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Abstract: There is a growing interest in using by-products rich in polyphenols, such as carob pulp
(Cp, Ceratonia siliqua L.), as a dietary source of antioxidants for animals. This study assesses the effects
of including Cp in lambs’ diet and meat display time (0, 7, 9, and 11 days) in modified atmosphere
packaging on meat colour, fatty acid (FA) composition, tocopherol levels, and lipid oxidation values in
the Semimembranosus muscle of 40 light lambs. The lambs were fed with concentrates supplemented
with increasing Cp levels (0, 150, and 300 g/kg) for 45 days before slaughter. Metmyoglobin (MMb)
and malondialdehyde (MDA) contents increased linearly with display time (p < 0.05), regardless
of diet (p > 0.05). At 11 days of display, MMb (28 ± 0.8%) and MDA (0.6 ± 0.1 mg MDA/kg of
meat) contents remained within the acceptable limits. The α-tocopherol content was lower in the
30% Cp group and meat (p < 0.05). Total saturated and monounsaturated FA contents (934 ± 64 and
823 ± 65 mg/100 g of meat, respectively) did not differ significantly among the groups. However, the
meat from lambs fed with 30% Cp showed reduced levels of branched-chain FAs, while polyunsatu-
rated FAs increased (p < 0.05) compared to the control lambs. The inclusion of Cp in the lamb’s diet,
up to 30%, did not lead to meat deterioration and improved certain quality parameters, including a
healthier FA profile. These findings highlight Cp’s potential as an alternative antioxidant source in
animal diets.

Keywords: lamb; carob pulp; fatty acid; malondialdehyde; condensed tannin; α-tocopherol;
Semimembranosus

1. Introduction

During the storage of retail meat cuts, the main problem is the biochemical dete-
rioration of the meat, which is especially caused by oxidative reactions and microbial
proliferation. These processes are reflected in meat discolouration, unpleasant flavours
and odours, and toxic compound production [1], representing both a potential public
health hazard and economic losses. At present, modified atmosphere packaging (MAP)
is a useful tool to provide a stable bloomed ‘bright-red’ colour in lamb meat and prolong
its shelf-life [2]. However, over time, its high O2 concentration may lead to an increase in
lipid oxidation values. If meat is enriched with polyunsaturated fatty acids (PUFAs), it is
more predisposed to oxidation and the production of oxygen free radicals, aldehydes, and
ketones [3]. This process can also accelerate the oxidation of proteins, such as myoglobin,
which results in meat browning [2].
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There is an increasing interest in the inclusion of carob pulp (Cp, Ceratonia siliqua L.)
in animal diets due, in part, to the high level of secondary compounds (phenolic acids,
flavonoids, saponins, and condensed tannins (CTs)). CTs have functional activities and
provide health benefits (such as antioxidant, anti-inflammatory, and anti-aging proper-
ties) [4]. Although previous studies highlighted the effects of CTs on lambs’ performance [5],
more attention has recently been paid to its effects on meat quality [6]. The literature is
not completely conclusive about the effects of tannins on meat; however, some studies
highlight an improvement in meat-colour stability [7], lower lipid oxidation [8], a higher
fatty acid (FA) concentration with human health benefits [9,10], and a reduction in skatole
subcutaneous caudal fat and typical sheep meat odour [11]. At present, the consumer
rejection of non-natural antioxidants in the meat industry has led to the examination of
other antioxidant sources [12]. For example, vitamin E is a natural antioxidant highly used
in lamb diets to increase the meat shelf-life, but Cp may be a source of CTs, which can
replace outsourced and/or synthetic antioxidants [13,14].

On the other hand, increasing the concentrations of some fatty acids, such as conju-
gated linoleic acid (CLA) isomers and vaccenic acid (VA, trans11-C18:1), in products derived
from ruminants has also been of interest to the meat industry, due to its beneficial effects
on health [15]. In line with this, it was demonstrated that dietary polyphenols (including
CTs) may interfere with the ruminal biohydrogenation (BH) process and, consequently,
modulate the FA profile of ruminant products [6,16]. However, to our knowledge, the
effects of Cp on light lamb meat FA composition are still unclear, as they also depend
on the remaining dietary components (forage or concentrate-based) and their nutrient
composition.

This study aims to evaluate the effect of the inclusion of Cp (0, 150, and 300 g/kg of
concentrate) in the diet of lambs and meat display time (0, 7, 9, and 11 days) in MAP on the
meat-colour attributes, antioxidant content, FA composition, and lipid oxidation.

2. Materials and Methods

All procedures employed with animals in this study followed the Spanish Animal
Protection Regulations RD 53/2013, which complies with the European Union Directive
2010/63 regarding the protection of experimental animals. The animal procedure protocol
was supervised by an in-house Animal Experimentation Committee (code CEEA 01-03/21).

2.1. Diets, Slaughter Procedures, and Meat Sampling

In the present experiment, 40 carcasses from crossbred (Romane× Berberine× Ripollesa)
uncastrated male lambs with an average body weight (BW) of 27.3 ± 3.8 kg and age of
83.2 ± 9.3 days were used, which were selected from two consecutive fattening batches
(winter and summer) of 72 animals each. The lambs’ fattening period lasted 45 days per
batch, during which the animals were randomly allocated into group pens (6 animals/pen)
and received one of the three fattening experimental diets (4 pens/dietary treatment/batch).
The lambs were fattened during January–February and June–July, in the winter and the
summer batch, respectively. Experimental diets were defined according to the Cp inclusion
level and were formulated to be isonitrogenous (17.5% crude protein) and isoenergetic
(7.36 MJ of net energy for ruminants/kg of concentrate) diets. The Cp replaced grains
and co-products in the concentrate mixture at inclusion levels of 0, 150, and 300 g/kg of
the concentrate, for treatments C0%, C15%, and C30%, respectively. Water, concentrates
(including the control diet, 28% maize; 28.9% barley; 8% wheat; 4% wheat bran; 12% gluten
maize feed; 14.4% soybean meal; 0.9% palm oil; 2.5% calcium carbonate; 1% salt; and
0.3% vitamin–mineral premix), and barley straw were always available ad libitum. The FA
composition and tocopherol and polyphenol contents were analysed and are described in
Table 1. A more detailed explanation of the experiment design, farm animal management,
and nutritional composition of the diet was previously described by Pelegrin-Valls et al. [17].

At the end of the fattening period and after 3–4 h of a fasting period, all lambs were
transported 3 km from farm to the BonÀrea abattoir the same day within each batch. After
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slaughter, a total of 19 carcasses from the winter batch (5–7 carcass/diet) and 21 from the
summer (7 carcass/diet) were selected according to the average BW. Thus, a total of 12, 14,
and 14 carcasses for the C0%, C15%, and C30% treatment were selected, respectively.

After a chilling period of 18 h at 4 ◦C, the carcasses were jointed and four 1.5 cm thick
chops (100 g approx. each, Figure 1A) were obtained from the right leg to be randomly
assigned to four display times (0, 7, 9, or 11 days). All samples, excluding the 0 d chops,
were packed under a high-oxygen MAP (80% O2 + 20% CO2, TSA 680 traysealer, ULMA,
Guipúzcoa, Spain). Transparent polyethylene trays were used and wrapped with oxygen-
permeable polyamide/ethylene-vinyl alcohol copolymer/polyethylene (PA/EVOH/PE)
laminate film (thickness 45 µm, water vapour transmission rate at 38 ◦C of 18 g/m2/24 h/98%
relative humidity (RH), O2 transmission rate of 5 cm3/m2/24 h and CO2 transmission
rate of 25 cm3/m2/24 h at 23 ◦C, 50% RH and 1 atm, OPALEN HB 45 AF, Amcor flexibles,
Granollers, Spain). All trays were kept in the dark at 4 ± 1 ◦C during the display time
stipulated and every tray contained three chops (one of each dietary treatment), which
were placed above absorbent pads.

Antioxidants 2023, 12, x FOR PEER REVIEW 3 of 17 
 

libitum. The FA composition and tocopherol and polyphenol contents were analysed and 
are described in Table 1. A more detailed explanation of the experiment design, farm ani-
mal management, and nutritional composition of the diet was previously described by 
Pelegrin-Valls et al. [17]. 

At the end of the fattening period and after 3–4 h of a fasting period, all lambs were 
transported 3 km from farm to the BonÀrea abattoir the same day within each batch. After 
slaughter, a total of 19 carcasses from the winter batch (5–7 carcass/diet) and 21 from the 
summer (7 carcass/diet) were selected according to the average BW. Thus, a total of 12, 14, 
and 14 carcasses for the C0%, C15%, and C30% treatment were selected, respectively. 

After a chilling period of 18 h at 4 °C, the carcasses were jointed and four 1.5 cm thick 
chops (100 g approx. each, Figure 1A) were obtained from the right leg to be randomly 
assigned to four display times (0, 7, 9, or 11 days). All samples, excluding the 0 d chops, 
were packed under a high-oxygen MAP (80% O2 + 20% CO2, TSA 680 traysealer, ULMA, 
Guipúzcoa, Spain). Transparent polyethylene trays were used and wrapped with oxygen-
permeable polyamide/ethylene-vinyl alcohol copolymer/polyethylene (PA/EVOH/PE) 
laminate film (thickness 45 µm, water vapour transmission rate at 38 °C of 18 g/m2/24 
h/98% relative humidity (RH), O2 transmission rate of 5 cm3/m2/24 h and CO2 transmission 
rate of 25 cm3/m2/24 h at 23 °C, 50% RH and 1 atm, OPALEN HB 45 AF, Amcor flexibles, 
Granollers, Spain). All trays were kept in the dark at 4 ± 1 °C during the display time 
stipulated and every tray contained three chops (one of each dietary treatment), which 
were placed above absorbent pads. 

 

 

Figure 1. Light lamb chop muscle composition (A) and sampling of Biceps femoris muscle for drip
loss measurement (B). The two pieces had a 2.5 cm diameter and one had 15 mm × 3 mm × 3 mm (in
the lower left corner).
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Table 1. Means ± standard deviation of fatty acid composition and antioxidant and polyphenol
contents in the feed (carob pulp; diets of 0, 150, and 300 g/kg of Cp; and barley straw).

Carob Pulp C0% C15% C30% Barley Straw

Ether extract (% on DM basis) 1.81 ± 0.05 2.78 ± 0.27 5.00 ± 0.28 7.20 ± 0.19 2.71 ± 0.08
FA composition (g/100 g of FAME)

C12:0 0.13 ± 0.02 0.18 ± 0.01 0.33 ± 0.02 0.38 ± 0.03 0.86 ± 0.06
C14:0 0.96 ± 0.15 0.50 ± 0.01 0.67 ± 0.00 0.81 ± 0.01 2.82 ± 0.01
C16:0 35.4 ± 0.25 25.6 ± 0.50 29.9 ± 0.58 34.9 ± 0.87 43.0 ± 0.52
C17:0 0.26 ± 0.02 0.11 ± 0.00 0.11 ± 0.00 0.11 ± 0.00 0.31 ± 0.04
C18:0 23.6 ± 2.91 6.40 ± 0.37 5.31 ± 0.38 5.65 ± 0.03 23.6 ± 2.16
C20:0 0.76 ± 0.01 0.35 ± 0.02 0.32 ± 0.02 0.35 ± 0.01 1.32 ± 0.05
C22:0 0.28 ± 0.05 0.14 ± 0.00 0.12 ± 0.02 0.10 ± 0.01 1.07 ± 0.13
C24:0 0.17 ± 0.01 0.12 ± 0.01 0.09 ± 0.02 0.08 ± 0.01 0.59 ± 0.13
Σ SFA 61.6 ± 2.50 33.4 ± 0.90 36.8 ± 1.00 42.4 ± 0.86 73.6 ± 1.98

cis9-C16:1 0.29 ± 0.41 0.14 ± 0.00 0.15 ± 0.01 0.16 ± 0.00 0.22 ± 0.00
cis9-C18:1 26.6 ± 1.80 2 3.5 ± 0.15 28.9 ± 0.06 33.1 ± 0.18 11.3 ± 1.35
cis11-C18:1 0.17 ± 0.10 0.79 ± 0.01 0.80 ± 0.01 0.80 ± 0.02 0.56 ± 0.05

C20:1 0.09 ± 0.05 0.23 ± 0.04 0.17 ± 0.00 0.14 ± 0.00 0.28 ± 0.40
Σ MUFA 27.1 ± 2.26 24.7 ± 0.11 30.0 ± 0.04 34.2 ± 0.16 12.4 ± 0.90
C18:2n-6 10.1 ± 0.23 39.2 ± 0.85 31.2 ± 0.99 22.1 ± 0.94 11.5 ± 1.42
C18:3n-3 1.17 ± 0.01 2.65 ± 0.14 1.96 ± 0.05 1.36 ± 0.08 2.52 ± 0.35
Σ PUFA 11.28 ± 0.24 41.9 ± 1.00 33.2 ± 1.03 23.4 ± 1.03 14.0 ± 1.07
n-6/n-3 8.69 ± 0.14 14.8 ± 0.48 15.9 ± 0.13 16.2 ± 0.27 4.66 ± 1.21

Antioxidant concentration (mg/kg DM)
α-tocopherol 4.05 ± 0.62 251 ± 18.9 212 ± 14.1 213 ± 12.9 2.09 ± 0.85
γ-tocopherol 0.90 ± 0.17 7.44 ± 5.75 9.26 ± 5.34 11.7 ± 2.04 4.94 ± 6.01
δ-tocopherol 0.29 ± 0.02 1.58 ± 0.53 1.95 ± 0.34 1.80 ± 0.11 0.68 ± 0.77

Total polyphenols (g tannic acid eq/kg DM) 21.5 ± 0.28 8.00 ± 0.85 9.90 ± 0.86 12.1 ± 1.10 13.5 ± 1.40

DM: dry matter. FA: fatty acids. Σsaturated FA (SFA): C12:0 + C14:0 + C16:0 + C17:0 + C18:0 + C20:0 + C22:0+ C24:0.
Σmonosaturated FA (MUFA): cis9-C16:1 + cis9-C18:1 + cis11-C18:1 + C20:1. Σpolyunsaturated FA (PUFA):
C18:2n-6 + C18:3n-3.

2.2. Thawing and Drip Loss, Moisture Content, and Colour Stability Measurements

At 18 h post-slaughter for the 0 d samples and at the end of the display storage
period for the 7, 9, and 11 d samples, the meat colour was evaluated by measuring the
colour parameters L*, a*, and b* after 1 h of blooming. Colour attributes were measured
in the CIELab space on the Semimembranosus muscle (SM) from each chop in dupli-
cate, using a portable Minolta CM-700d spectrophotometer (Konica Minolta Sensing
Inc., Osaka, Japan) with a measurement area diameter of 8 mm, including a specular
component and a 0% UV, standard illuminant D65 (colour temperature of 6504 K),
observer angle 10◦ and 0. The reflectance spectra from 400 to 700 nm wavelength
were recorded for the calculation of metmyoglobin (MMb) formation, following the
equation: MMb (%) = 100×{1.395− [(A572nm− A700nm)/(A525nm− A700nm)]} [18].
In addition, colour saturation (C*) and hue angle (h◦) were calculated as: C∗ =

(√
a∗2 + b∗2

)
and h◦ = 57.29× tan−1(b∗/a∗), expressed in degrees. Following the colour assessment, the
samples were weighed, vacuum-packed, and frozen (−80 ◦C) for subsequent analysis.

Chops were allowed to thaw for 24 h (at 4 ◦C) and were subsequently deboned
and trimmed of subcutaneous fat and epimysium; thus, the SM (Figure 1A) was divided
into two pieces. One was used for the lipid oxidation analysis and the other for FA and
tocopherol content analyses, which was freeze-dried (Freeze-dryer gamma 2–16 LSC-
plus, Martin Christ, Osterode am Harz, Germany). The thawed losses were calculated
as: 100 × (pre-frozen chop weight − thawed chop weight)/pre-frozen chop weight. Meat
moisture was determined by the difference between the post-frozen and freeze-dried
weight.

All measurements were conducted in two different muscles to overcome the analytical
weight requirement constraints. Thereby, drip loss was estimated by two methods in
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the Biceps femoris muscle of each chop, so 2 pieces of 1 cm thick × 2.5 cm in diameter
were taken (Figure 1B) to perform the EZ drip loss method [19]. However, no appreciable
amount of juice was collected in the EZ container, and thus no reliable data were obtained.
Additionally, three 15 mm × 3 mm × 3 mm (0.2 g) replicates were obtained and submitted
to a centrifugation process to estimate the drip loss, according to the method described by
Kristensen et al. [20].

2.3. Analysis of Fatty Acid Composition in Feedstuffs and Semimembranosus Muscle Sample

The FA profile of feedstuffs and intramuscular fat (IMF) of SM at day 0 of display
were determined using gas chromatography with a flame ionization detector (FID). The
FA composition of feedstuffs was extracted according to Sukhija and Palmquist [21] using
C19:0 as an internal standard and the FA of meat samples were extracted according to Lee
et al. [22] using C23:0 as an internal standard. Briefly, 500 mg of both lyophilized samples
were minced and mixed with 3 mL of heptane and 4 mL of NaOH/CH3OH 0.5 M. The
mixture was homogenized with a vortex and heated with agitation for 20 min at 70 ◦C
for feed samples and for 20 min at 50 ◦C for meat samples, followed by 6 min of cooling.
Then, 4 mL of acetyl chloride/CH3OH (1/10 v/v) was added. The mixtures were vortexed
and reheated with agitation (orbital shaker) for 100 min at 70 ◦C and 60 min at 50 ◦C,
respectively. After cooling to ambient temperature (25 ◦C), 2 mL of ultrapure water was
added. Then, the mixture was shaken (orbital shaker) and homogenized for 10 min, and
centrifuged for 5 min, 3500 rpm at 10 ◦C. Later, the upper layer (heptane) was taken and
transferred to 5 mL tubes with anhydrous Na2SO4 to remove traces of water. In the case of
feeds, activated carbon was added (to remove interfering compounds, such as pigments).
Additionally, this mixture was shaken for 10 min. Later, both samples were centrifuged
for 5 min, 3500 rpm at 10 ◦C. Finally, 1 mL of the supernatant was carefully transferred
into an amber screw-cap glass vial for gas chromatography. The FA methyl esters (FAMEs)
were analysed using a Bruker SCION 436-GC (Bruker, Billerica, MA, USA), equipped
with a CP-8400 autosampler, an SP-2560 capillary column (200 m × 0.25 mm × 0.2 µm
film thickness), an FID detector, and a CompassCDS software (v. 3.0.1). The FAs were
identified using several commercial FAME standards (GLC-532, GLC-401, GLC-642, GLC-
643, GLC-538, and GLC-463, Nu-Chek, Elysian, Chicago, IL, USA) and as recommended
in the literature [23–25]. The FAMEs were quantified following the indications of ISO [26].
The ether extract in the feed was determined with an XT10 Ankom extractor (Ankom
Technology Corporation, Fairport, NY, USA). The IMF content was calculated as the sum
of each individual FA detected, expressed as the triglyceride equivalent [27].

2.4. Analysis of Cholesterol, Tocopherol Isomers, and Total Polyphenols

On feedstuff samples, tocopherol isomers (α, γ, and δ-tocopherols) were analysed
by liquid chromatography according to the methodology described by Blanco et al. [28]
Additionally, cholesterol and the same tocopherol isomers were analysed in the meat
at day 0 of display, following the methodology described by Bertolín et al. [29]. Briefly,
200 mg of the freeze-dried feed samples were extracted three times with 3 mL of methanol–
acetone–petroleum ether (1:1:1 v:v:v, 0.01% w/v of 2,6-di-tert-butyl-4-methylphenol (BHT)
in ethanol). Then, all the extracts were evaporated in a vacuum evaporator, and the dry
residue was obtained. For the meat samples, 200 mg of freeze-dried meat were subjected
to an overnight saponification process with 200 mg of L-ascorbic acid and 3 mL of saponi-
fication solution (10% w/v potassium hydroxide in ethanol:distilled water in a 50:50 v:v
mixture) in an orbital shaker (600 rpm) at 25 ◦C. Then, the extraction was conducted with
5 mL of n-hexane:ethyl acetate 9:1 v:v and 5 µg mL−1 of the BHT mixture. The mixture was
vortexed, shaken in an orbital shaker (600 rpm) for 15 min, and subsequently centrifuged at
2000× g at 10 ◦C for 5 min. The recovered upper layer (organic solution) was evaporated in a
rotational vacuum concentrator at 40 ◦C for 30 min. Finally, both evaporated residues (feed
and meat) were dissolved in 1 mL of mobile phase acetonitrile:methanol:dichloromethane
(75:15:10 v:v:v), shaken in an orbital shaker (600 rpm) for 10 min at room temperature, and
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filtered into a 2 mL amber screw-cap vial for liquid chromatography. The extracts were
injected into an ACQUITY UPLC H-Class liquid chromatograph.

The total polyphenols were extracted in the freeze-dried feed samples and quantified
following the Folin–Ciocalteu reaction, according to Rufino-Moya et al. [30]. Samples and
standard calibration were measured with a Heλios β spectrophotometer (Thermo Electron
Corporation, Waltham, MA, USA) at 725 nm, and polyphenol contents were expressed as
tannic acid equivalents.

2.5. Lipid Oxidation Analysis

In every meat sample, lipid oxidation was determined by measuring the concentration
of malondialdehyde (MDA) by liquid chromatography, using the procedure described by
Bertolín et al. [31]. Briefly, 10 g of the meat samples were homogenized with 10 mL of
10% (w/v) aqueous trichloroacetic acid in ultrapure water and 50 µL of 7.2% (w/v) BHT
in ethanol for 45 s with a high-performance homogenizer (Miccra D-8 Homogenizer, Falc
Instruments, Treviglio, Italy) into a 50 mL polypropylene tube. The homogenizer was
cleaned with 10 mL of 10% (w/v) aqueous trichloroacetic acid in ultrapure water, collecting
the solution in the tube. Subsequently, the mixture was centrifuged for 15 min at 4000 rpm
and 4 ◦C. Then, it was filtered through a paper filter, collecting the extract. A total of 1 mL
of the vortexed extract was mixed with 10 mM 2-thiobarbituric (TBA). The mixture was
homogenized and heated through agitation (45 min, 100 rpm at 100 ◦C) to form MDA-TBA2.
After cooling, 150 µL was pipetted into a 2 mL amber screw-cap vial with 850 µL of a
mixture of ACN:ultrapure water at a ratio of 30:70 (v:v). Finally, the extracts were injected
into an ACQUITY UPLC H-Class liquid chromatograph (Waters, Milford, MA, USA).

2.6. Statistical Analysis

The statistical analyses were conducted using Infostat software (version 2020, [32]).
Drip loss, colour parameters, and MDA data were analysed with mixed models with
repeated measures, where diet, display time, interaction diet x display time, and batch
were considered as the fixed effects and individual as the random effect. The model was as
follows:

yijk = µ + αi + Tj + βm + (α× T)ij + Lk(ai) + εijmkl

where yijk = dependent variable, µ = overall mean, αi = fixed effect of carob inclusion level
(i = C0%, C15%, C30%), Tj = fixed effect of display time (j = 0, 7, 9, 11),βm = fixed effect
of batch (m = winter, summer), (α× T)ij= the interaction between diet and display time,
Lk(ai) = the random effect of the individual nested within the diet, and εijmkl = residual
error.

Likewise, the FA content and profile and tocopherol isomer and cholesterol contents in the
raw meat were analysed through the standard least squares model: yijk = µ + αi + β j + εij,
where yijk = dependent variable, µ = overall mean, αi = carob inclusion level effect
(i = C0%, C15%, C30%), β j = batch effect (j = winter, summer), and εij = residual error.
The results are reported as the least squares means and their associated standard error
of the mean (SEM). Comparisons between treatments were performed by Tukey’s test
when significant (p < 0.05) effects were detected. Additionally, a p-value between 0.05 and
0.10 was considered a tendency. In all cases, the interaction between diet and batch was
tested, and no significant effect was found; thus, it was excluded from the final model.

Additionally, the α-tocopherol content of SM was segmented into seven categories
with a range of 0.38 mg/kg meat from 1.16 to 3.82 mg/kg of meat (1.16–1.54; 1.54–1.92;
1.92–2.30; 2.30–2.68; 2.68–3.06; 3.06–3.44; and 3.44–3.82) to study the effect of meat α-
tocopherol content on MDA formation at different display times. A mixed model with
repeated measures was used, including display time and α-tocopherol categories as the
fixed effects and individual as the random effect.
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3. Results and Discussion

The batch effect was considered in the model, but the p-value and the least squares
means for batch effect (winter vs. summer) are presented separately in this study (Supple-
mentary Materials, Tables S1–S4), whereas the effects of dietary treatment, display time,
and interaction between diet and display time are shown below.

3.1. Thawed and Drip Losses and Meat Colour Evolution

Interactions between diet and display time were found neither on colour parameters
(L*, a*, b*, C*, h◦) nor MMb formation nor on technological meat quality parameters, such
as thawing loss (p > 0.05) or drip loss (p > 0.05). The moisture content was not affected
by any factor; thus, the mean value was 76.1 ± 0.16%, regardless of treatment. Neither
display time (p > 0.05) nor diet (p > 0.05) effects were found on drip loss (1.6 ± 0.2%;
Supplementary Materials, Table S5).

The impact of display time and later freezing on lamb meat quality have not been
extensively reported in the literature. However, regardless of the diet, the effect of storage
time (p < 0.01) was observed on the subsequent thawing losses, which were higher in meat
stored for 0 and 7 days than 11 days (5.10 vs. 4.08 ± 0.29%), and intermediate in those
stored for 9 days (4.68 ± 0.29%). Coincidently, Kim et al. [33] observed, in the beef loin,
that the longer the aging period, the lower the thawing losses, which is possibly due to the
low quantity of free water available after storage.

Meat colour is one of the main aspects considered by the consumer in the purchase
decision since a bright red colour is intuitively associated with the freshness and quality of
the meat [34]. Display time, but not diet, affected meat colour attributes (Figure 2). In line
with this, Gravador et al. [35] did not find any interaction between Cp and storage time,
although they observed that diets with 35% of Cp produced darker (lower L*), less yellow
(b*), and less saturated colour (C*) meat versus a control diet in heavy lambs (157-day old).

In the current study, regardless of the diet, the L* and b* parameters showed the lowest
level (p < 0.001) on day 0 and reached the highest value after day 7. Concomitantly, the
redness (a*) and C* increased (p < 0.001) from the minimum value on day 0 to the highest
level on day 7 and decreased to intermediate values on days 9 and 11. It was also observed
that MMb and h◦ increased with storage time under MAP, achieving their maximum on
day 11 (p < 0.001) and intermediate values on days 7 and 9. These results mirror the meat
discolouration process from day 9, which is produced by the oxidation of myoglobin across
the storage time and is generally reflected in a decrease in redness and saturation, and
an increase in metmyoglobin levels and hue angle [36,37]. The browning of meat is the
outcome of the oxidation of myoglobin to metmyoglobin, so when meat reaches 50% MMb,
it appears reddish-brown and loses its sale value [3]. However, in this study, the MMb
values ranged between 20 and 35%, which represents a small discolouration [18].

3.2. Fatty Acid Profile in Semimembranosus Muscle

The lamb meat FA composition and content may be affected by dietary FA profile,
animal breed, sex, and age [37], or even by the amount of dietary polyphenols supplied,
especially when lambs are fed with tannin-rich ingredients [9]. In this study, all diets were
highly concentrated in nutrients and formulated to meet the recommended net energy
level for Spanish fattening lambs [38]. Thus, it is worth noting that diets including Cp
presented a higher percentage of ether extract since different amounts of oils were needed
to formulate isonitrogenous and isoenergetic diets because fibrous ingredients, such as Cp,
were supplied in the diets.

Feeds with Cp tended to increase the total FA content in lambs (p = 0.058, Table 2).
Gravador et al. [35] also provided Cp (35%) in diets to lambs but did not find differences
on IMF in their loin compared with the control lambs, probably because the concentrates
used presented similar ether extract. It is known that the IMF content is a key determinant
of quality in meat because, within moderate levels, there is a positive impact on flavour
and juiciness [39]. However, some recent meta-analyses found no effect of dietary inclusion
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of CT-rich feedstuff on the IMF of lamb meat [9,40]. Contrary, other studies reported
a negative effect of carob on fat content in the carcass or meat from lambs [5]. In our
experiment, and in addition to the IMF content results obtained, carcass dressing was
unaffected by including up to 30% of Cp in concentrate [17]. Thus, the carob-fed lambs met
their dietary energy requirements and, thereby, the potential antinutritional factors of Cp
were counterbalanced.
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Table 2. Effect of dietary carob pulp levels (0, 15, and 30%) on the total FA content (mg FAME/100 g
meat) and the composition of saturated fatty acids (mg FA/100 g meat) of the Semimembranosus
muscle.

C0% C15% C30% SEM 1 p-Value

Total FA 1800 2138 2293 0.15 0.058
C10:0 1.05 1.52 1.23 0.34 0.628
C11:0 0.16 0.2 0.19 0.04 0.665
C12:0 4.31 4.83 4.63 0.53 0.784
C13:0 11.1 10.5 9.50 0.56 0.122
C14:0 58.5 66.9 63 6.25 0.642
C15:0 17.3 17.2 14.9 0.78 0.059
C16:0 432 522 560 36.2 0.052
C17:0 32.7 34.1 33.0 2.60 0.916
C18:0 252 b 303 ab 330 a 19.7 0.029
C19:0 0.66 1.02 0.97 0.14 0.165
C20:0 1.82 1.78 1.64 0.11 0.479
C21:0 0.65 0.96 0.85 0.11 0.185
C22:0 0.45 0.63 0.86 0.11 0.051
C24:0 0.07 0.08 0.08 0.02 0.950
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Table 2. Cont.

C0% C15% C30% SEM 1 p-Value

∑iso-OBCFA 27.9 a 28.1 a 24.5 b 1.10 0.041
∑anteiso-OBCFA 13.09 13.12 11.06 0.76 0.096

∑OBCFA 41.0 a 41.2 a 35.5 b 1.78 0.047
∑DMA 60.3 b 72.6 ab 91.5 a 7.26 0.016

∑SFA Me 11.5 12.8 13.3 0.91 0.418
∑SFA 813 967 1022 63.8 0.077

1 Standard error of means. a,b Least squares means in the same row with different superscript let-
ters are different (p < 0.05). ∑OBCFA = sum of anteiso (a)- and iso (i)-fatty acids. ∑DMA = sum
of dimethylacetals (DMA-C16:0 + DMA-C18:0 + DMA-C18:1). ∑SFA Me = ∑C14:0Me (C14:0-6Me + C14:0-
8Me + C14:0-4Me + C14:0-10Me + C14:0-2.6DiMe) + ∑C15:0Me (C15:0-8Me + C15:0-4Me) + ∑C16:0Me
(C16:0-2Me + C16:0-6Me + C16:0-8Me + C16:0-4Me + C16:0-12Me) + ∑C17:0Me (C17:0-12Me + C17:0-cyclo).

The inclusion of Cp in the lamb concentrate affected the FA composition of IMF; the
amounts of FA expressed by 100 g of meat are shown in Tables 2 and 3. Although many
studies on the FA content of meat present it as the percentage of each FA to the total FAME
(i.e., % of total FA), to our understanding, the current expression is appropriate to assess the
concentration of the rapidly and truly oxidizable FA per unit of muscle and consequently its
oxidative sensitivity (more detailed information on the FA profile expressed as g FA/100 g
FAME is available in the Supplementary Materials, Table S6). Meat from Cp-fed lambs
tended to show a higher amount of C16:0 (p = 0.052), C22:0 (p = 0.051), and total saturated
FAs (SFA, p = 0.077) compared with C0% lambs. In addition, the C18:0 amount was higher in
C30% than in C0% lambs (p < 0.05). It is worth noting that lambs from the C15% and C30%
groups ingested a higher level of SFA, specifically C16:0, compared to C0% individuals,
which might explain the greater muscle deposition of those FA in the Cp lambs. Within
the SFA series, there is an increasing interest in analysing the odd- and branched-chain FA
(OBCFA). These FA are considered as potential indicators of the abundance and activity
of microbial groups, and therefore may reflect the effects of the chemical composition of
the concentrate in the ruminal environment. The negative effects of secondary compounds
(i.e., CTs) have been reported on the OBCFA concentrations in digesta or even on volatile
FA concentration, suggesting modifications in bacterial activity [6,41]. These previous
findings support our observations, since lambs from the Cp groups tended (p = 0.059) to
have decreased levels of C15:0 in IMF. Additionally, lambs from the C30% group exhibited
a lower sum of iso-OBCFA and total OBCFA compared to both C15% and C0% lambs
(p < 0.05). These results clearly suggest that the dietary inclusion of Cp impacted on
ruminal microbiota activity, subsequently influencing the deposition of microbial-origin FA
in the meat. In this study, the lower the inclusion of barley in the C30% treatment, the lower
the OBCFA deposited in the IMF of lambs fed with 30% Cp. The previous literature has
shown that a higher concentration of ruminal propionate leads to a greater concentration
of OBCFA in the subcutaneous fat of sheep [42]. Thus, the lower starch content in the
C30% concentrate of our study likely affected the FA synthesised from amylolytic- or starch-
and sugar-digesting bacteria [43,44]. Natalello et al. [45] also confirmed a decrease in the
OBCFA content of the digesta, liver, and meat in lambs fed with whole pomegranate, which
is a rich-tannin Mediterranean by-product.

Additionally, the production of ruminal propionate decreases when vegetable oils
are supplemented in diets [46]. Considering that the C30% diet had the highest level of
vegetable oil inclusion, this factor may also explain the decrease in OBCFA levels in the
IMF.

The sum of monounsaturated fatty acids (MUFA, Table 3) and the cis-MUFA content
tended to be higher in C30% (p = 0.088 and 0.086, respectively) compared to C0%, as the
oleic acid (cis9-C18:1) is the major MUFA in lamb meat, as it was already documented [8].
The PUFA content of the meat increased (p < 0.05) linearly in the lambs treated with Cp.
Thereby, meat from the C30% group showed a higher amount of PUFA than the C0%
group. Diaz et al. [37] suggested that SFA and MUFA levels increase faster than those of



Antioxidants 2023, 12, 1482 10 of 16

PUFA as fat deposition increases, leading to a reduction in the relative proportion of PUFA.
Nevertheless, in the present study, the relative proportion of the total PUFA (15.85 ± 0.66 g
PUFA/100 g FAMEs, Table S6) was similar among treatments (p > 0.05), although the total
FAs tended to increase in C30%. These results may be explained by two causes. Firstly, a
higher ingestion of fat in the Cp diets led directly to an increase in the PUFA meat content,
such as linoleic acid (C18:2n-6), which was also higher (p < 0.05) in the C30% compared
to the C0% group. A second explanation might be related to the presence of secondary
metabolites in Cp, which could inhibit ruminal BH [10,47]. Some authors support the
idea that a low content of VA (trans11-C18:1) in ruminant meat is a good indicator of a
disrupted BH process, as a result of the CTs supplied [47]. However, it depends on which
pathway of the BH is affected, because a higher VA content may be expected when the
last step of BH (VA to SFA) is impaired [14]. In any case, in this paper, no differences were
found among treatments (p > 0.05) on trans11-C18:1 or in rumenic acid (cis9, trans11-C18:2),
which is another BH intermediary. These results seem to indicate that the level of CTs
supplied did not extensively modify the BH. On the other hand, there is an alteration
in the BH process known as “t-10 shift”, which occurs in concentrate-fed ruminants and
consists of an accumulation of trans10-C18:1 instead of trans11-C18:1 in the rumen [48].
trans10-C18:1 is related to cardiovascular diseases in humans; thus, the 10 trans/11 trans
ratio close to or lower than one is recommended as an indicator of the good quality of
ruminant products [24]. In this study, the 10 t/11 t ratio was lower (p < 0.05) in the C30%
compared to the C15% group and intermediate in the C0% group. Natalello et al. [45]
observed a similar situation in lambs fed with a pomegranate by-product and attributed
the results to the greater ingestion of fibre in those diets. The C30% diets were more fibrous
(i.e., higher acid-detergent fibre and lignin content) and contained less starch, which is due
to the Cp chemical composition [17].

Table 3. Effects of dietary carob pulp levels (0, 15, and 30%) on the monounsaturated (MUFA) and
polyunsaturated fatty acid (PUFA) compositions (mg FA/100 g meat) of the Semimembranosus muscle.

C0% C15% C30% SEM 1 p-Value

C12:1 0.28 0.23 0.27 0.03 0.411
C14:1 2.19 2.03 1.84 0.17 0.389
C15:1 1.89 2.11 2.15 0.17 0.512
C16:1 36.0 39.5 43.2 3.52 0.368

cis-C16:1 32.3 35.7 39.4 3.50 0.332
trans-C16:1 3.70 3.76 3.77 0.33 0.985

C17:1 27.1 28.9 34.5 2.48 0.101
cis-C17:1 25.6 27.4 33.3 2.59 0.083

trans-C17:1 1.47 1.52 1.26 0.12 0.264
C18:1 640 765 837 59.4 0.080

cis9-C18:1 528 619 685 52.0 0.098
cis11-C18:1 41.9 b 51.7 ab 63.6 a 5.66 0.026

trans10-C18:1 24.8 34.4 27.2 3.73 0.150
trans11-C18:1 20.6 27.0 26.9 3.08 0.240

trans10/11-C18:1 1.26 ab 1.33 b 1.01 a 0.09 0.041
C20:1 1.66 1.59 1.48 0.12 0.530
C22:1 0.54 0.46 0.55 0.05 0.272
C24:1 0.11 0.10 0.10 0.02 0.930

∑cis-MUFA 654 767 857 61.5 0.086
∑trans-MUFA 54.7 72.4 64.4 6.71 0.200

∑MUFA 709 840 921 65.0 0.088

C18:2 159 b 191 ab 200 a 11.0 0.038
C18:2n-6 153 b 184 ab 192 a 10.4 0.039
C19:2n-6 0.9 0.77 0.67 0.08 0.123
C18:3n-6 1.41 1.54 1.53 0.10 0.620
C18:3n-3 7.13 b 8.41 ab 9.42 a 0.58 0.035
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Table 3. Cont.

C0% C15% C30% SEM 1 p-Value

C20:2n-6 1.43 1.39 1.33 0.09 0.744
C20:3n-9 11.9 12.8 14.8 0.95 0.111
C20:3n-6 5.32 5.67 5.82 0.26 0.397
C20:3n-3 0.08 0.11 0.06 0.01 0.081

C20:4n-6 ARA 62.5 b 72.5 ab 77.7 a 3.91 0.033
C20:5n-3 EPA 6.02 6.92 7.43 0.72 0.397

C22:4n-6 4.79 5.10 5.07 0.26 0.653
C22:5n-6 0.84 b 1.27 ab 1.37 a 0.14 0.027

C22:5n-3 DPA 10.7 11.8 12.2 0.55 0.173
C22:6n-3 DHA 4.39 5.1 5.02 0.47 0.530

∑ CLA 7.48 7.48 7.88 0.50 0.806
cis9, trans11-C18:2 3.72 3.34 3.41 0.35 0.741

∑ n-6 230 b 272 ab 286 a 14.3 0.030
∑ n-3 28.3 32.4 34.1 2.10 0.164

∑ PUFA 284 b 332 ab 350 a 16.8 0.028
n-6/n-3 8.59 8.71 8.66 0.47 0.836

PUFA/SFA 0.36 0.35 0.35 0.37 0.842
1 Standard error of the mean. a,b Least squares means in the same row with different superscript letters are different
(p < 0.05). ∑cis-MUFA = C12:1 + C14:1 + cis8-C15:1 + cis9-C15:1 + cis7-C16:1 + cis9-C16:1 + cis11-C16:1 + cis15-C16:1
+ cis5-C17:1 + cis7-C17:1 + cis9-C17:1 + DMAC18:1 + cis11-C17:1 + cis6/cis8-C18:1 + cis9-C18:1 + cis11-C18:1 +
cis12-C18:1 + cis13-C18:1 + cis14-C18:1 + cis15-C18:1 + C20:1 + C22:1 + C24:1. ∑trans-MUFA = trans5-C18:1 +
trans6/trans8-C18:1 + trans9-C18:1 + trans10-C18:1 + trans11-C18:1 + trans12-C18:1. ∑CLA = Sum of conjugated
linoleic acids.

3.3. Tocopherol and Cholesterol Contents in the Semimembranosus Muscle

The meat content of γ- and δ-tocopherol was similar among treatments (p > 0.05,
154 ± 13.4 and 6.32 ± 0.40 ng/g meat, respectively), although in the experimental concen-
trate, the higher the Cp content, the higher the γ-tocopherols level (Table 1). α-tocopherol
is the most biologically active antioxidant stereoisomer of vitamin E, and in this paper, its
dietary concentration was negatively affected by Cp inclusion. Despite the presence of
a similar level of the in-feed supplemented vitamin E (300 IU/kg of feed), variations in
the proportion of ingredients influenced the total α-tocopherol content in the concentrates,
since barley (20 mg of α-tocopherol/kg of DM [49]) was the main ingredient replaced
by Cp (4.05 mg of α-tocopherol/kg of DM). Consequently, the α-tocopherol content in
the meat from the lambs without dietary Cp was higher (p < 0.05) than that in the C30%
group (2.83 vs. 2.30 ± 0.16 mg/kg) and intermediate in C15% (2.41 ± 0.16 mg/kg). These
results are supported by the fact that the magnitude of muscle vitamin E depends on the
amount and chemical form and the length of the vitamin supplementation [50,51]. Thus,
it is important also to point out whether the lambs studied were light (<25 kg of BW) or
heavy, which influences the IMF level, or whether they were fed on pastures or indoors
with concentrates and straw [52]. Contrary to our results, Lobón et al. [53] found that the
dietary inclusion of condensed tannins in sheep increased the concentration of vitamin
E in the meat from their suckling lambs. In addition, Valenti et al. [54] found an increase
in meat α-tocopherol content in lambs fed with a tannin extract. However, in this latter
study, the fact that no vitamin E was supplemented and the supplied tannins were mainly
hydrolysable might be responsible for their findings.

Our results do not confirm the effects mentioned of these secondary compounds on
the vitamin E deposition. Nevertheless, it is also possible to hypothesize that the higher
level of IMF (p = 0.058, tendency) observed in the C30% exerted a diluting effect on the
meat α-tocopherol content.

Cp inclusion in the lamb’s concentrate had no impact on the cholesterol content in the
meat (p > 0.05, 84.5 ± 0.3 mg/100 g meat), which coincides with previous works on heavy
lambs supplemented with tannin extracts [55].
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3.4. Lipid Oxidation

Lipid oxidation was affected by neither the diet and display time interaction nor
dietary treatments (p > 0.05), which is in accordance with previous studies including
dietary tannins [7,35,54]. Nevertheless, it is noteworthy that there is literature supporting
the use of feedstuff rich in phenolic compounds to improve oxidative stability in meat [56].
MDA, which is considered a good indicator of the development of rancid off-flavours,
increased linearly until 9 days of display, regardless of diet (p < 0.001) (Figure 3).
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In light lambs, Ripoll et al. [57] showed that a level above 1 mg MDA/kg of meat
seems to be the threshold to detect the oxidised flavour for meat. In this paper, the MDA
mean concentrations remained far below this limit, even at 11 days of display. Previous
studies showed that lipid oxidation products (i.e., aldehydes) decrease meat colour stability
by influencing the enzymes involved in metmyoglobin reduction [7]. Recently, a meta-
analysis [39] concluded that dietary CTs may preserve the antioxidant capacity and reduce
lipid oxidation only if the deposition of pro-oxidant agents (such as PUFA) does not
break the balance provided by antioxidant agents. Furthermore, it has been proposed
that dietary phenolic compounds might positively interact with antioxidants, such as
vitamin E, protecting and increasing their muscle concentration [51] or even being restored
from their oxidized form [14]. Thus, the lack of dietary effect on MDA levels, despite the
lower initial α-tocopherol muscle content in C30% lambs, might be associated with the
potential capacity of CTs to regenerate α-tocopherols via the one-electron reduction of
α-tocopheroxyl radicals [58]. However, the current results may not completely confirm
this idea; thus, it is feasible to hypothesize that the level of total polyphenols supplied in
the experimental Cp diets (8–12.1 g tannic acid equivalents/kg of Cp concentrate) could
limit meat deterioration, which may counterbalance the above-mentioned pro-oxidant
conditions in meat.

3.5. Relationship between α-Tocopherol Meat Content and Lipid Oxidation

The meat content of α-tocopherol in all the samples ranged between 1.16 and 3.82 mg/kg
of meat, but it is still unclear which is the optimal concentration in the tissue to limit the
oxidative process. Previous studies in light lamb meat stored for 7 days [59] and 14 days [60]
found that concentrations around 0.75 and 1.90 mg of α-tocopherol/kg of meat, respectively,
were optimal thresholds above which the ability to stop the browning process and lipid
oxidation was less efficient. In this study, seven intervals of α-tocopherol (0.38 mg/kg
meat in each) were established with the aim of identifying the above-mentioned threshold.
It is important to note that, for this analysis, the α-tocopherol content detected in the
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meat on day 0 was used; so, the continuing rate of vitamin E loss in the muscle was not
considered. Two intervals (1.16–1.54 and 1.54–1.92 mg of α-tocopherol/kg meat) were
statistically different (p < 0.05) and showed the highest MDA value compared with the
other five ranges (Figure 4). Therefore, a concentration of 1.9–2.3 mg α-tocopherol/kg of
meat was optimal, above which there was no detectable improvement in lipid oxidation
disruption, even when the meat was displayed for 11 days under MAP conditions. In
heavier lambs, 1.90 mg of α-tocopherol/kg meat also represented a turning point below
which lipid oxidation started to increase rapidly in the meat stored in MAP [49].
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limit the oxidative process. Previous studies in light lamb meat stored for 7 days [59] and 
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tioned threshold. It is important to note that, for this analysis, the α-tocopherol content 
detected in the meat on day 0 was used; so, the continuing rate of vitamin E loss in the 
muscle was not considered. Two intervals (1.16–1.54 and 1.54–1.92 mg of α-tocopherol/kg 
meat) were statistically different (p < 0.05) and showed the highest MDA value compared 
with the other five ranges (Figure 4). Therefore, a concentration of 1.9–2.3 mg α-tocoph-
erol/kg of meat was optimal, above which there was no detectable improvement in lipid 
oxidation disruption, even when the meat was displayed for 11 days under MAP condi-
tions. In heavier lambs, 1.90 mg of α-tocopherol/kg meat also represented a turning point 
below which lipid oxidation started to increase rapidly in the meat stored in MAP [49].  

 
Figure 4. Relationship between the α-tocopherol content and lipid oxidation (MDA) in the Semimem-
branosus muscle. Mean (±standard error) bars are indicated with solid symbols, while empty sym-
bols indicate observational data for each display day. Different letters indicate significant differences 
(p < 0.05) between the overall α-tocopherol ranges at day 0 (capital letters) and days of display within 
each range (lowercase letters). ns: p > 0.05. 

Figure 4. Relationship between the α-tocopherol content and lipid oxidation (MDA) in the Semimem-
branosus muscle. Mean (±standard error) bars are indicated with solid symbols, while empty symbols
indicate observational data for each display day. Different letters indicate significant differences
(p < 0.05) between the overall α-tocopherol ranges at day 0 (capital letters) and days of display within
each range (lowercase letters). ns: p > 0.05.

4. Conclusions

The inclusion of Cp in the diets of light lambs up to 30% does not negatively affect
meat quality parameters, such as drip loss or colour. However, our findings may not
fully prove the idea that Cp limits the oxidative process in the Semimembranosus muscle,
since meat discoloration and lipid oxidation were similarly increased in the meat from
lambs consuming Cp compared to those that did not. The inclusion of 30% Cp in the
lamb concentrate does not affect the SFA content, but results in a higher PUFA content,
especially in the C18:3n-3 and n-6 series compared with the control diet. Unexpectedly, the
α-tocopherol content in the meat was the lowest in the lambs fed with 30% Cp. Therefore,
further research is needed to elucidate the relationship between dietary Cp inclusion and
α-tocopherol metabolism and muscle deposition. Meanwhile, the concentration of vitamin
E in the meat should not be lower than 2 mg α-tocopherol/kg to avoid lipid oxidation for
up to 11 days of the display of meat from light lambs.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/antiox12081482/s1. Table S1: Effect of batch (winter or summer) on
meat colour parameters (L*; a*; b*; C*, chroma; and h◦, hue angle), metmyoglobin formation (% MMb),
drip loss, and lipid oxidation (MDA, malondialdehyde mg/kg meat) on Semimembranosus muscle.
Table S2: Effect of batch (winter or summer) on meat tocopherol (α, γ, and δ) and cholesterol content of
Semimembranosus muscle. Table S3: Effect of batch (winter or summer) on total FAs (mg FAME/100 g
meat) and the composition of saturated fatty acids (mg FA/100 g meat) of Semimembranosus muscle.
Table S4: Effect of batch (winter and summer) on the composition of mono- and poly- unsaturated
fatty acids (mg FA/100 g meat) of Semimembranosus muscle. Table S5: Effects of dietary carob pulp
inclusion (0, 15, and 30%) in the lambs’ diet and display time (0, 7, 9, and 11 days) under Modified
Atmosphere Packaging on the drip loss and thawed losses of lamb meat.Table S6: Effects of carob
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pulp levels (0, 15, and 30%) in the lambs’ diet on the fatty acid composition (g FA/100 g of FAMEs) of
Semimembranosus muscle from light lambs.
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