1 +21.8
Glucose (mg/g AIR) b ¢ 446.6 + 2.1 270.4 + 0.6 598.4 + 4.5 8393+ 1.7
Galactose (mg/g AIR) P ¢ 288 +1.1 32407 369 +2.8 477+ 1.1
Mannose (mg/g AIR) b,c 59+03 174+02 4+02 2.7 +£0.1
Rhamnose (mg/g AIR) P ¢ 32402 57402 21+0.1 6.3+0.1
Uronic acids (mg/g AIR) b, c 62.6 +4.2 441 4+29 58.1 +4.8 522+ 2.6
Total sugars (mg/g AIR) 555.9 374.3 702.3 969.1
Klason lignin (mg/g AIR) 161 +9.3 228+ 3.6 1184 +£13.3 193.6 + 26.8

a Reported in Taladrid et al. [11]. ® Unpublished results. ¢ After hydrolysis (12 M H,S0y, 3 h and room temperature,
followed by 0.6 M H,SOy4, 3 h and 100 °C). nd: non-detected.

GP-derived products have been proposed to manage cardiovascular risk factors,
including endothelial dysfunction, inflammation, hypertension, hyperglycemia, and obe-
sity [12]. In this sense, some human intervention studies have evidenced reductions in
blood pressure (BP) between 3 and 8% after GP supplementation in individuals with vari-
ous symptoms of metabolic syndrome [13,14], which reached up to 14.5% in patients who
suffered from hypertension [15,16]. However, other studies have reported almost no effects
on BP after supplementation with GP (poly)phenols [17,18], which could be attributed to
differences in the composition of the GP-derived products, doses, targeted population, etc.
There is also a growing interest in evaluating the effect of GP on the regulation of base-
line hyperglycemia, considered an early defect of type 2 diabetes and one of the primary
anti-diabetic targets. Several intervention studies have suggested the ability of GP-derived
products to reduce plasma glucose levels [14,18,19].
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Nevertheless, in a certain way, it can be said that this activity of GP as a cardiometabolic
health-promoting ingredient would begin in the gastrointestinal tract as GP components
(i.e., (poly)phenols and fiber) undergo extensive catabolism, mainly by the action of the
intestinal microbiota, that gives rise to low-molecular-weight bioactive compounds that can
be absorbed and utilized by the body [20]. Dietary (poly)phenols are metabolized by the gut
microbiota and concentrated in the gut lumen, reaching biologically relevant concentrations
that allow them to exert local beneficial effects [21]. Regarding GP (poly)phenols, microbial
catabolism pathways of the different flavonoid classes (anthocyanins, flavonols, flavan-
3-ols, etc.) are known to share similar intermediate and end products such as benzoic,
cinnamic, phenylacetic, and phenylpropanoic acids [22]. These phenolic metabolites are
better absorbed than their precursors, occurring in plasma and urine as phase I and
phase II-conjugated derivatives, and seem primarily responsible for the positive health
activities in tissues and organs (systemic effects). Hepatic metabolism is a crucial step in
the biotransformation of (poly)phenols, as it enables the formation of more bioavailable
and biologically active metabolites that can exert beneficial effects on various tissues and
organs [21,22]. Among other mechanisms, GP (poly)phenols and their metabolites appear to
modulate the cell redox state by direct and indirect mechanisms such as inhibition of oxidant
enzymes, activation of enzymatic and non-enzymatic antioxidant systems, and regulation
of gene expression of antioxidants by interaction with redox signaling pathways [12].
The GP fiber fraction is fermented by colonic microbiota yielding short-chain fatty acids
(SCFAs) such as acetate, butyrate, and propionate. SCFAs present cardioprotective effects,
including modulating blood pressure and glucolipid metabolism, promoting post-infarction
cardiac repair, anti-inflammation, and maintaining the gut barrier [23]. Notably, the two
components, (poly)phenols and dietary fiber, interact in the body affecting their metabolism
in the colon, which in turn may affect long-term systemic health effects [24].

Therefore, our goal in this paper was to disclose the potential bioactivities of GP -as a
whole- in the intestinal environment, not only as a new target of health-promoting proper-
ties at the local level but also as the beginning for further effects at the systemic level (i.e.,
cardiometabolic effects). After a peer review, we have identified six main targets of potential
bioactivity of GP in the gut: (i) nutrient digestion and absorption, (ii) enteroendocrine gut
hormones release and satiety, (iif) gut morphology, (iv) intestinal barrier integrity, (v) intesti-
nal inflammatory and oxidative status, and (vi) gut microbiome (Figure 1). The following
sections (Sections 2-7) recompile the most recent studies concerning the effects of GP intake
on each of these issues, and the final section (Section 8) compiles the overall conclusions
from all of them.

The search strategy for the literature review focused on the effects of GP on the in-
testinal environment (nutrient digestion and absorption, enteroendocrine gut hormones
release and satiety, gut morphology, intestinal barrier integrity, intestinal inflammatory
and oxidative status, and gut microbiome). The review included publications from 2010
onwards, sourced from online databases such as Scopus, Web of Science, Wiley, ScienceDi-
rect, SpringerLink, and Google Scholar. In instances where information was scarce or
crucial to the discussion, a small number of older references were also included. The
literature was searched using keywords such as grape pomace, grape marc, winemaking
by-products, grape residues, nutrient digestibility, intestinal enzyme, intestinal transporter,
enteroendocrine hormone, intestinal barrier integrity, inflammation, oxidative stress and
gut microbiota. In vitro and in vivo studies and articles focused solely on specific molecules
were excluded from the main text. The relevance of each study was evaluated using a
hierarchical approach based on the title, abstract, and full manuscript.
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Figure 1. Scheme of the potential bioactivity of grape pomace (GP) in the intestinal environment.

2. Effects of GP on Intestinal Nutrient Digestion and Absorption

In this section, we examine the impact of GP on intestinal nutrient digestion and
absorption. Rich in dietary fiber and (poly)phenols, GP influences nutrient digestion
and absorption through several mechanisms: physically impeding nutrient digestion and
absorption, regulating intestinal enzymes, and modulating the expression of intestinal
transporters. Gaining a deeper understanding of these mechanisms will offer valuable
insights into the potential health benefits of GP and its role in modulating metabolic
processes and promoting cardiovascular health.

2.1. Physical Impediment on Nutrient Digestion and Absorption

GP is a rich source of both soluble and insoluble dietary fibers. The insoluble fraction
can increase the bulk of the stool and promote food movement through the digestive tract,
reducing the time available for nutrient absorption [25]. In contrast, soluble fiber can form
a gel-like substance in the gut, leading to delayed gastric emptying and slower nutrient
absorption [26]. While this effect can be beneficial for regulating blood sugar levels, it may
also limit the bioavailability of some nutrients. The high dietary fiber content in GP can
slow down the rate of glucose absorption in the small intestine by forming a viscous gel-like
matrix. This hinders the accessibility of digestive enzymes to carbohydrates and glucose
diffusion, resulting in a more gradual release of glucose into the bloodstream [27-30]. This
mechanism contributes to better glycemic control and reduced insulin spikes [31].

The soluble fiber in GP can also interfere with the emulsification process, which is
necessary for the hydrolysis of triglycerides and subsequent fat absorption [30,32]. In
addition to its effects on fat absorption, GP has been shown to lower dietary cholesterol ab-
sorption through multiple mechanisms. Specifically, GP’s soluble fiber and (poly)phenols
can bind to bile salts in the intestine, reducing their reabsorption and promoting their
excretion [33,34]. This leads to the liver utilizing more circulating cholesterol to synthe-
size new bile salts, ultimately resulting in decreased serum cholesterol levels. Moreover,
(poly)phenols and dietary fibers in GP have been shown to inhibit intestinal cholesterol
absorption by destabilizing cholesterol micelles, thereby reducing cholesterol solubility
and availability [33,35]. These mechanisms have potential implications for reducing the
risk of cardiovascular diseases and improving overall lipid profiles.
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2.2. Regulation of Intestinal Enzymes

At the intestinal lumen, enzymes (x-amylase and «-glucosidase, protease, and lipase)
are implicated in the digestion of primary macronutrients: carbohydrates, proteins, and
lipids, respectively (Figure 2). Numerous studies have long shown the inhibitory capacity
of (poly)phenols and dietary fiber separately against intestinal enzymes. It is widely known
that (poly)phenols interact with enzymes, being these interactions through van der Waals,
electrostatic forces, and hydrogen, as well as hydrophobic binding [36]. Concerning dietary
fiber, enzyme-inhibitory capacity might be related to the inhibitors present on the surface
of the insoluble fiber as well as the trapping capacity of the porous fiber network [32,37].

Figure 2. Schematic representation of the effects of GP on nutrient digestion and absorption.

However, studies about the GP capacity -as a whole- to inhibit the activity of intesti-
nal enzymes are quite recent; it should be noted that they are mainly based on in vitro
assays using microbial and animal enzymes, and GP-derived products are tested directly,
without previous intestinal digestion. A recompilation of these studies for x-amylase and
a-glucosidase has just been done by Cisneros-Yupanqui et al. [38]. From the ten studies
recompiled [28,31,39-46], only that of Kato-Schwartz et al. [31] evaluated in vivo inhibi-
tion of x-amylase and «-glucosidase by running starch and maltose tolerance tests in rats
with or without administration of a GP extract. From the revised studies, the authors
concluded that GP, especially the red varieties, can be perceived as a possible source of
a-amylase and «-glucosidase inhibitors. However, further investigations are necessary to
understand key factors such as the bioavailability and the physiological responses to the
GP components [38].
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The action of GP on purified intestinal proteases and peptidases has been scarcely
evaluated [40]. However, studies with complex enzymatic sources such as snake venoms
indicated that the dried GP exerted inhibitory actions on proteolytic activity in conjunction
with other phospholipase, hemolytic, and thrombolytic activities [47]. In relation to lipases,
direct GP extracts were found to inhibit pure lipases obtained from porcine pancreas [41]
and also cholesterol esterase [33], although no studies have been carried out to confirm
these results in vivo.

In addition to its other effects, inhibiting carbohydrate-hydrolyzing enzymes such
as x-amylases and x-glucosidases in the digestive system can help prevent glucose ab-
sorption, thereby reducing postprandial hyperglycemia. This is particularly important
as postprandial hyperglycemia is a significant component of all forms of diabetes [48].
Concurrently, intestinal lipase plays an important role in triacylglycerols absorption, which
is related to body weight control and obesity [49]. Therefore, this capacity of GP to inhibit
intestinal enzymes has been suggested to be behind, at least partly, its cardiometabolic
potential proved in vivo [50,51].

2.3. Regulation of Intestinal Transporters

Intestinal transporters are essential for the absorption of nutrients, including sugars,
lipids, amino acids, and vitamins, from the gut lumen into the bloodstream (Figure 2).
Modifying intestinal transporter expression can have significant implications for nutrient
uptake, gut health, and overall cardiovascular health. GP has been reported to influence
the expression of glucose transporters, particularly sodium-dependent glucose transporter
1 (SGLT1) [52], facilitative glucose transporter 2 (GLUT2) [52-54], and fructose transporter
(GLUTS5) [54], which are responsible for sugars absorption in the small intestine [24]. Stud-
ies have demonstrated that GP (poly)phenols and polysaccharide-(poly)phenol complexes
can enhance the expression of these transporters, leading to improved glucose uptake and
blood glucose regulation [24,55]. GP has been shown to impact the expression of lipid
transporters (cholesterol and fatty acids), such as Niemann-Pick C1-like 1 (NPC1L1) [56],
fatty acid binding protein 1 (FABP1), and fatty acid translocase (CD36) [57], and bile salt
transporters [56,58]. Studies suggest that GP (poly)phenols may downregulate the expres-
sion of these transporters, resulting in reduced cholesterol and bile salts absorption [59],
which can be beneficial in managing lipid levels and cardiovascular health.

In brief, GP’s impact on nutrient digestion and absorption is multifaceted, mediated
by its high content of dietary fiber and (poly)phenols, as summarized in Table 2. GP can
physically impede nutrient absorption and regulate intestinal enzymes, as mentioned above.
Furthermore, GP can modulate the expression of intestinal transporters, such as SGLT1,
GLUT2, and NPC1L1, affecting the absorption of sugars and lipids. These mechanisms
contribute to better glycemic control and reduced serum cholesterol levels, potentially
lowering the risk of cardiovascular diseases. Gaining a deeper understanding of these
mechanisms will provide valuable insights into the potential health benefits of GP and its
role in modulating metabolic processes and promoting cardiovascular health.

Table 2. Effect of GP on nutrient digestion and absorption using in vitro and in vivo models.

Effect of GP on Effect of GP on Effect of GP on

Nutrient Physical Impediment Refs. Intestinal Enzymes Refs. Nutrient Transport Refs.
1 Glucose diffusion [29] a-amylase inhibition [31,39-45] CSQSII}TFlZ Ccll%‘:llvri‘ee%gljla;tl;r; [5[25_25]4]
Carbohydrates ) o o-elucosidase GLUTS5 downregulation [54]
Starch digestibility [27,28,30] glucos [28,31,40,42-46]
inhibition | Intestinal glucose uptake [24]
; ; PR CD36 downregulation [57]
Lipids ¢ }"{nctlglylcer}de 130] Pan.crefa\t%c. lipase [33,39-41,46] &
ydrolysis inhibition FABP1 downregulation [57]
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Table 2. Cont.
. Effect of GP on Effect of GP on Effect of GP on
Nutrient Physical Impediment Refs. Intestinal Enzymes Refs. Nutrient Transport Refs.
NPC1L1 downregulation [56]
Cholesterol J Micellar cholesterol [33] ChOIe_StelTO! esterase [33] g
inhibitor 1 Intestinal cholesterol uptake [59]
Bile salts Binding [33] — — ASBT downregulation [56,58]
Trypsin inhibition
Proteins J Protein hydrolysis [30] Chymotrypsin [40] PEPT1 downregulation [54]
inhibition

1: Decrease in; SGLT1: sodium-glucose co-transporter 1, GLUT2: glucose transporter 2; GLUTS5: fructose
transporter; CD36: fatty acid translocase; FABP1: fatty acid-binding protein 1; NPC1L1: Niemann-Pick C1-like 1;
ASBT: apical sodium-dependent bile acid transporter; PEPT1: H* /peptide transporter 1.

3. Effects of GP on Enteroendocrine Gut Hormones Release and Satiety

Numerous animal model studies have shown that GP can modulate gut hormone
levels, such as glucagon-like peptide-1 (GLP-1), peptide YY (PYY), cholecystokinin (CCK),
ghrelin, and glucose-dependent insulinotropic polypeptide (GIP), which play crucial roles
in regulating satiety and regulating food intake [60-62] (Figure 3).

GP has been shown to stimulate the release of GLP-1 in vitro and in vivo [63,64], an
incretin hormone that enhances insulin secretion, inhibits glucagon release and reduces
glycemia [65], and promotes satiety, potentially through the activation of specific G-protein-
coupled receptors [66]. Increased GLP-1 levels may contribute to enhancing satiety and
reducing food intake, thereby promoting weight management. The phenolic content in GP
may contribute to this effect [67,68], associated with an increased L-cell number [68].

GP has been reported to increase PYY levels [64,69], another gut hormone that plays
a role in appetite regulation and energy balance. Both dietary fiber and (poly)phenols
in GP may be responsible for this effect [68]. Additionally, CCK, a hormone involved in
digestion and satiety, has been shown to increase following GP consumption [64,70]. GP’s
high (poly)phenol content may contribute to this effect by interacting with gut receptors
and stimulating CCK release.

GP has been found to decrease ghrelin levels, an appetite-stimulating hormone [55,61].
Ghrelin stimulates gastrointestinal motility, reduces fat utilization and glucose-stimulated
insulin release, increases body weight, and, notably, increases appetite [62]. The mecha-
nisms underlying this ghrelin-reducing effect may include the influence of GP bitter-sensing
(poly)phenols on ghrelin secretion [63] and the inhibitory effects of dietary fiber on ghrelin
release [64].

GIP is an incretin hormone secreted by the K-cells in the proximal small intestine.
GIP plays a role in stimulating insulin secretion in response to food intake, particularly
carbohydrate-rich meals, and modulating lipid metabolism [71]. The potential mechanism
through which GP might affect GIP secretion could be via the fermentation of its dietary
fiber content by gut microbiota, producing SCFAs such as acetate, propionate, and butyrate.
SCFAs have been implicated in the regulation of gut hormones, including GIP [72,73].
Furthermore, GP contains bioactive (poly)phenols, which may influence GIP release [63].

Dipeptidyl peptidase-IV (DPP-1V) is an enzyme that plays a crucial role in regulating
incretin hormones, such as GLP-1 and GIP. DPP-1V rapidly degrades these incretins, reduc-
ing their insulin-stimulating and appetite-suppressing effects. Inhibition of DPP-1V activity
can lead to increased levels of GLP-1 and GIP, improving glucose control and promoting
satiety [65]. GP and grape seed proanthocyanidin extracts have demonstrated DPP-IV
inhibitory activity in vitro and in vivo [63,74], suggesting a potential role in modulating
incretin hormone levels and improving satiety and glycemic control.

In summary, although the evidence on humans is still scarce, accumulating in vitro
and in vivo research indicates that GP modulates gut hormones involved in regulating
food intake and satiety. GP’s phenolic and fiber content can increase GLP-1, PYY, and CCK
levels while decreasing ghrelin levels, potentially promoting weight management. GP may
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also improve glycemic control by inhibiting DPP-IV and promoting GIP secretion. Overall,
these findings suggest that GP has a potential as a dietary intervention for managing weight
and improving glucose control.

. Gastric fundus . Duodenum . Jejunum _ _ lleum/Colon
(4) Increased CKK release (8) Increased satiety

Figure 3. Schematic representation of the effects of GP on enteroendocrine hormone secretion. GLP-1
is secreted in L-cells in the distal ileum and colon, PYY in L-cells in the distal ileum and colon, CCK
in I-cells in the duodenum and jejunum, ghrelin in X/A-like cells in the fundus of the stomach,
GIP in K-cells in the duodenum and jejunum, and DPP-IV in the brush border membrane of the
enterocytes primarily in the duodenum and jejunum. Numbers represent those activities associated
with GP in several in vitro and in vivo experiments: (1): Li et al. [63]; Casanova-Marti et al. [64];
(2): Casanova-Marti et al. [68]; (3): Casanova-Marti et al. [64,68]; Casanova-Marti et al. [69];
(4): Casanova-Marti et al. [64]; Ginés et al. [70]; (5): Serrano et al. [75]; (6): Lietal. [63]; (7): Li et al. [63];
Gonzalez-Abuin et al. [65,74]; (8): Serrano et al. [60,62,64].

4. Effects of GP on Gut Morphology

The gut morphology (i.e., crypt-villi structures) is a key aspect of the absorptive capac-
ity of the intestine. The intestinal tract is lined by a single layer of epithelium originating
from stem cells at the base of each crypt, giving rise to four major types of epithelial cells:
absorptive enterocytes, enteroendocrine cells, which export peptide hormones, goblet cells,
responsible for mucus segregation, stem cells, responsible for maintaining and repairing
the tissue that lines the gut, paneth cells which secrete antimicrobial defensins, digestive
enzymes, and growth factors, and tuft cells, with a role in the immune system, nutrient
sensing, and gut motility regulation (Figure 4) [76]. Presumably, an impaired villus/crypt
ratio implies reduced digestive capacity and imbalance in the intestinal barrier. In fact,
decreased villus height/crypt depth ratio is a common response in animals treated with
dextran sodium sulphate (DSS) or 2,4,6-trinitrobenzene sulfonic acid (TNBS), two inductors
of intestinal damage [52,77].
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Figure 4. Schematic representation of villus/crypt structures in the duodenum epithelium. Numbers
represent those activities linked to gut morphology associated with GP in several in vivo models:
(1): Bibi et al. [52]; Wang et al. [78]; (2): Wang et al. [78]; Wang et al. [79]; Gessner et al. [80]; Zhang
et al. [81]; (3): Bibi et al. [52]; Lu et al. [82]; Pistol et al. [83].

In this line, several authors reported increased villus length [52,78] or villus height/crypt
depth ratio [78-81] and decreased crypt depth [81,84] in the jejunum, ileum, and colon cells
from rodents, lambs, pigs, and broilers fed with GP-derived products. These products
were also responsible for reducing the colonic lesion and colon shortening in rats sub-
jected to stressful DSS and TNBS treatments [77,85], with the dietary fiber and fiber-bound
(poly)phenols of the GP being more effective than free (poly)phenols [85]. This response
may be a consequence of the increase in villin, a calcium-regulated actin-binding protein
inhabiting the intestinal brush border and related to epithelial differentiation, which in turn
was responsible for the rise in goblet cell density [52]. In contrast, these outcomes enhance
mucosal thickness promoted by GP products [52] and upregulation of genes involved in
extracellular mucin secretion (i.e., Mucl, Muc2, and Muc3) [82,83]. Furthermore, as a sec-
ondary issue derived from the consumption of GP (poly)phenols, it has also been described
the enhanced expression of genes related both to nutrient transporters in general [52] but
specifically to (poly)phenols absorption [82].

The reduction in the inner surface area due to the defective development of crypt-villi
structures might result in various intestinal dysfunctions and disorders such as celiac
disease, inflammatory bowel disease, colorectal cancer, and brush border-related en-
teropathies [86]. The evidence reviewed herewith indicates that GP-derived products
might help in the management of these pathologies, although, to our knowledge, there are
still no specific human interventions with GP concerning them.

5. Effects of GP on Intestinal Barrier Integrity

As mentioned above, the intestinal barrier is a dynamic structure that separates the
internal part of the host from the intestinal lumen. Of particular importance for the in-
tegrity of the intestinal barrier are the tight junctions (T]) formed between neighboring
epithelial cells, including several proteins such as occludins, claudins, junctional adhesion
molecules, and plaque proteins [87] (Figure 5). The intestinal barrier selectively allows or
restricts the exchange of water, ions, and macromolecules between the intestinal lumen and
the underlying tissues. This exchange occurs through both transcellular pathways, gov-
erned by the cell-specific profile of transporters and channels, and paracellular pathways,
mainly controlled by T]. However, the disruption of the intestinal barrier results in what is
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known as the “leaky gut” and has been related to inflammation processes and intestinal
dysfunction [88].

Tight junction dysfunction R l

Figure 5. Schematic representation of intestinal epithelium (enterocytes). LPS: lipopolysaccharide;
Z0: Zonula occludens or tight junction protein. Numbers represent those activities associated with
GP in several in vitro and in vivo models: (1): Pistol et al. [83]; Gil-Cardoso et al. [89]; (2): Pistol
et al. [83]; (3): Maurer et al. [85]; Pistol et al. [83]; (4): Nallathambi et al. [90]; Reiche and Huber [91];
(5): Hidalgo-Liberona et al. [92]; Yang et al. [93]; Cremonini et al. [94]; Gil-Cardonso et al. [95];
Gonzalez-Quilen et al. [96]; (6): Taladrid et al. [97].

In recent years, there has been growing interest in how food-derived molecules,
particularly (poly)phenols, affect the gut barrier by influencing the TJ and paracellular
transport [92]. Numerous studies have investigated the effect of various grape-derived
products on in vitro intestinal models such as Caco-2 cells or animal digestive tracts. These
studies have demonstrated that grape-derived compounds can counteract permeabilization
by studying paracellular flux (e.g., fluoroisothiocyanate-dextran (FITC-dextran)) or transep-
ithelial electrical resistance (TEER) [93-96]. In our most recent research, we observed a
decrease in paracellular transport of FITC-dextran after incubating Caco-2 monolayers with
different GP-digested samples [97]. We also noted that GP-digested samples resulted in
increased production of SCFAs and phenolic acids during colonic fermentation compared
to control samples. This increase in SCFA and phenolic acid production may partially
explain the observed decrease in permeabilization [97]. The mechanisms underlying the
enhancement of the gut barrier exerted by GP are varied, including the upregulation of key
genes encoding for diverse TJ proteins, such as occludins [83], claudins [83,85], ZO-1 [83,89],
and TJ protein 1 [90]. Moreover, higher expression of the same proteins without variations
in mRNA levels has also been reported [82,98]. Therefore, GP compounds may mediate a
boost in intercellular unions through different routes than the transcription of TJ proteins,
such as post-translational modifications required in TJ assembly and their association with
the cytoskeleton [91] (Figure 5). However, the physiological impact of all these mechanisms
is still difficult to assess.

In summary, GP-derived molecules, such as (poly)phenols, have been shown to
influence the gut barrier through TJ and paracellular transport. GP (poly)phenols have a
counteracting effect on permeabilization, upregulating key genes encoding for T] proteins
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and mediating a boost in intercellular unions. These mechanisms result in a reduction in
paracellular transport and enhanced gut barrier function.

6. Effects on Intestinal Inflammatory and Oxidative Status

The intestinal lumen is continuously exposed to harmful stimuli that may cause
oxidative stress, inflammation, and injury. Thus, reactive oxygen species (ROS) can damage
cell membranes, disturb barrier integrity, and lead to enhanced intestinal permeability,
inflammation, and endotoxemia [99]. The antioxidant and anti-inflammatory properties of
grape/wine (poly)phenols are widely known [100] and can be expected to be evident in
the GP. Similar behavior can be said for dietary fiber, whose intake has been associated, in
general, with lower systemic inflammation [101]. In this review, among the multiple and
complex signaling routes involved in inflammation and oxidative stress, we have focused
on those concerning the nuclear factor kB (NF-«B) for inflammation and the nuclear factor
erythroid 2-related factor 2 (Nrf2) for oxidative stress since their activation cascades are
considerably susceptible to GP components (Figure 6).

LPS o
cytokines
(1) Inhibition of TLR signaling (4) Reduced iNOS expression (7) Regulation of Nrf2 translocation
(2) Inhibition of NfkB signaling (5) Reduced ICAM1 expression (8) Antioxidant enzymes expression
(3) Cytokine release regulation (6) Reduced MMPs expression  (9) Reduced ROS/oxidative stress

Figure 6. Effects of GP on intestinal inflammatory and oxidative status. A schematic representation
of relevant signaling cascades mediating the gene expression of key mediators of inflammation and
oxidative stress. Numbers represent those activities associated with GP in several in vitro and in vivo
experiments: (1): Pistol et al. [83,102]; Sheng et al. [98]; Maurer et al. [103]; (2): Bibi et al. [52]; Wang
et al. [104]; (3): Boussenna et al. [77]; Wang at al. [78]; Gil-Cardoso et al. [89]; Nallathambi et al. [90];
Pistol et al. [102]; Maurer at al. [103]; (4): Wang et al. [78]; Gil-Cardoso et al. [89] (5): Boussenna
et al.,, [77]; (6): Pistol et al. [83]; (7): Gessner et al. [80]; (8): Wang et al. [78]; Maurer et al. [103];
(9): Gessner et al. [80]; Sheng et al. [98]; Kafantaris et al. [105].

6.1. Regulation of the NF-xB Signaling Pathway

Under ordinary conditions, NF-kB is restricted to the cytoplasm forming a complex
with its inhibitor (IkBx). However, several responses may initialize their decoupling
through the inhibitors of kappa kinase 3 (IKKf) and o (IKKa), which phosphorylate IkBo
for polyubiquitination and subsequent degradation [106]. Once the NF-«B becomes free,
it begins its activation and translocation to the nucleus, where it joins to specific DNA
regions, the NF-«B sites [106]. This binding to DNA is responsible for expressing cytokines,
adhesion molecules, and inflammatory enzymes. Among the principal stimuli that trigger
the NF-«kB cascade are the Toll-Like Receptors (TLR), transmembrane proteins mainly
present in immune cells which react to cytokines, ROS, and, notably, to lipopolysaccharide
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(LPS) [107]. Overexpression of TLR is clearly recognized in various cases of intestinal
bowel disease (IBD) [108]. Furthermore, through the p300 coreceptor, phosphorylated and
activated by mitogen-activated protein kinase (MAPK), this enzyme participates in the
inflammatory cascade since the phosphorylated NF-«B forms an active complex with the
p300, which facilitates their binding to DNA [109].

Some trials feeding rodents or pigs with GP-derived products have evidenced re-
ductions in NF-«kB expression, mRNA levels, and transactivation in the duodenum [80],
jejunum [52], and colon [102] cells. Moreover, Maurer et al. [103] reported downregu-
lation of IKKf, the kinase responsible for NF-«B liberation prior to its transport to the
nucleus, and of the TLR-4 signaling, concluding that fiber-bound (poly)phenols of grape
peels were mainly responsible for both responses. In accordance, Yang et al. [93] reported
reduced levels of MAPK in mice colonic cells, while Pistol and collaborators observed
the same pattern accompanied by the suppression of TLR2 and TLR4 genes after feeding
piglets with a grape seed meal [83,102]. In addition, the last authors emphasized that
not only (poly)phenols may exert an inflammatory activity, highlighting the important
amount of fiber and unsaturated fatty acids in grape seed products [102]. In fact, it has
been described that butyrate may suppress LPS-induced NF-«kB due to G-protein coupled
receptors (GPCRs) both in vitro in colonic cells and ex vivo in rodents’ large intestine [110],
and specific dietary fibers present in GP voided the TLR2 cascade in human dendritic
cells [111].

In addition to modulating the transcription factor NF-«B, GP may also mitigate the
progression of associated inflammatory processes. Following the intracellular increase in
inflammatory mediators, these molecules are released into the intestinal mucosa, initiating
the breakdown of the extracellular matrix and the recruitment of innate immune cells such
as neutrophils and macrophages. This cascade of events can lead to significant intestinal
impairment, a pattern commonly observed in patients with IBD. In studies investigating
the effects of GP products on intestinal inflammation, researchers often induce ulcerative
colitis in animal models. As a primary outcome, there is a significant increase in pro-
inflammatory cytokines, including interleukin (IL)-1f3, IL-1e, IFN-y, tumor necrosis factor
(TNF)«, and IL-6 [89,103], adhesion molecules such as intercellular adhesion molecule 1
(ICAM1) [77], and proteins involved in the breakdown of the extracellular matrix, like
those belonging to the matrix metalloproteinase (MMP) family [83]. Upon administering
GP in various formulations, researchers observed a reduction in cytokine levels and a
downregulation of their gene expression [77,89,103]. Additionally, anti-inflammatory
cytokines such as IL-10 increased [102], and ICAM-1 and MMP9 gene expression was
suppressed [77]. Neutrophil migration and infiltration into the intestinal mucosa are closely
associated with myeloperoxidase (MPO) activity, a potent oxidative inducer that catalyzes
the production of hypochlorous acid from C1~ and HyO, in neutrophils [112]. In line with
this, some studies reported reduced colonic MPO levels in animal models of ulcerative
colitis after GP consumption [78,89,103], with Maurer et al. [103] attributing this response to
the fiber-bound (poly)phenols fraction. Moreover, the anti-inflammatory effects of GP have
been observed in healthy animals, resulting in reduced pro-inflammatory cytokine levels
and gene expression [78,102], decreased MMP2 and MMP9 activity [83], and increased
levels of anti-inflammatory IL-10 and IL-4 [102,103].

6.2. Regulation of the Nrf2 Signaling Pathway

Oxidative stress is a physiological state that arises from an imbalance between the
production of reactive oxygen species (ROS) and the body’s ability to detoxify them. ROS
are highly reactive molecules that can damage lipids, proteins, and nucleic acids, leading to
cellular dysfunction, tissue damage, and inflammation. Oxidative stress and inflammation
are closely intertwined processes that play important roles in the development of various
diseases, including gut inflammation [113]. Neutrophil infiltration into the mucosa, for
example, leads to increased ROS production in the area, which in turn facilitates the
migration of other immune cells to the epithelium and enhances the establishment of a
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niche for pro-oxidant enzymes, such as inducible nitric oxide synthase (iNOS). This enzyme
catalyzes the generation of the potent oxidative peroxynitrite radical [114]. Moreover, ROS
are effectors of TLRs, which can stimulate the translocation of NF-«B into the nucleus [104].

As previously mentioned, another crucial signaling pathway involves antioxidant
responses mediated by Nrf2 [115]. Similarly to NF-kB, Nrf2 is sequestered in the cytoplasm
by binding to a Kelch-like ECH-associated protein 1 (Keap1) [116] (Figure 6). Keapl is
an oxidation-sensitive protein that dissociates from Nrf2 when ROS levels increase in the
cytoplasm, enabling Nrf2 to translocate to the nucleus and bind to the antioxidant response
elements (ARE) in its target genes. This process induces the expression of antioxidant
enzymes such as superoxide dismutase (SOD), catalase (CAT), or glutathione peroxidase
(GPx) [117]. Apart from regulating Nrf2, Keapl has been found to inhibit the activity
of IKKf, which is responsible for initiating the NF-«B cascade. This provides another
intersection point between oxidation and inflammation. Then, the activation of Nrf2 can
enhance the gut epithelium’s antioxidant capacity and reduce inflammation. Many studies
examining the effects of GP on inflammation have also reported increased SOD, CAT, and
GPx activity and gene expression [78,103], as well as reduced levels of ROS, nitric oxide
(NO), or iNOS protein [89]. Specifically, Gessner et al. [80] conducted a study involving
pigs in which they observed that the increase in antioxidant enzymes was accompanied by
enhanced transactivation of both Nrf2 and NF-«B.

Considering that obesity and other associated metabolic disorders are characterized
by chronic low-grade intestinal inflammation—also mediated by factors such as Nrf2 and
NF-«B [118]—it is plausible that the protective effects of GP against these disorders might
be achieved through the regulation of these molecular pathways at the intestinal level.

In conclusion, the antioxidant and anti-inflammatory properties of GP (poly)phenols
and dietary fiber have been widely studied and shown to have potential benefits in reducing
oxidative stress and inflammation in the gut. Specifically, the activation cascades of the NF-
kBand the Nrf2 are susceptible to GP components, as demonstrated by studies in rodents,
pigs, and humans. GP-derived products have been shown to reduce NF-«B expression and
transactivation, downregulate TLR signaling, and mitigate the progression of associated
inflammatory processes. Moreover, GP consumption has been associated with an increase
in antioxidant enzyme activity and gene expression, as well as reduced levels of ROS, nitric
oxide, or iNOS. Given the association between chronic low-grade intestinal inflammation
and metabolic disorders, the regulation of these molecular pathways at the intestinal level
may play a crucial role in the protective effects of GP against these disorders.

7. Effects of GP on the Gut Microbiome

Because of its health implications, the gut microbiome is now a thriving area of research
integrating basic and clinical sciences and a priority topic worldwide [119]. Alterations
in the state of the gut microbiota (dysbiosis) are increasingly linked to the incidence of
non-communicable diseases [120]. Among the factors that determine our gut microbiota,
diet is one of the most important and, possibly, the one we can influence the most. The
dietary fiber fraction has long been recognized as a food component that most modulates
gut microbiota [121]. Regarding (poly)phenols, current research suggests that they have
great potential for action against microbial dysbiosis, with a favorable impact on other
aspects of health related to the gut microbiome [122].

As seen in gastrointestinal digestion simulations of GP, gut microbiota extensively de-
grade their constituents leading to a great battery of bioaccessible phenolic metabolites (i.e.,
benzoic, phenylacetic, and phenylpropionic acids) as well as SCFAs mainly derived from
the dietary fiber fraction [123]. In turn, these GP components and their microbial-derived
metabolites can modulate the composition and functionality of the gut communities [123].
The mechanisms behind this phenolic-mediated modulation are intricate and still scarcely
known, which gives rise to a considerable amount of pending work in the area. For the
time being, some hypotheses point to the interference of the quorum sensing mediated
by (poly)phenols, limiting the formation of pathogens biofilms [124]; others suggest that
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competition for nutrients favors those bacteria capable of extracting the sugars attached to

(poly)phenols and fiber to obtain sugars and SCFAs, generally species associated with a

probiotic effect [125].

Table 3 reports the in vivo studies reported in the literature concerning the effects of GP-

derived products on gut microbiota composition. Other studies dealing with other grape

products (grapes, raisins, grape seeds, wine, etc.) have not been considered in this review

as they show different chemical compositions, especially concerning the fiber fraction.

Table 3. Animal and human studies concerning the effects of GP on gut microbiota composition.

. . Changes in .
Study Pl Design/Intervention ﬁ;ir:lileor:‘a‘;rl}tzlated Microbiota gtt?lls::;;(:?narkers Refs.
Composition
Broiler chicks
Cobb broiler chicks; 1-day old
n =25 d'animals/group ¢ IHeum
D}Jration: 21 days 1 Enterococcus
Diets: 1 Clostridium =Weight gain
. Plate counting C [126]
d Antibiotic-free (control) 165 rRNA sequencing * ? o . Jejunum
e Antibiotic-included (50 TE. coli Villus heigh deth rati
mg/kg of avoparcin) 1T Lactobacillus T ilus heig t/Cl'ypt epth ratio
. Antibiotic-free diet + GP T Entero'co‘ccus
concentrate (60 g/kg) 1 Clostridium
T Bacterial diversity
1 Feed intake
=Feed conversion ratio
Cobb-500 ‘proiler chicks; 1-day old . Duodenum
§ il grp . Vil e
Diets: ' 4 1 Bacteroidetes 1 Villus height/crypt depth ratio
et 165 rRNA sequencing | Firmicutes : [127]
. Antibiotic-free (control) SCFAs by GC T lZ ac: ezozd'lels N ) J e]un.um
e  Antibiotic-included (0.05% T Lactobacillus 1 Villus height
BMD) =5CFAs 1 Villus width
. Antibiotic-free + 2.5% GP
. Tlleum
=Crypt depth
=Villus height/crypt depth ratio
Rodents (rats, mice)
Wistar rats; n = 6 animals/group
Duration: 14 months * Bifidobacterium
Diets: qPCR =Bacteroides
Urine phenolic =Clostridium leptum [128,129]
° 0.1% DMSO (control) metabolites by LC-QTOF =Entero;qccus
e  GP phenolic extract (2.5, 5, 1 Clostridium Cluster I
10, and 20 mg/kg/day)
C57BL/6] mice; 9-week old
n = 14 animals/group | Fat mass gain
Duration: 8 ke i i i i
Ditgghlon weeks | Desulfovibrio f ?dg)?jteailzsue inflammation
' 16S rRNA sequencing 1 Lactococcus % GOICI)JCOSE tolerance 157]
. Control SCEAs by GC 1 ?i‘;ﬁfﬁiﬂm } Insulin resistance index

e  High-fat diet
. High-fat diet + GP phenolic
extract (8.2 g/kg)

1 Antimicrobial peptides
1 Tight junction proteins
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Table 3. Cont.
Microbiota-Related Changes in Relation to
Study P1 Design/Intervention Microbiota . Refs.
Measurements cpe Other Biomarkers
Composition
C57BL/ 6] mice; 9-week old
n =10 d'animals/group
Duration: 3-week antibiotics + 1 ° Fecal microbiota
week diet . .
Diets: 16S rRNA sequencing T Rglatlv.e abundance [130]
1 Diversity
. . 1 Akkermansia
. Saline solution (control)
° GP extract 200 mg/kg
Piglets
Landrace x Large White-Duroc Weicht cai
n =12 animals/group 1 Facultative probiotic T GSeII—% gain
Duration: 15 days bacteria T 0, d " vt
Diets: Plate counting 1 Lactic acid bacteria T H0, ecomposition activity [105]
. 1 Total antioxidant capacity
| Enterobacteriacae
J Campylobacter jejuni + MDA (TBARS)
e Control Py Je 1 Protein carbonyls
4% GP
=Growth
Songliao black pigs; 28-day old o Jejunum
n = 6 animals/group . .
Duration: 28 days ) .. T V}llus he}ght )
Diets: 1 Lactobacillus delbrueckii 1 Villus height/crypt depth ratio
16S rRNA sequencing 1 Olsenella umbonate [78]
. Control 1 Selenomonas bovis . Caecum
5% GP | Pro-inflammatory cytokines
(IL-1pB, IL-8, IL-6, TNF-«)
=SCFAs receptors (GPR41/43)
1 Serum IgG
Lambs
Chios lambs; 15-day old
n =12 d'animals/group
Duration: 55 days 1 Facultative probiotic 1+ CAT
Diets: . bacteria 1T GSH
Plate counting | Enterobacteriacae | MDA (TBARS) [151]
° Control | Escherichia coli | Protein carbonyls
. 45% GP
Humans
PCR =Faecal bacteria
Healthy women (1 = 10) d populations 1 Blood fasting glucose
7 SCFAs by GC-MS . . .
Duration: 3 weeks . . =Faecal/urine phenolic Glucose metabolism-related [19]
. Phenolic metabolites by . . .
Diet: 1.4 g/day of a red GP extract metabolites miRNA modulation
UPLC-ESI-MS/MS
1 Fecal SCFAs
>2 metabolic syndrome factors =Microbiota profile
subjects (1 = 49) qPCR 1 Lactobacilliales 1 insulin levels [132]
Duration: 6 weeks SCFAs by GC 1 Bacteroides (responders) -
Diet: 8 g/day of GP extract =SCFAs
Responders (n = 23) and
nop—resPonders (n =26) 165 rRNA sequencing J Prevotella 1T miRNA-222 levels
to insulin reduction Sequencing | Firmicutes (responders) [133]
Duration: 6 weeks SCFAs by GC P

Diet: 8 g/day of GP extract
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Table 3. Cont.
Microbiota-Related Changes in Relation to
Study P1 Design/Intervention Microbiota . Refs.
Measurements Composition Other Biomarkers
=x and {3 diversity
| Peptoniphilus
1 Clostridiaceae 1
High-risk cardiometabolic (1 = 17) + I(Sfloskt‘rzﬁlum sensu stricto 1
healthy (n =12) subjects i Stzfe Zfociccus 1 Blood pressure
Dl..lratlon: 6 weeks 16S rRNA sequencing ! Lacfnos iraceae ND3007 1 Fasting blood glucose
Diets: SCFAs by GC-MS | Parapre 5 otella Bacterial communities [16]
Phenolic metabolites by ! Senep alimassilia associated with
. Control UPLC-ESI-MS/MS 1 Stre 8 tococcaceae cardiovascular and
. 2 g/day of GP seasoning P metabolic data

| Eggerthellaceae

J Coribacteriales
Incertae Sedis

1 Propionic acid

1 Protocatechuic acid

1: Decrease in; 1: Increase in.

The first studies reporting GP’s effect on gut microbiota aimed to assess the possible
application of (poly)phenols as alternatives to antibiotics in broiler chicken production [126].
These authors found that GP concentrates seemed to be effective in increasing the ileal
populations of beneficial bacteria as well as markers of healthy gut morphology (Table 3).
Recently, other researchers have found similar results, further corroborating that the inclu-
sion of GP-derived products in the diet of broiler chickens favors intestinal health without
affecting their blood biochemical and immune profiles [127] (Table 3).

In rodents, Chacar et al. [128,129] specifically assessed the impact of a GP phenolic
extract on gut microbiota, finding that, at the conditions used, GP supplementation could
inhibit non-beneficial bacteria and potentiate the growth of probiotic ones, counteracting
the adverse outcomes of aging on the gut bacterial population (Table 3). Experiments
have also been conducted in mice fed high-fat diets, finding that GP supplementation
appeared to ameliorate the overall metabolic profile derived from a high-fat diet [57] or to
facilitate the recovery of gut microbiota after antibiotic treatment [130], both effects related
to changes in some key microbial genera (Table 3).

Other studies in larger animals such as pigs [78,105] and lambs [131] corroborated that
GP supplementation has no adverse effects on animal growth and can also promote the
content of some beneficial bacteria in the caecum [78,105,131], as well as the enhancement
of particular antioxidant [105,131], and anti-inflammatory mechanisms [78] (Table 3).

Concerning human intervention studies (Table 3), the only three studies carried out
to date reported slight changes in the composition of the gut microbiota after GP sup-
plementation in healthy women [19]; subjects exhibited at least two factors for metabolic
syndrome [132,133] and subjects at high-risk cardiovascular or not [16]. No significant
increase in GP-derived metabolites such as SCFAs and phenolic acids after supplementation
was reported [19,132,133]. A key aspect of these studies was the high inter-individual vari-
ability observed in the body response to GP supplementation in terms of biomarkers such
as blood pressure [16], fasting glucose [16,19], or insulin levels [132] (Table 3). This inter-
individual variability in clinical trials with GP-derived products was related to differences
in gut microbiota and miRNA [19,133]. On the other hand, it happens that the relationship
between gut microbiota composition and clinical and metabolic changes derived from GP
supplementation may rely more on metabolic-related bacterial communities rather than
bacterial genera/family, emphasizing the ecological/functional aspects of the different
communities over taxonomic aspects [16].

The differences in the extent and impact of these in vivo effects may be attributable to
differences in study design (animal model, GP-derived product, doses, etc.), although it
seems clear that the human gut microbiota is more stable and, therefore, more resilient to
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diet-induced changes. However, all these studies highlight the potential modulatory effects
of GP-derived products on gut microbiota composition and open the door to studies on how
GP supplementation impacts gut microbiota metabolism and functionality in relation to
different pathologies. For instance, gut microbiome-modulating properties of GP seem to be
behind the reduction of trimethylamine-N-oxide (TMAO) [134], a gut microbiota-derived
metabolite recognized as strongly related to cardiovascular diseases, mainly increasing the
risk of atherosclerosis development [135].

Hence, gut microbiota can degrade GP components, producing bioaccessible phenolic
metabolites and SCFAs, which can modulate gut communities” composition and func-
tionality (Figure 7). In vivo studies have shown that GP supplementation can promote
intestinal health, ameliorate metabolic profiles, enhance antioxidant and anti-inflammatory
mechanisms, and increase the content of beneficial bacteria in animals. Clinical trials with
GP-derived products show inter-individual variability in terms of biomarkers, emphasizing
the importance of metabolic-related bacterial communities over bacterial genera/family.
GP-derived products have significant potential for modulating gut microbiota composi-
tion and functionality in relation to different pathologies, including reducing the risk of
non-communicable diseases such as cardiovascular disease. Further research is needed to
explore the therapeutic applications of GP-derived products in promoting gut health.

Figure 7. Schematic representation of the potential of GP in modulating gut microbiota composition
and functionality in vivo and in clinical studies.

8. Conclusions

GP is a fascinating food by-product that has long been studied for its potential use
as a dietary supplement and its protective properties against cardiovascular diseases.
The health-promoting properties of GP are primarily attributed to its rich content of
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(poly)phenols and dietary fiber, as well as the interactions between these components.
Considering that the intestinal tract is the first site of interaction for food components and
their potential biological activities, this review focuses on GP’s bioactivity within the gut
environment and its possible implications for cardiovascular health. Based on in vitro and
in vivo studies, substantial evidence supports GP’s ability to (i) regulate nutrient digestion
and absorption (modulating digestive enzyme action in the intestinal lumen and the expres-
sion of intestinal transporters), (ii) modulate gut hormones (GLP-1, PYY, CCK, ghrelin, and
GIP) levels and satiety, (iii) reinforce gut morphology (crypt-villi structures), (iv) protect
intestinal barrier integrity through tight junctions and paracellular transport, (v) modulate
intestinal inflammation and oxidative stress via NF-kB and Nrf2 signaling pathways, and
(vi) positively impact gut microbiota composition and functionality. Hence, GP promotes
cardiovascular health within the intestinal environment by regulating blood lipid and
glucose levels, supporting appetite regulation, reducing inflammation and oxidative stress,
and fostering a beneficial gut microbiota composition. The current state of knowledge
does not clearly define a primary mechanism of action for GP at the intestinal level, which
may vary among individuals and pathological conditions. However, these mechanisms are
evidently interconnected. For example, GP-mediated changes in microbiota composition
may lead to increased production of SCFAs such as acetate, propionate, and butyrate or
decreased production of bacterial LPS, which are known disruptors of gut barrier integrity
and inflammation stimulants. Thus, GP’s overall effect reinforces the intestinal function
as a crucial first line of defense against multiple disorders, including those impacting
cardiometabolic health. In a sense, GP’s systemic bioactivity begins in the gut, which can
contribute to the prevention and management of cardiovascular diseases. Future research
on GP’s health-promoting properties should consider connections between the gut and
other organs (gut-heart axis, gut-brain axis, gut-skin axis, oral-gut axis), further solidifying
its role as a cardiometabolic health-promoting ingredient.
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Abbreviations

BMD  bacitracin methylene disalicylate

CCK cholecystokinin

GIP glucose-dependent insulinotropic polypeptide
GLP-1  glucagon-like peptide-1

GP grape pomace

LPS lipopolysaccharide

PYY peptide YY

qPCR  quantitative real-time PCR

NF-«kB  nuclear factor kB

Nrf2 nuclear factor erythroid 2-related factor 2
SCFAs  short-chain fatty acids
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