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Recent evidence emanating from epidemiological prospective studies shows that in-
creased intakes of antioxidant-rich fruits, vegetables, and legumes are associated with
a lower risk of developing chronic oxidative stress-related diseases like cardiovascular
diseases and cancer, as well as with a lower risk of cardiovascular, cancer, and all-cause
mortality rates [1–3]. Functional food ingredients (also referred to as nutraceuticals) are
highly nutritious food-derived products that naturally offer or are modified aiming to
promote powerful additional health benefits that go beyond basic nutrition factors. The
bioactive compounds present in these dietary items have been extensively studied in re-
cent decades as potential molecules capable of interfering with the pathophysiological
mechanisms associate with several diseases. The general benefits provided by the regular
consumption of fruits and vegetables are proposed to be conferred by their nutritional com-
pounds, including vitamins, and non-flavonoid and flavonoid polyphenols [4]. Important
components of functional foods include citrus fruits produced by the flowering plants from
the genus Citrus L. (Rutaceae family) [5,6]. Fruits in this group include oranges, mandarin,
tangerine, clementine, grapefruit, pomelo, lemons, and lime. Citrus fruits are rich in sugars,
vitamins, organic acids (such as hydroxycinnamic, hydroxybenzoic, citric, and succinic
acids), coumarins, terpenoids, and flavonoids (including flavanones, flavones, flavonols,
and anthocyanins). The biological properties of citrus fruit phytochemicals range from
antioxidant and anti-inflammatory to antimutagenic and anticarcinogenic effects, among
others [6–8].

Oxidative stress denotes a condition provoked by endogenous or exogenous processes
in which an imbalance between the generation of free radicals and the cellular ability to neu-
tralize them occurs, thus favoring the overproduction of reactive species. This phenomenon
represents a harmful event for cells and tissues, in which the cell membrane, mitochondria
and nucleus are highly vulnerable, consequently contributing to the pathogenesis and
progression of several diseases [9]. Therefore, targeting oxidative stress in disease has been
proposed as a potential approach for diseases prevention and therapy [10]. In this sense, a
better comprehension of the mechanisms by which different antioxidants (both natural or
synthetic) acts may provide helpful insights and a rationale for successful pharmacological
approaches. Antioxidant mechanisms related to citrus fruits compounds are diversified.
The inhibition of pro-oxidant enzymes (e.g., xanthine oxidase) and induction of antioxidant
enzymes (e.g., catalase, superoxide dismutase, and glutathione peroxidase) [11–13], the
modulation of redox-sensitive pathways such as nuclear factor κB (NFκB) and nuclear
factor E2-related protein 2 (Nrf2) [14–18], reactive oxygen/nitrogen species (ROS/RNS)
scavenging [19,20], and the chelation with transition metals [20,21] are some of the effects
or actions described for the antioxidant compounds of citrus fruits to combat oxidative
stress [6]. Despite these advances, unravelling new potential mechanisms by which citrus
fruit-derived compounds may modulate pathological conditions will contribute to bringing
new knowledge on their properties and therapeutic applicability. This Special Issue on the
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“Antioxidant compounds and health benefits of citrus fruits” contains nine contributions,
comprising six research articles and three reviews.

In the first original article, Bussmann et al. [17] demonstrated the mechanism by
which the synthetic flavonoid hesperidin methyl chalcone (HMC; C29H36O15) protects
the kidneys from damage caused by the non-steroidal anti-inflammatory drug (NSAID)
diclofenac. HMC is generated via methylation of the flavanone hesperidin (hesperidin-7-
rhamnoglucoside) [22]. The data showed that HMC acts by boosting antioxidant parameters
and by reducing oxidative damage and pro-inflammatory cytokines both systemically and
in renal tissue. In the kidneys, HMC additionally led to an increased production of anti-
inflammatory cytokine IL-10 and a reduction in histopathological damage, edema, and
the levels of active tubular pathology marker neutrophil gelatinase-associated lipocalin
(NGAL), with these effects being attributed to the activation of the Nrf2/antioxidant re-
sponsive elements (ARE) pathway [17]. Lai et al. [23] evaluated the effects of five different
drying methods (freeze drying, shade drying, hot-air oven drying at 50 ◦C, hot-air oven
drying at 70 ◦C, and microwave drying) on the bioactive phytochemicals and antioxidant
capacity of navel orange peel. Through HPLC analysis, they identified thirteen flavonoids
(three flavanone glycosides and ten polymethoxyflavones) in navel orange peel. The au-
thors found that the use of hot-air oven drying at 50 ◦C or 70 ◦C for the drying of orange
peel delivered the best results, contributing to the maintenance of bioactive compounds in
the peel as well as the improvement of its antioxidant capacity, thus advancing the under-
standing of the useful methods for the viability and antioxidant potential of navel orange
peel compounds [23]. Cioni and colleagues [24] conducted comparative chemical analyses
among peel and pulp essential oils and methanolic extracts of different Citrus australasica
varieties (Red, Collette, Pink Ice, and Yellow Sunshine), as well as analyses of the hybrid
faustrime (caviar lime). Additionally, the antioxidant activity of peel and pulp extracts
using an A31 mouse embryo fibroblast cell line was also investigated. The peels’ essential
oils exhibited higher total phenolic contents with greater antioxidant activity. Collette
peels showed the highest concentration of flavonoids, including luteolin, isosakuranetin,
and poncirin derivatives, and delphinidin and petunidin glycosides. Pink Ice pulps were
also shown to be an additional source of flavonoids, and Collette and Red peels presented
the highest in vitro antioxidant activity, which was attributed to the presence of antho-
cyanins, thus identifying finger lime fruits as good sources of phytocompounds within
the context of promoting healthy benefits [24]. In another interesting original research
article, Ju et al. [25] investigated the antioxidant effects of Citrus junos peel fractions (ethanol
acetate, hexane, and butanol) using human primary dermal fibroblast and immortalized
keratinocyte, and murine melanoma cell lineages. They showed that Yuja peel fractions
possessed anti-wrinkle effects by inhibiting metalloproteinases 1, 9, and 13 at mRNA and
protein levels, as well as by inducing type I pro-collagen and hyaluronic acid in evaluated
UVB-irradiated cells. Moreover, the Yuja peel fractions induced the production of proteins
relating to skin hydration, and they decreased melanin content, thus promoting advances
in the understanding of the skin benefits provided by Yuja peel fractions, which may
contribute to the development of novel pharmaceuticals and cosmetics [25]. In the in vitro
study of Nakashima et al. [26], new pharmacological insights into the ways in which
high doses of flavonoids quercetin (C15H10O7) and hesperidin (C28H34O15) differentially
modulate cell viability, tight junction integrity, and cell shape are provided. Considering
that the barrier function of tight junctions may block the absorption of some molecules,
the identification of reversible modifiers of its integrity are desirable as drug absorption
enhancers [27]. They conclude by suggesting both quercetin and hesperidin are promising
compounds for developing a naturally occurring drug absorption enhancer for the paracel-
lular route, with hesperidin being the most attractive for such a technology [26]. Finally,
García-Nicolás et al. [28] conducted a spatial metabolomic analysis for the characterization
of phenolic compounds in juices and fruit tissue extracts of lemons, limes, and mandarins.
Flavonoids were mainly found in the citrus peel (flavedo and albedo) and carboxylic
acids in segments, facilitating the extraction of the latter in juices. Limonoids were also
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distributed in the albedo and segments. The radical scavenging activity was attributed
to the flavonoids, and the antioxidant effects were attributed to the combined action of
flavonoids and limonoids. These data regarding the fractionation of the extracts advance
the comprehension of the antioxidant effects of the family compounds identified [28].

In the first review article, Saini et al. [29] highlighted in their compilation of data the
composition and associated health benefits of some components of citrus fruits, notably,
carotenoids, flavonoids, limonoids, and terpenes. In their conclusions, the authors pro-
pose that bioactive flavonoids of citrus fruits may represent important molecules with
antioxidant ant inflammatory properties capable of minimizing the risk of many non-
communicable chronic diseases, as well as suggesting that those essential oils rich in
limonoids and terpenes possess potential antioxidant and antimicrobial effects. Addition-
ally, the authors pointed to interesting potential future investigations in this field aiming
to elucidate some gaps that still exist regarding the composition, content, and health ef-
fects of citrus fruit bioactives [29]. In the second review article, Fideles et al. discuss
the neuroprotective effects of the flavonol quercetin on nervous system regeneration and
functional recovery [30]. Quercetin, one of the most studied and abundant flavonoids in
edible vegetables, fruits, and wines, is a pentahydroxyflavone that has hydroxy groups
placed at the 3-, 3′-, 4′-, 5-, and 7-positions [31]. The result reported by the authors provided
evidence for beneficial effects in preclinical spinal cord injury and peripheral nerve injury
models, demonstrating that quercetin can induce effective recovery of neurological func-
tions, contributing to the regeneration of both central and peripheral nervous tissues [30].
Finally, Madureira et al. [32] conducted a comprehensive review regarding the evidence
of two antioxidant flavanones, naringenin (C15H12O5) and hesperidin, on the prevention
and therapy of breast cancer. Through DNA damage, oxidative stress may trigger genetic
alterations that predispose tumorigenicity and tumor progression [33]. The main mecha-
nisms of these flavonoids to counteract breast cancer are properly addressed in the article
and are especially associated with anti-proliferative, anti-tumorigenic, and anti-metastatic
actions, as well as with the epigenetic modulatory effects upon estrogen receptors [32].
Thus, within effective and safe concentrations, citrus fruits components may represent
promising nutraceuticals as anti-cancer substances for breast cancers treatment.

In conclusion, the original research and review articles address several interesting ex-
perimental conditions aiming to explore the antioxidant potential of citrus fruit compounds
in the context of health benefits. The progress regarding the best methods for its utilization,
the elucidation of the mechanistic actions of each bioactive, and the identification of the
most effective doses, with guaranteed safety of each antioxidant compound of citrus fruits,
will help to develop a rationale to obtain advanced technology which will be useful to
optimize its beneficial effects.
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