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Abstract: Molecular oxygen is a primary oxidant that is involved in the formation of active oxygen
species and in the oxidation of lipids and proteins. Thus, controlling oxygen partial pressure
(concentration) in the human organism, tissues, and organs can be the first step in protecting them
against oxidative stress. However, it is not an easy task because oxygen is necessary for ATP synthesis
by mitochondria and in many biochemical reactions taking place in all cells in the human body.
Moreover, the blood circulatory system delivers oxygen to all parts of the body. The eye lens seems
to be the only organ that is protected from the oxidative stress through the regulation of oxygen
partial pressure. The basic mechanism that developed during evolution to protect the eye lens against
oxidative damage is based on the maintenance of a very low concentration of oxygen within the lens.
This antioxidant mechanism is supported by the resistance of both the lipid components of the lens
membrane and cytosolic proteins to oxidation. Any disturbance, continuous or acute, in the working
of this mechanism increases the oxygen concentration, in effect causing cataract development. Here,
we describe the biophysical basis of the mechanism and its correlation with lens transparency.

Keywords: eye lens; oxygen partial pressure; oxygen concentration; lens lipids; barriers to oxygen
transport; oxygen consumption

1. Introduction

To perform their function of focusing pictures of surrounding objects on the retina, the
eye lens and cornea must be transparent throughout the entire human life. Avascularity
of the lens and the cornea is one of the ways to maintain the transparency. Another is
diminishing the scattering of incoming light. For that purpose, the fiber cells comprising
the lens lose their cytoplasmic organelles during maturation [1–3]. Only the most super-
ficial and not yet matured layers of cortical fiber cells still contain organelles, including
mitochondria [1,4]. Because the lens is avascular, the metabolites needed for biochemical
reactions in the central part of the lens have to be delivered from the surface by diffusion;
the fiber cell metabolism is thus diminished to the very minimum. One of the metabolites
is the primary oxidant, molecular oxygen. In contrast with the lens, the cornea obtains
enough oxygen for its metabolism directly from the air [5].

This review is focused on three mechanisms developed during evolution that control
oxygen partial pressure within the lens and ensure that it remains at a very low level
throughout the entire human life. They achieve their goals by (1) controlling the oxygen
partial pressure outside the lens, (2) consuming oxygen within the lens, and (3) utilizing
and modifying the barriers to oxygen transport into the lens center. These three direct
antioxidant direct mechanisms are assisted by the resistance of the lipid components of the
eye lens membrane and cytosolic proteins to oxidation.
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2. Oxygen Partial Pressure and Oxygen Concentration

Generally, the content of oxygen in the investigated systems is described either by the
oxygen concentration or the oxygen partial pressure [6]. The quantities are related to and
can be derived from each other. The oxygen partial pressure in the system equals the oxygen
pressure in the gaseous phase with which the system should be equilibrated to obtain a
measured value. Two units are most commonly used in medicine: mmHg and percentage
of oxygen. The partial pressure of oxygen in the air at 1 atmosphere is 156 mmHg or
20.9%. In research on the eye, mmHg is used as a unit of the partial pressure. For systems
in equilibrium, the oxygen partial pressure is the same at any point in the system. This
part of the system can be the aqueous phase outside the cell, the cell membrane, or the
cytoplasm. In contrast, the oxygen concentration (mols per liter) for systems in equilibrium
is determined by the oxygen partial pressure and the oxygen solubility coefficient at any
spot in the system. Thus, the oxygen partial pressure across a system in equilibrium is
the same, whereas the oxygen concentration can differ significantly. The oxygen partial
pressure determines not only the local oxygen concentration but also the direction of the
oxygen flux (from greater to lower oxygen partial pressure). This is not true for the oxygen
concentration (see Figure 1 for further explanation).
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Figure 1. Schematic illustration of the local oxygen partial pressure (--------) and the local oxygen
concentration (········) across the sample (aqueous environment, cell membrane, and cell cytoplasm).
The sample is in equilibrium with the set oxygen partial pressure, which is the same across the
sample, while the local oxygen concentration depends on the local solubility of the oxygen in the
environment (as indicated in the drawing). It should be noted that the driving force for the oxygen
flux is not the difference in oxygen concentration; rather, it is the difference in the oxygen partial
pressure. This figure illustrates the scenario in which the system is in equilibrium, and the partial
pressure of the oxygen is the same at all points in the system, but the local oxygen concentrations
differ significantly. In this system, the net oxygen transport between the different regions does not
occur.

It is rational to assume that it is easier to remove oxygen from a system with a
lower oxygen concentration (i.e., with a low oxygen solubility coefficient) than otherwise.
In biological objects, oxygen can be removed by an oxygen consumption mechanism.
Removing oxygen from the aqueous phase requires lower oxygen consumption rates than
from a dense membrane system. We believe that a clear understanding of these concepts is
significant for the explanation of the oxygen distribution around and within the eye lens.
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3. Oxygen Partial Pressure Outside the Lens (First Mechanism)

Maintaining low oxygen partial pressure at the lens surface is the first and most
important step in protecting the eye lens from cataract development. In a healthy eye, the
oxygen partial pressure at the lens surface is already very low. At the anterior surface (in
the aqueous humor), the reported values are ~3 mmHg (Figure 2). On the opposite side of
the lens, at the posterior surface (in the vitreous humor), the reported values are somewhat
higher, of ~9 mmHg [7–10].
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Oxygen diffuses from cornea through the aqueous humor to reach the anterior surface
of the lens. The cornea is avascular and obtains oxygen directly from the air; the oxygen
partial pressure at the cornea surface under the open eye conditions is 156 mmHg, and
when the eye is closed, it drops to ~50 mmHg. So, the barrier for the transport of oxygen
from the air to the anterior area must be very effective to enable the decrease in the oxygen
partial pressure at the anterior surface to a value as low as 3 mmHg. The major barrier
is within the cornea itself, where the oxygen partial pressure drops from 156 mmHg to
24 mmHg (Figure 2). Oxygen in the cornea is effectively consumed mainly by mitochondria
at a rate of about 5 µL O2/mm2 cornea/hour [11,12]. A further drop in the oxygen partial
pressure occurs mainly in the lens’ epithelial cell layer due to oxygen consumption by
mitochondria [13–15].

On the other side of the lens, oxygen diffuses from the retina through the vitreous
humor toward the posterior surface of the lens. The oxygen partial pressure in the vitreous
humor, near the retina, is ~22 mmHg. It drops to a value of 9 mmHg at the posterior lens
surface. This drop occurs during oxygen diffusion through the vitreous gel, mainly due
to the ascorbate-dependent oxygen consumption reaction. The concentration of ascorbic
acid in the intact vitreous is very high. Any disturbance in the oxygen partial pressure
at the lens surface (acute or chronic), as reported after vitrectomy or hyperbaric oxygen
treatment, results in the development of cataract. Thus, maintaining a low oxygen partial
pressure outside the lens (i.e., at the lens surface) is the major mechanism to prevent cataract
development.

For comparison, it is good practice to compare the values of the partial pressure of
oxygen around the lens to the partial pressure of oxygen in typical tissue. The values of
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these partial pressures presented in the recent review [16] are 30–48 mmHg for brain tissue,
55.5 mmHg for liver tissue, ~72 mmHg for kidney tissue, and ~30 mmHg for muscle fibers.
In hypoxic tumors, the partial pressure of oxygen can be as low as 9.6 mmHg in renal
carcinomas [17], 6 mmHg in liver tumors [18], and 2.6 mmHg in primary brain tumors [18].
Normal oxygenation of brain tissue is assumed when the oxygen partial pressure reaches
35 mmHg [19].

4. Oxygen Consumption within the Lens (Second Mechanism)

Low oxygen partial pressure outside the lens does not guarantee that the partial pres-
sure inside the eye lens is also very low (close to zero). To ensure that the partial pressure is
low, oxygen must be consumed within the lens; otherwise, a steady flux of oxygen from the
posterior surface (with an oxygen partial pressure of 9 mmHg) to the anterior surface (with
an oxygen partial pressure of 3 mmHg) would be established [7,20]. It was shown that
the outermost layers of the cortical fiber cells, i.e., those not yet maturated and containing
mitochondria, can consume 90% of oxygen coming to the lens [10]. Thus, mitochondrial
respiration contributes significantly to keeping the oxygen partial pressure low within the
lens (Figure 3). Additionally, non-mitochondrial oxygen removal via ascorbate-dependent
oxygen consumption [10,21] or glutathione-dependent oxygen consumption [8] in the lens
nucleus helps to lower the oxygen partial pressure in this region to a level even below that
in the cortex (Figure 3).
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Figure 3. Schematic drawing showing the purported distribution of the oxygen partial pressure in a
healthy eye lens. The values of the oxygen partial pressure at the surface of the anterior and posterior
cortex of the lens in a healthy eye are taken from [7]. Arrowheads indicate the purported changes
of the oxygen partial pressure toward the lens center, with the thickness proportional to the partial
pressure value. McNulty et al. [10] reported that ~90% of oxygen flux from the lens surface to the lens
center is consumed by the mitochondria located in the most superficial layers of not yet maturated
fiber cells. The eye lens cortex (blue) and nucleus (white) are indicated. Differentiating fiber cells
near the lens surface (dark blue) contain a normal complement of organelles, including mitochondria.
Maturate fiber cells located deeper in the central region of the lens (light blue in cortex and white in
nucleus) do not contain mitochondria.

5. Barriers for Oxygen Transport into the Lens Center (Third Mechanism)

Another significant factor that helps maintain very low oxygen partial pressure within
the lens is the set of barriers to oxygen diffusion from the lens surface to the lens center.
On its way to the center, oxygen crosses thousands of fiber cell membranes. Each of the
membranes is a small barrier. The barriers, together with the oxygen consumption (see
Section 4 and Figure 3) contribute to the total oxygen partial pressure gradient across the
eye lens (Figure 4). As the height of the barrier to oxygen membrane permeation is the
inverse of the oxygen permeability coefficient across the membrane, PM, the oxygen partial
pressure difference across the membrane is determined by the oxygen consumption rate on
one side of the membrane and the oxygen permeability coefficient of the membrane (see
Figure 4 for further explanation).
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rate of J. The oxygen permeability coefficient across the membrane, PM, connects the oxygen flux, J,
across the lipid bilayer with a difference in oxygen partial pressure on either side of the bilayer, ∆p:
J = −PM∆pO2.

The oxygen permeability coefficient across the membrane depends on the membrane
constituents. It was shown that fiber cell plasma membranes, with their high cholesterol
content and high density of integral membrane proteins, constitute an effective permeability
barrier [22–26] These barriers are higher in the lens nucleus than in the cortex. This is be-
cause the nucleus cells are older. With age, the lipid composition of the fiber cell membranes
changes, the content of sphingolipids increases, and the content of phosphatidylcholine
decreases [23–26]. This is accompanied by a pronounced increase in the cholesterol con-
tent [27–30]. The membranes of fiber cells are loaded with integral membrane proteins,
and the load increases with age [31–33]. These proteins can form domains, arrays, and
other structures [34–37], which, in turn, affect the organization of the membrane’s lipid
bilayer component. Two major lipid domains induced by integral membrane proteins are
boundary lipids and trapped lipids. The oxygen permeability coefficients of these domains
are much lower than that of bulk lipids [38]. However, the high oversaturating amount
of cholesterol in the bulk lipid domains leads to the formation of pure cholesterol bilayer
domains whose oxygen permeability coefficient is low [38,39]. The coefficient is also low
for cholesterol saturated bulk lipid domains [40]. Interestingly, the age-related changes
in the membranes of the eye lens fiber cells are much greater than those in membranes of
other organs and tissue.

A comparison of the oxygen permeability coefficient across domains created in fiber
cell membranes by the high cholesterol content and by densely packed integral membrane
proteins indicates that the boundary and trapped lipid domains constitute the major
barrier to oxygen permeation [41]. Data show that the oxygen permeability coefficient
across the bulk plus boundary domain is smaller by ~30% in nuclear membranes than in
cortical membranes [27]. In the case of trapped lipid domains, this difference is ~45% [27].
The oxygen permeability coefficient of the trapped lipid domain in cortical and nuclear
membranes is ~4.7 and ~8.5 times smaller, respectively, than the permeability across water
layers of the same thickness as the domain. Thus, the trapped lipid domain forms a major
membrane barrier for oxygen transport into the lens center; this barrier is significantly
greater in the lens nucleus and, as already mentioned, increases with age [27].

It should be mentioned that proteins are nearly impermeable to oxygen [40]; there-
fore, they are effective barriers to oxygen permeation across the intact fiber cell plasma
membrane. As the protein content increases with age [31–33], one can conclude that the
fiber cell membrane constitutes a barrier to oxygen permeation that grows with the cell
age [42]. Finally, it is justified to state that the age-related changes in the lens lipid and
protein composition and membrane lateral organization are synchronized so as to increase



Antioxidants 2023, 12, 1783 6 of 12

the resistance of the fiber cell membrane to oxygen permeation, which helps maintain lens
transparency and protect it against cataract formation.

6. Resistance of Lens Components to Oxidation

The lipid composition of the membranes of lens fiber cells is tightly regulated and,
in contrast with other tissues, is independent of diet [43]. There is no turnover of phos-
pholipids, sterols, or proteins in old fiber cell membranes [44–46]. Thus, oxidative damage
to lipids accumulates with age. Age-related changes in the phospholipid and cholesterol
content make fiber cell membranes more resistant to lipid peroxidation and formation
of free radicals within the lens. This resistance is greater in the lens nucleus than in the
cortex. This is because the sphingolipid content, including dihydrosphingomyelins and
sphingomyelins, increases with age at the expense of glycerophospholipid, phosphatidyl-
choline, and phosphatidylethanolamine [23,26,44,47,48]. In mature fiber cell membranes,
~66 mol% of phospholipids are sphingolipids as compared with ~33 mol% in young cells.
Also, saturation of the phospholipid acyl chains increases. Sphingolipids, especially dihy-
drosphingomyelins, are more saturated than glycerophospholipids, which makes them
more resistant to oxidation [24,26,49]. Ravandeh et al. [50] recently published a paper, titled
“Protective role of sphingomyelin in eye lens cell membrane model against oxidative stress,”
that is perfectly relevant to this section. The three major saturated or monounsaturated
fatty acids in mature lens membranes are palmitic, oleic, and nervonic. They account
for more than 90% of the total fatty acids [28,49]. Palmitate is the most abundant acyl
chain of both sphingolipids (40%) and dihydro-sphingolipids (55%) [24,26]. The decrease
in the relative abundance of oleate found in deeper regions of the lens conforms to the
observed disappearance of glycerophospholipids in the regions. The concomitant increase
in palmitate and nervonate is due to the relative increase in the sphingolipids [28,49].

Human lens fiber cells are considered the longest-living cells in the human body
because of their minimal turnover [51]. Also, there is no protein turnover, as proteins
cannot be transported from an old lens center to a young cortical area or vice versa [52].
Thus, lens proteins should perform the same functions independently of their age. To
maintain lens transparency, effective mechanisms that protect against the accumulation of
medicated proteins and those damaged by oxidation with age are needed. Certainly, the
regulation of oxygen partial pressure around and inside the lens is one such mechanism.

7. Disturbing the Oxygen Partial Pressure around the Lens Promotes
Cataract Development

All the indicated mechanisms to control the oxygen partial pressure around and inside
the lens help maintain lens transparency through the human life. Any disturbance of
these mechanisms causes lens opacification due to the oxidation of fiber cell membrane
components [53,54] and cytosolic proteins [55]. The most common disturbance is an
acute and/or chronic increase in the oxygen partial pressure around the lens during
vitrectomy [20,56] and hyperbaric oxygen treatments [57–59]. It was shown that just after
vitrectomy, the oxygen partial pressure on the posterior lens surface sharply increases
up to 70 mmHg [20,56]. This increase stabilizes months later, as a chronic increase, to
~13 mmHg [20]. This increase is a frequent cause of nuclear cataracts. Also, exposure of
the eye lens to high oxygen partial pressure during hyperbaric oxygen therapy leads to
nuclear cataract development in most patients [58]. Interestingly, vitrectomies do not cause
an increase in the oxygen partial pressure on the anterior surface of the lens.

The existing data indicate that degeneration of the vitreous body with age might
contribute to the development of age-related nuclear cataracts. With age, the extent of
vitreous liquefaction increases, which is often accompanied by nuclear opacity. Interestingly,
neither cortical nor posterior subcapsular cataracts were associated with vitreous body
degeneration. Thus, it is concluded that the intact vitreous gel body protects the lens
from developing nuclear cataracts. The mechanism of this age-related nuclear cataract
development is related to the fact that with the increased liquefaction of the vitreous gel,
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the concentration of ascorbate is significantly lowered as compared with the intact vitreous
gel. As a result, oxygen consumption by the vitreous gel decreases. Animal studies support
the mechanism wherein the intact vitreous gel with a high level of ascorbate protects the
lens from oxidation [60–62].

There are several types of cataracts, including age-related, traumatic, and metabolic.
Age-related cataracts are the most common type, but their pathogenesis is multifacto-
rial [63–65], and this is outside the scope of our review. Normally the partial pressure of
oxygen in the lens is very low, as we mention in our review, which ensures a low level of
reactive oxygen species. In the nucleus of young lenses, the formation of the superoxide
anion does not lead to protein damage because of the rapid reduction in protein radicals by
glutathione and ascorbate. However, with age, the levels of antioxidants decrease [66,67],
and it becomes difficult to protect proteins. The only effective barrier against the oxidative
reactions observed in older lenses seems to be the maintenance of a low partial pressure of
oxygen in the center of the lens.

8. Conclusions

Oxygen conditions in the lens and in the retina, which is on the opposite side of the
eye, are very different. Thus, the mechanisms that protect the retina are different from
those in the lens. Although this is not the subject of this review, the oxygen conditions and
the protection mechanisms of both organs are compared below.

1. Oxygen partial pressure (oxygen concentration) within the lens is very low. Oxygen is
delivered to the lens through diffusion. The retina is a very well oxygenated system,
with oxygen delivered constantly through the blood vessels.

2. Regulation of the oxygen partial pressure is the major mechanism protecting the
lens against oxidative stress (as was discussed throughout the review). In the retina,
molecular oxygen is involved in the creation of all vulnerable conditions for retinal
elements, indicated below, with protective mechanisms developed during evolution
to diminish the harmful effects of high oxygen partial pressure in the retina.

3. The lens is avascular with minimal metabolism, and metabolites are delivered to the
center of the lens through diffusion. The very high metabolism in the retina requires
continuous and intensive delivery of metabolites from the blood. Two major factors
protect the lens against the harmful effects of the inflammatory cascade, which can be
initiated by cholesterol microcrystals in the cells of other tissue and organs [68–70]:
First, lens fiber cells lose their intracellular organelles (including inflammasomes)
soon after they are formed [1,3], and cholesterol microcrystals cannot activate inflam-
masomes. Second, the lens is avascular; so, development of an inflammatory cascade
is not possible. Thus, cholesterol crystals that are formed in the aged lenses [27] do
not disturb lens homeostasis. Although the inflammatory cascade is directly con-
nected with oxidative stress [71], we do not discuss it in this paper. In the retina,
the inflammatory cascade can be harmful, as in the case of wet age-related macular
degeneration [72,73].

4. Both the lens and the retina are exposed to light. This can create strongly damaging
oxidative stress conditions. A healthy lens is transparent and does not contain light-
absorbing molecules, especially photosensitizers. Conversely, the function of the
photoreceptors in the retina is to absorb incoming light. The retina also contains
a number of photosensitizers such as all-trans retinal, cytochrome c oxidase, and
porphyrins [74–77]. They absorb light and consequently can generate reactive oxygen
species and free radicals that can start a damaging oxidative cascade. To decrease the
exposure of the retina to the most damaging blue light, macular carotenoids evolved
as a blue light filter [78,79]. To increase the effectiveness of this indirect antioxidation
action, the pre-receptoral layers of the retina contain a high concentration of macular
carotenoids [78–80].

5. The lipids of the lens membranes are highly saturated to resist oxidation (see Section 5).
In contrast, to maintain the proper functioning of the photoreceptor machinery, pho-
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toreceptor membranes are highly unsaturated with high amounts of easily oxidized
polyunsaturated phospholipids.

6. To protect the retina, in the membranes of retinal pigment epithelium and photoreceptors,
raft domains enriched in saturated lipids and cholesterol are present [81–84]. Raft do-
mains are surrounded by the bulk domain enriched in long-chain (C18–C24) [85–87] and
very-long-chain (>C24) polyunsaturated phospholipids with 3–9 double bonds [88,89].
Rhodopsin is also located in the bulk domain of the photoreceptor outer segment
membrane [81,82,86,90]. Interestingly, macular carotenoids are essentially excluded
from raft domains and concentrate in bulk lipid [91,92]. In this location, they can effec-
tively protect vulnerable polyunsaturated phospholipids and rhodopsin through their
antioxidant action, according to the most accepted mechanism through which mac-
ular carotenoids, lutein and zeaxanthin, protect the retina from age-related macular
degeneration [93–96].

7. Fiber cells (especially those in the lens nucleus) are considered the longest living cells
in the human body (see Section 5). In contrast, the lifespan of photoreceptors is only a
few weeks.

As discussed in Section 6, the lipids of fiber cell membranes, as well as the proteins of
the cytosolic component, are resistant to oxidation. This, together with the very low oxygen
partial pressure in the lens ensure lifelong stability of the fiber cells. The photoreceptors in
the retina are highly vulnerable to oxidation. This is because the unsaturated phospholipids,
photosensitizers, high concentration of oxygen, and exposure to intensive light focused on
the retina by the lens create conditions for the formation of active oxygen species and free
radicals. Thus, damage to the photoreceptor is unavoidable. To deal with that problem,
evolution shortened the life of the damaged photoreceptor.

In summary, the major mechanisms that were developed during evolution to protect
the eye lens against opacification and, thus, against the development of cataract are de-
scribed in this review. These mechanisms are based on the regulation of the oxygen partial
pressure both outside and inside the lens; so, the effective oxygen concentration within
the lens is very low. The mechanisms are unique to the lens because, to the best of our
knowledge, they are not used by other tissues or organs of the human body. In a normal
lens, these mechanisms work throughout the entire human life; any disturbance to these
mechanisms results in the development of cataract.
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