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Abstract: Caloric restriction is an effective intervention to protract healthspan and lifespan in several
animal models from yeast to primates, including humans. Caloric restriction has been found to
induce cardiometabolic adaptations associated with improved health and to delay the onset and
progression of kidney disease in different species, particularly in rodent models. In both aging and
obesity, fibrosis is a hallmark of kidney disease, and epithelial–mesenchymal transition is a key
process that leads to fibrosis and renal dysfunction during aging. In this study, we used an aged and
obese rat model to evaluate the effect of long-term (6 months) caloric restriction (−40%) on renal
damage both from a structural and functional point of view. Renal interstitial fibrosis was analyzed
by histological techniques, whereas effects on mesenchymal (N-cadherin, Vimentin, Desmin and
α-SMA), antioxidant (SOD1, SOD2, Catalase and GSTP1) inflammatory (YM1 and iNOS) markers
and apoptotic/cell cycle (BAX, BCL2, pJNK, Caspase 3 and p27) pathways were investigated using
Western blot analysis. Our results clearly showed that caloric restriction promotes cell cycle division
and reduces apoptotic injury and fibrosis phenotype through inflammation attenuation and leukocyte
infiltration. In conclusion, we highlight the beneficial effects of caloric restriction to preserve elderly
kidney function.

Keywords: caloric restriction; renal fibrosis; mesenchymal transition; inflammation; oxidative
balance; apoptotic pathways

1. Introduction

Aging is a physiological process regulated by the interaction between environmental
and genetic factors [1]. The term inflammaging describes chronic low-grade systemic
inflammation, during the aging process, in the absence of infection, and is an important risk
factor for both mortality and morbidity in elderly individuals [2]. Another important factor
that contributes to the increase in disability in the elderly, but not limited to, is obesity,
which represents a new and urgent challenge for public health [3]. Obesity concurs to
enhance the risk to develop cardiovascular diseases, type 2 diabetes mellitus [4], cancer [5],
dementia [6] and chronic kidney disease (CKD) [7,8]. It has been suggested that obesity
raises metabolic imbalances, reduces life span and also impairs cellular processes in a similar
mechanism to aging [9]. All tissues are affected by aging process and the kidney constitute
one of major target organs of age-related damage leading to an increased incidence of
CKD in the elderly [10]. The aged kidney undergoes clinical, macroscopic, microscopic
and functional changes causing renal dysfunction [11]. Among these changes, some of
the most significant damage is the result of fibrosis [12]. Renal fibrosis contributes to the
continuity and permanent decline in renal function and is the final stage of most chronic
diseases. The molecular mechanisms underlying the renal fibrosis process are complex and
remain poorly understood [13]. Renal fibrosis is a process that involves the deposition in
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the walls of the glomerular capillaries, in the interstitial space and around the arterioles,
of a pathological matrix that contributes to the functional disappearance of the nephron
and the surrounding vascular system [14]. Epithelial–mesenchymal transition (EMT) is
an important biological mechanism contributing to kidney fibrosis, in which polarized
epithelial cells, which physiologically interact with the basement membrane, undergo to
multiple biochemical modifications that allow them to assume a cellular mesenchymal
phenotype, including migratory capacity, invasiveness, high resistance to apoptosis and
significant increase in the production of extra cellular matrix components [15]. Fibrosis
usually arises from chronic inflammatory responses and is mediated by inflammatory cells
and fibroblasts that release various inflammatory signals that result in the breakdown of
different epithelial layers. Commonly studied epithelial and mesenchymal cell markers
include: E-cadherin; cytokeratin; ZO-1; laminin-1; Entactin; Syndecan; Muc-1; Desmoplakin
a1; miR200 [12]. Oxidative stress is an important inducer of renal fibrosis [16] and previous
works have also demonstrated its direct involvement in cardiovascular risk [17,18], in
brain ischemia [19], obesity [20] and the aging process [21] but also its protective role in
preconditioning cell adaptative response [22]. Macrophages actively participate in the
clearance of apoptotic and necrotic cells to determine damage and matrix remodeling to
replace tissues from acute and chronic kidney disease [23,24] indeed they are known for
their pathogenic role in renal inflammation and fibrosis. Pro-inflammatory macrophages
M1 release large amounts of pro-inflammatory mediators such as reactive oxygen species
(ROS), circulating TNF and all mediators that amplify inflammation and induce renal
fibrosis by secretion of MMP-9. Conversely anti-inflammatory M2 macrophages suppress
inflammation and kidney injury through the secretion of anti-inflammatory cytokines such
as TGF-β and IL-10 but can also directly promote renal fibrosis [25]. Calorie restriction
(CR), a reduction in food intake that occurs without causing malnutrition, represents
an alternative to age-related oxidative stress and inflammation. [26,27]. In experimental
models, CR involves a diet in which there is a reduction of about 40% of calories over the
entire life span of the animal, which translates into a 30–40% increase in the maximum
life span [28]. Aside from slowing down the rate of aging, long-term calorie restriction
offers multiple health benefits. It prevents, for example, many of the age-related diseases,
such as cancer or cardiovascular diseases, which are the leading cause of death in the
population and reduces the rate of renal senescence in rats by increasing autophagy [29].
Short-term CR, on the other hand, may produce some of the same effects on longevity and
physiological function as long-term caloric restriction in rodents [30,31]; moreover, CR has
been shown to improve the balance between oxidative stress and inflammation in both
plasma and adipose tissue. [26]. Based on these findings from the literature, the aim of our
research is to verify the effectiveness of CR on kidney fibrosis in an aged obese rat model in
order to determine the mechanisms underlying EMT and fibrosis, as well as to validate the
use of the elderly/obese animal model as a phenocopy of systemic aging.

2. Materials and Methods

Animals. Experimental procedures were performed on young (Y, 15–17 weeks old,
n = 6) and aged (72 weeks old, n = 12) male Sprague–Dawley rats. Animals were individu-
ally housed in the animal care facility of the University of Calabria (Italy) under controlled
light (12 h light/dark cycle) and temperature (23–25 ◦C) conditions and with free access
to food and water. The old animals were then divided into two subgroups: control rats
(OA), which continued to follow an ad libitum diet of a standard laboratory meal (diet
ssnif V1535, German; metabolizable energy 3.057 Kcal/kg), and the food restriction rats
(CRA), which were fed a diet of the same chow, restricted to 60% of the intake measured
by weight in paired control chow-fed rats. The food restriction diet was continued for a
total period of 6 months, then aged animals (OA-control and CRA-treated) were sacrificed
at 24 months of age. Water and food intakes were recorded every other day, while body
mass was recorded monthly. At the end of in vivo experimental protocols, animals were
euthanized with isoflurane (4%) followed by cervical transection. The tissues and organs of
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interest were immediately removed, rapidly rinsed with 150 mM NaCl solution to remove
excess blood and then stored at −80 ◦C until use. Care and use of laboratory animals
(Directive 26/2014/EU) were approved by the local ethical committee of the University of
Calabria and by the Italian Ministry of Health (license n.295/2016-PR).

Masson’s trichrome staining. For histological examination, kidneys samples were fixed
in Tissue-Tek® O.C.T., a gel-like compound used to rapidly embed fresh tissue specimens
for frozen sections, using a Leica cryostat (CM1950). The slices obtained were then fixed in
4% paraformaldehyde and stained with Masson’s trichrome staining. For the staining with
Masson’s trichrome protocol, kidney tissue slides were preheated in a Bouin’s solution at
54–64 ◦C for 60 min and then washed in running tap water for 10 min. All slides were
incubated in Weigert’s haematoxylin for 5 min followed by washing in running tap water
for 2 min. The slides were then stained with acid fuchsin for 15 min and then rinsed in
distilled water. Next, the slides were treated with phosphomolybdic acid solution for
10 min and then immediately stained with Aniline Blue solution for 5–10 min. Slides were
rinsed with distilled water and treated with 1% acetic acid solution for 3–5 min. Each
slide was dehydrated through two changes of alcohol and finally soaked in xylene twice.
The sections were examined by optical microscope (DM1000 LED; Leica Microsystems,
Wetzlar, Germany) and staining quantification of fibrotic areas (stained blue) and cortex
areas (stained red) was performed using Image J analysis software 1.52a version, National
Institutes of Health, Bethesda, MD, USA.

Western Blot and Densitometric Analysis. Kidney samples taken from of each experi-
mental group were rapidly lysed in ice-cold RIPA buffer (Sigma Aldrich, St. Louis, MI,
USA) supplemented with a protease inhibitor cocktail (Sigma-Aldrich, Milan, Italy) and
then centrifuged at 20,817× g for 20 min at 4 ◦C. Bradford assay (Sigma, St. Louis, MO,
USA) was used to evaluate protein concentration in supernatants samples and the same
amounts of total protein were separated on sodium dodecyl sulfate polyacrylamide gel elec-
trophoresis (SDS-PAGE gel) and then transferred to Nitrocellulose membrane (NitroBind,
Maine Manufacturing, Kennebunk, ME, USA) using a mini transblot (BioRad Laboratories,
Hercules, CA, USA). Membranes were then blocked for 1 h at room temperature with 5%
non-fat dried milk in 0.05% Tween-20 TRIS-buffered saline (TBS-T) solution and incubated
overnight at 4 ◦C with the following primary antibodies directed against: iNOS (Sigma
Aldrich, St. Louis, MI, USA), α-SMA, Bax, Bcl2, Caspase3, Desmin, E-cadherin, GSTP1,
N-cadherin, p27, pJNK, SOD1, SOD2, vimentin (Santa Cruz Biotechnology, Inc., Dallas, TX,
USA), YM1 (STEMCELL Technologies Canada Inc., Vancouver, BC, Canada) and β-actin
(used as loading controls for protein normalization) followed by species-specific peroxidase-
linked secondary antibodies (1:2000; Santa Cruz Biotechnology Inc., Dallas, TX, USA) for 1
h at room temperature. Immunodetection was performed with an enhanced chemilumines-
cence kit (Western Blotting Luminol Reagent, Santa Cruz Biotechnology Inc., Dallas, TX,
USA), and the images were captured with the Invitrogen iBright FL1500 Imaging System.
Digitalized immunoblots were subjected to densitometric analysis performed using ImageJ
software (1.52a version, National Institutes of Health, Bethesda, Rockville, MD, USA).

Statistical Analysis. Data were analyzed by one-way analysis of variance (ANOVA),
followed by the Bonferroni and Tukey’s multiple comparison test using GraphPad/Prism
version 5.01 statistical software (SAS Institute, Abacus Concept Inc., Berkeley, CA, USA).
Data are expressed as mean ± standard error (SE).

3. Results
3.1. Caloric Restriction Decreases Interstitial Collagen Deposition

Histological sections of renal samples of Y, OA and CRA were subjected to Masson’s
trichrome staining to determine the extracellular matrix components, specifically interstitial
and perivascular area collagen deposition. Masson’s staining revealed that the extent of
fibrosis in interstitial regions is very high in OA group (Figure 1b) compared to young
animals (Figure 1a) and that CR attenuated the collagen accumulated in the renal interstitium
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ameliorating the renal injury (Figure 1c). This result is well evidenced in image collagen
quantification in Figure 1d.
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Figure 1. Masson’s trichrome staining of collagen (blue area) and cortex (red area) in kidney sections.
Black arrow points to the fibrotic area. Representative staining image from the group Y (a), OA (b),
CRA (c); original magnification, ×4. Staining quantification (d) by Image-J software 1.52a version,
National Institutes of Health, Bethesda, MD, USA (mean ± S.D) are result of 3 animals and 20 casual
determinations for each group (* p < 0.05; ** p < 0.001; *** p < 0.0001).

3.2. Caloric Restriction Downregulates Mesenchymal Markers and Restores E-Cadherin Expression

Western blot analysis was used for detecting the mesenchymal markers α-SMA, Vi-
mentin, Desmin and N-cadherin. The increased α-SMA and Vimentin protein levels in
OA animals was significantly reduced in CRA group (Figure 2a,b). A similar expression
trend was also observed for Desmin protein, whose protein level was reported to control
condition (Figure 3a). Concerning N-cadherin, our results showed that CRA suppressed
its protein level expression far below those observed in the other experimental groups
(Figure 3b). Interestingly, concerning the epithelial marker E-cadherin, dietary restriction
significantly restores the expression of the mature protein form compared to all the experi-
mental groups, but did not affect the precursor protein form that was lower in the caloric
restricted rats compared to the other experimental groups (Figure 4a,b).

3.3. Caloric Restriction Affects Renal Inflammation

Given the significance of inflammation in kidney fibrosis, we determined the level
expression of YM1 (an M2 macrophage marker) and iNOS (an M1 macrophage marker) pro-
teins. Western blot analysis demonstrated that CR mitigates the M2 macrophage infiltration
and suppressed iNOS protein expression compared to both OA and Y rats (Figure 5a,b).
These results highlight the potential benefits of diet intervention on renal inflammatory
profile which can contribute to mitigate kidney fibrosis.
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3.4. Caloric Restriction Protects from Renal Apoptotic Injury and Promotes Cell Division

In the setting of organ fibrosis, ongoing inflammation can lead to organ destruction
and for this reason we analyzed the apoptotic pathways markers. Our results showed
that the follow apoptotic signaling mediators analyzed (Bax, Caspase 3, pJNK) were
significantly upregulated by obese and aging conditions and suppressed and returned to
control condition by CR (Figures 6a and 7a,b). Concerning Bcl-2 (Figure 6b), we did not
detect an increase in its protein level but only a slight decrease in CRA group compared to
OA rats. To further confirm the protective role of CR on renal senescence, we highlighted
a significant downregulation of the p27 protein, a negative regulator of the cell cycle
(Figure 8).
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Figure 5. YM1 (a) and iNOS (b) proteins expression in kidney tissue samples of Y, OA and CRA rats.
(a1,b1) show the densitometric quantification of the blots. β-actin levels were used as loading control.
Data are expressed as means ± SE of five determinations for each animal (n = 6). One-way ANOVA
followed by Bonferroni’s multiple comparison test (* p < 0.05; *** p < 0.0001) were used to analyze
statistical differences.

3.5. Caloric Restriction Enhances SOD1 Expression but Negatively Modulates GSTP1
Protein Level

To evaluate the involvement of oxidative stress in the fibrotic process, we analyzed the
expression of key antioxidant enzymes. Our results demonstrated that CR enhances the
expression of the cytoplasmic antioxidant enzyme SOD1 without affecting the expression of
the mitochondrial SOD2 isoform (Figure 9a,b). Concerning GSTP1 antioxidant enzyme, our
results showed a notable increase in expression in obese rats and a considerably reduced
expression in animals subjected to CR, although it remains high compared to the control
group (Figure 10a). Catalase protein expression instead was not affected by CR and remains
comparable in all experimental groups (Figure 10b).
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4. Discussion

Our study was designed to analyze the effect of long-term (6 months) CR (−40%)
on the kidney structural and functional damage in an aged and obese rat model. We
demonstrated that CR represents an efficient strategy to protect kidney morpho-functional
structure in the elderly. Our results clearly showed that CR promotes cell cycle division,
reduces apoptotic injury and fibrosis phenotype through the inflammation attenuation
and leukocytes infiltration. The experimental model we used proved to be particularly
functional for aging studies as it exhibits a gradual and age-related increase in body weight
complemented by a phenotypic change in the body’s fat redistribution that affects energy
metabolism and systemic insulin resistance [32] with close similarities to aged human [33].
In particular, our aged rats (72 weeks old) present a 45% increased body weight compared
to the young animals, and therefore have overt obesity [34] and also show a oxidative
imbalance and low grade proinflammatory state typical in both obesity and aging [26,35].
The molecular basis of ageing is not yet well known; however, the functional and structural
changes associated with ageing and the ways in which genetic background, age and disease
can combine to produce functional damage are becoming increasingly evident. As for
all organs, the aging of the kidney involves physiological morpho-functional alterations;
however, in the case of this organ, the changes associated with age undergoes complex
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alterations that predispose to renal dysfunction [36,37]. The renal senescence phenotype
is characterized by tissue degeneration and loss of functioning, even though it is unclear
whether these changes are primary or secondary events [36]. Replicative senescence and
oxidative stress seem to play a fundamental role in the process of renal aging, creating an
oxidative hypoxic/ischemic environment complicated by both genetic and environmental
factors [38,39]. At structural level, the senescent kidney shows a significant reduction in the
overall mass (up to 20–30%) particularly in cortex, and an important interstitial fibrosis [36].
Our results confirm that the condition of obesity associated with aging determines a high
level of fibrosis in the renal interstitial regions, but our interesting data is that this condi-
tion is partially reversible, as CR significantly mitigates the important interstitial fibrosis
occurred in the elderly and obese specimens. It has been shown that CR counteracts all
morphologically age-associated changes including interstitial fibrosis, but these protective
effects of calorie restriction have been found to be fundamentally preventive [29,40–43].
Interstitial fibrosis typical of the senescent kidney is associated with EMT [11], a known
phenomenon in both physiological and pathological processes, which involves a functional
transition of polarized epithelial cells into motile mesenchymal cells that secrete a series
of markers including α-SMA, Vimentin, Desmin and N-cadherin [12]. In both human and
murine models of senescent kidney, renal epithelial cells seem particularly sensitive to EMT
stimuli that occur in response to inflammatory/oxidative stress, indeed in renal fibrosis
about 35% of fibroblasts derive from endothelial cells through this complex pathologic
process [11,44]. In our aged and obese rat model, we detected high levels of mesenchymal
markers and also in this case, the CR has downregulated their expression. However, since
most of these mesenchymal markers are not absolutely specific, as they are also present
in other cells [45], we also evaluated the epithelial marker E-cadherin, frequently used
to characterize the subsistence of EMT and fibrosis in renal tissues [46,47]. Interestingly,
dietary restriction significantly restores the expression of the mature E-cadherin form but
did not affect the precursor protein form that was lower in the caloric restricted rats com-
pared to the other experimental groups. Although the mature form of E-cadherin protein is
involved in the EMT process [48] our results highlight that in caloric restricted rats all the
precursor E-cadherin protein form is turned into the mature protein form while this protein
activation process is not fully triggered in the other experimental groups. To analyze the
putative anti-inflammatory properties of diet intervention on renal fibrosis, we determined
the level expression of an M2 macrophage marker, YM1, and the inducible isoform of
NOS, iNOS, a hallmark of M1 macrophage. Macrophages are a heterogeneous population
with an important role in kidney homeostasis. They play a very complex role in kidney
fibrosis [49,50] and their recruitment/activation, is deemed as a key factor behind fibrotic
process [25]. After kidney injury, both resident and infiltrating macrophages are rapidly
enrolled to the glomerulus or tubulointerstitium to initiate innate immune responses and
promote defensive as well as destructive process in kidney tissue [51]. This dualistic role of
macrophages is explained by their phenotypic heterogeneity and functional diversity [52].
In rats, in the early stage of kidney ischemia–reperfusion injury (IRI), pro-inflammatory
M1 macrophages highly express iNOS [53] a key factor induced by several chronic inflam-
matory state (type 2 diabetes, cardiovascular disease and hypertension) including kidney
disease [54,55] and obesity [56,57]. M1 macrophages secrete a series of pro-inflammatory
factors which promote inflammation and tissue damage [58,59]. Many studies demon-
strated a protective role of NO following the increase in eNOS and iNOS expression [60,61]
but in the context of kidney fibrosis, iNOS may contribute to EMT process [62,63]. This
dualistic role of iNOS could explain the differences found in Y, OA and CRA experimental
groups: in young rats iNOS protein was significantly upregulated and this protein trend
which in our experimental condition such as inflammaging process and obesity may con-
tribute to kidney fibrosis, was decreased by caloric restriction. Alternatively, activated M2
anti-inflammatory macrophages promote both tissue repair [52], but also kidney fibrosis
via secretion of TGF-β1 [50]. M2 macrophages, which highly express Arg1, CD206 and
chitinase-like proteins such as Ym1 and Fizz1 provide for repairing the affected tissue,
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but upon chronic injury, they promote renal fibrosis through paracrine effects or direct
transition to myofibroblast-like cells, via the process of macrophage-to-myofibroblast transi-
tion [64]. According to this evidence, our experiment’s results showed that CR significantly
attenuates YM1 expression and mitigates their profibrotic stimulus in kidney tissue. Prox-
imal tubular injury and apoptosis are hallmarks for the development of kidney fibrosis.
Injured tubular cells due to an abnormal repair process, undergo to G2/M cell cycle arrest
resulting in the secretion of profibrotic cytokines and the activation of a profibrotic signaling
pathway [65] thus, the tubule cells assume a senescent secretory phenotype. The inability
of adjacent epithelial cells to replace the injured region by proliferation leads to kidney
functional loss [66]. Fibrogenic factors released from damaged tubules, such as TGF-β
and CTGF, cause the activation of fibroblasts and recruitment of immune cells into the
damaged site. Bcl-2 proapoptotic family members, Bcl-2-associated X (BAX) and Bcl-2
antagonist (BAK) are regulators of intrinsic cell apoptosis which mediate outer mitochon-
drial membrane permeabilization [67]. These proteins are inhibited by pro-survival Bcl-2
proteins and many studies have demonstrated that BAX and BAK proteins participate in
apoptotic/necrotic process in kidney disease and the silencing of their functions could
prevent apoptosis and the subsequent fibrogenic signaling [68,69]. Our present findings
showed that CR inhibit the pro-apoptotic proteins BAX, pJNK and Caspase 3 by enhancing
BCL-2 expression. However, this last result is also in according with evidence from the
literature that highlight a non-apoptotic role of Bcl-2 related to an inhibitory effect on the
cell cycle depending on a cyclin/cyclin-dependent kinase (CDK) inhibitor p27 [70–72]. In
agreement with these observations our results showed that Bcl-2 overexpression in OA vs
Y group, results in elevated levels of p27 protein. This effect was counteracted by CR which
promotes cell division and prevents cellular senescence through the downregulation of p27
protein expression. The kidney is also a high energy demand organ, with high levels of
oxidation within cellular mitochondria and antioxidant enzymes, such as SOD-1, catalase
and GSTP-1, which are the first line cellular antioxidant in many cells. Disturbances in
cellular anti-oxidant systems can contribute to renal aging process, cell apoptosis, renal
fibrosis and decreased kidney cell renewal [73]. The aging process has been associated with
mitochondrial dysfunction, which affects not only the mitochondrial biogenesis process but
also decreases the oxidative phosphorylation rate and increases ROS production [74]. Re-
duced activity of the respiratory chain was described in many tissues such as the following:
cardiac and skeletal muscle, liver, brain, kidney, platelets and lung [75–79]. Two major ROS
production sites which are believed to be impaired by aging process are complexes I and
III [80,81]. ROS overproduction have been suggested as the primary force of age-related
cellular damage and for this purpose many theories speculate the putative detrimental
effects of ROS, including the free radical and mitochondrial theories of aging [82–85]. Aging
is also accompanied by a decreased activity in antioxidant enzymes [86] and by increases in
their protein expression to counteract the damaging effects of ROS [87]. Caloric restriction
has a beneficial effect on mitochondrial function and causes a significant reduction of
mitochondrial ROS production because it induces the transcription of ROS scavenging
genes [88–90]. Murine studies which targeted antioxidant enzymes such as mitochondrial
Mn-superoxide dismutase (Mn-SOD), SOD1 and catalase have also demonstrated that their
manipulation may impact lifespan suggesting a possible correlation between the level of
oxidative damage and aging [86–91]. In kidney tissue, SOD-1 upregulation attenuates uric
acid–kidney fibrosis [92], while its downregulation accelerates the progression of diabetic
nephropathy and decreases lifespan and accelerated aging process, especially in the renal
tissue [93,94]. CR in our experimental model significantly upregulates SOD-1 expression
which in turn counteracts oxidative stress, reduces kidney fibrosis and prevents cellular
senescence. The same results were obtained in liver tissue, where CR produced an increase
in SOD-1 protein level in aged and restricted diet mice compared to both young or aged
control group to mitigate lipid peroxidation [95]. Concerning SOD-2 and Catalase, we did
not detect modulationand these results are in line with much of the evidence from the
literature, which confirmed that the restriction diet has no relevant effect in both mRNA
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and protein levels of antioxidant enzymes but instead on their activities, in particular
in kidney tissue, the results from which were relatively responsive to restricted diet. In
fact, previous works reviewed by Walsh and colleagues [96] reported decreases in kidney
GPx and SOD activity and increases in catalase activity, suggesting that catalase modu-
lation may be a response signaling by which CR protects against renal disease because
it promotes hydrogen peroxide detoxification. In our experimental model we have not
detected modulation in SOD-2 or Catalase protein levels, therefore CR preserves the antiox-
idant enzymes proteins levels and probably through the modulation of their activity levels
it counteracts the oxidative damage resulting from aging and obesity. On the contrary,
GSTP-1 expression was negatively regulated by CR and this effect, already observed by
our group [26], is probably due to the linkage between GSTP1 expression and apoptotic
signaling pathways through the activation of c-Jun N-terminal kinase (JNK) [97]. GSTP1-1
also participates in S-glutathionylation reactions and may function as a S-glutathionylase.
This reaction is important in the activation catalytic cycle of Peroxiredoxin VI (Prdx6), a
singular catalytic cysteine-containing peroxiredoxin which exhibits both glutathione (GSH)
peroxidase and 2 phospholipase A2 enzymatic activities [98], involved in the reduction
of H2O2 and phospholipid hydroperoxides [99]. In the S-glutathionylation/activation
reaction of peroxiredoxin, the oxidized monomer of Prdx6 resulting from reduction of
phospholipid hydroperoxide (PLPCOOH) or H2O2, forms a heterodimer with thiolate
anion of GSTP. The interaction between S-glutathionylated catalytic Cys47 of Prdx6 and the
catalytic Cys47 of GSTP1 causes the formation of a heterodimer structure which exposes the
disulfide bound to GSH leading to sequential reduction/activation of both Prdx6 and GSTP
catalytic cysteines [100]. In the obese and aged rat model, we observed apoptosis activation
JNK-mediated a process in which GSTP1 cellular pool is employed for both antioxidant
(monomeric form) and apoptotic (dimeric form) functions. On the contrary CR by reducing
the apoptotic rate mitigates GSTP-1 requirement by promoting SOD-1 expression.

5. Conclusions

Overall, these results highlight the beneficial effects of CR in preventing age-related
kidney fibrosis through the reduction of inflammation, oxidative stress and apoptosis. In
addition, CR may represent an efficacy strategy to preserve kidney function in the elderly
because prevents cellular senescence and promotes cellular turnover.
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