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Abstract: The adipose tissue has long been thought to represent a passive source of triglycerides
and fatty acids. However, extensive data have demonstrated that the adipose tissue is also a major
endocrine organ that directly or indirectly affects the physiological functions of almost all cell
types. Obesity is recognized as a risk factor for multiple systemic conditions, including metabolic
syndrome, type 2 diabetes mellitus, sleep apnea, cardiovascular disorders, and many others. Obesity-
related changes in the adipose tissue induce functional and structural changes in cardiac myocytes,
promoting a wide range of cardiovascular disorders, including atrial fibrillation (AF). Due to the
wealth of epidemiologic data linking AF to obesity, the mechanisms underlying AF occurrence in
obese patients are an area of rich ongoing investigation. However, progress has been somewhat
slowed by the complex phenotypes of both obesity and AF. The triad inflammation, oxidative stress,
and mitochondrial dysfunction are critical for AF pathogenesis in the setting of obesity via multiple
structural and functional proarrhythmic changes at the level of the atria. The aim of this paper is to
provide a comprehensive view of the close relationship between obesity-induced oxidative stress,
inflammation, and mitochondrial dysfunction and the pathogenesis of AF. The clinical implications
of these mechanistic insights are also discussed.
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1. Introduction

Obesity represents an important public health issue, with a significant increase in
incidence and prevalence over the past 50 years [1]. It is currently thought to affect more
than one billion people around the globe, and its prevalence is continuously on the rise.
Moreover, the prevalence of overweight or obese children and adolescents has increased
more than four-fold in the last 40 years, representing a major societal concern [2]. The
deleterious impact of obesity is not exclusively attributable to its presence. Many of the
negative effects of obesity result from obesity-related diseases, including cardiovascular
diseases, diabetes mellitus, metabolic syndrome, respiratory disturbances, chronic kidney
disease, or fatty liver disease [1].

Among cardiovascular diseases, atrial fibrillation (AF) is the most common sustained
cardiac rhythm disorder, affecting approximately 2% of the European population, according
to recent data. Even though the prevalence of the disease is estimated at less than 1% in
individuals under 49 years of age, it increases to more than 15% in those over 80 years
of age [3,4]. A series of cardiac (e.g., coronary heart disease, arterial hypertension, heart
failure) and non-cardiac (e.g., diabetes, hyperthyroidism, chronic kidney disease) conditions
are known to be associated with the occurrence and maintenance of AF [5]. Extensive
evidence has associated obesity with AF [6–8], with obese individuals having a more than
two-fold higher risk of developing AF compared to non-obese individuals [9]. Clinical
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conditions frequently present in obese people (e.g., hypertension, diabetes, obstructive
sleep apnea) are major risk factors for AF [9]. Obesity-related hemodynamic changes
and myocardial ischemia further increase the risk of AF. Additionally, the fat tissue itself
has major implications in AF [9,10]. Visceral fat promotes metabolic processes such as
chronic systemic inflammation, oxidative stress, and increased insulin resistance, which
ultimately damage the atria and increase the risk of AF. Meanwhile, the epicardial fat exerts
a direct impact on the atria through mechanical and paracrine mechanisms, as well as
interaction with the cardiac ganglionated plexi [9,10]. Obesity affects cardiac structure and
function and contributes to cardiac disorders pathogenesis, particularly via the triad of
inflammation, oxidative stress, and mitochondrial dysfunction [11]. The same triad can
also provide an explanation for the complex pathophysiological link between obesity and
AF (Figure 1).
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Figure 1. The close relationship between the pathogenesis of atrial fibrillation and obesity-induced
oxidative stress, inflammation, and mitochondrial dysfunction.

Obesity contributes to atrial fibrillation by affecting cardiac structure and function,
particularly via the triad of inflammation, oxidative stress, and mitochondrial dysfunction.
In turn, atrial fibrillation promotes inflammation, oxidative stress, and mitochondrial
dysfunction, thereby leading to a self-perpetuating cycle.

In this paper, we aimed to provide a comprehensive view of the close relationship
between obesity-induced oxidative stress, inflammation, and mitochondrial dysfunction
and the pathogenesis of AF (Figure 2). The clinical implications of these mechanistic links
are also discussed.
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effects (Ca2+ handling abnormalities, structural, connexin, and electrical remodeling) and systemic ef-
fects (metabolic, neurohormonal, and proinflammatory factors). AERP—atrial effective refractory pe-
riod; AF—atrial fibrillation; ANS—autonomic nervous system; CM—cardiomyocyte; DAD—delayed
afterdepolarization; ICa-L—L-type Ca2+ current; IK1—inward rectifier K+ current; IKr—rapid com-
ponent of the delayed rectifier K+ current; IKur—ultra-rapid component of the delayed rectifier K+

current; INa—Na+ current; Ito—transient outward K+ current; SERCA2a—sarcoplasmic/endoplasmic
reticulum Ca2+ ATPase 2.

2. Inflammation in Obesity and Atrial Fibrillation

Both acute and chronic inflammation play an important role in inducing tissue damage.
Intracellular pathways are responsible for the production of various inflammatory media-
tors involved in the occurrence and progression of numerous chronic disorders, including
cardiovascular diseases, non-alcoholic fatty liver disease, acute and chronic kidney disease,
and lung diseases [12].

A large body of evidence links obesity with chronic inflammation, with the interrela-
tionship between the two being primarily related to the over-expression of proinflammatory
cytokines [13,14]. In parallel with its expansion, in obesity, the adipose tissue becomes
infiltrated by immune cells, particularly macrophages [13–16]. This infiltration is a key
contributor to the low-grade inflammation that occurs in the adipose tissue. In addition,
the adipose tissue per se is an important source of mediators of inflammation, including
proinflammatory cytokines and leptin, which directly contribute to inflammation in obese
individuals [16–19]. Obesity also triggers the activation of immune cells, including T cells
and macrophages, leading to the release of additional inflammatory mediators [13–16].
This immune activation is not limited to the adipose tissue but can also affect other organs,
contributing to the typical systemic inflammatory syndrome associated with obesity [13–16].
Increased levels of proinflammatory cytokines, such as tumor necrosis factor-alpha (TNFα),
transforming growth factor-beta (TGF-β), interleukin-1 beta (IL-1β), and interleukin-6 (IL-
6) were reported in adult obese patients [15]. All these mediators are produced by the
macrophages from the adipose tissue via leptin receptor activation [13]. Leptin was found
to positively correlate with IL-6 and TNFα levels, as well as with clinical parameters of
obesity (i.e., body mass index (BMI) and abdominal circumference) [16]. Other studies
also showed that central obesity is associated with higher levels of leptin, TNFα, and
IL-1β [17,18]. In a cohort of 740 patients, IL-6 and C-reactive protein (CRP) levels positively
correlated with central obesity [19]. In addition to CRP [20], other acute-phase proteins,
such as the proinflammatory adipokine serum amyloid A, could also play a critical role in
obesity-associated inflammation [21,22] and in obesity-related complications, including AF.
The impact of weight loss on the levels of inflammatory markers is still being discussed. In
a study conducted by Greco et al., a modest calorie restriction and weight reduction were
associated with a significant decrease in leptin levels [23]. Meanwhile, in the study by Rość
et al., a decrease in bodyweight by approximately 9% in morbidly obese patients was not
associated with a significant decrease in the levels of inflammatory cytokines (IL-6 and
TNFα) [24]. These results suggest that, at least in morbidly obese patients, only substantial
decreases in the amount of adipose tissue, probably leading to BMI normalization, may
reflect a significant improvement in obesity-related inflammation [24].

Numerous studies, therefore, point to obesity as a proinflammatory disease. In parallel,
studies incriminate obesity as a major risk factor for both the occurrence and maintenance
of AF [15,25,26], and inflammation appears to represent one of the key elements of the
link between obesity and AF. Inflammation increases the vulnerability to AF through both
electrical and structural remodeling [27]. The increased prevalence of AF in inflammatory
conditions such as myocarditis, pericarditis, endocarditis, or after cardiac surgery strongly
supports the contribution of inflammation to AF development [10,28]. In recent studies
performed in patients undergoing coronary artery bypass grafting surgery, preoperative
CRP and IL-6 serum levels positively correlated with the occurrence of postoperative AF
(Table 1) [29,30]. In the study by Li et al., CRP levels also positively correlated with the risk
of AF in the general population [31].
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Table 1. Inflammatory markers associated with atrial fibrillation and obesity.

Marker Study Population Results References

IL-6 407 patients with metabolic syndrome,
of which 128 patients with AF

Increased levels in patients with AF
and metabolic syndrome compared
with patients with AF but without
metabolic syndrome; positively
correlated with left and right atrial
volumes and epicardial fat thickness.

[32]

CRP
407 patients
with metabolic syndrome, of which
128 with AF

Increased levels in patients with AF
and metabolic syndrome vs. patients
with AF but without metabolic
syndrome; positively correlated with
epicardial fat thickness.

[32]

IL-10 CL57/B6 mice divided into high-fat
and normal-fat diet groups

Reduced serum levels of IL-10 in
high-fat diet-induced obesity. [33]

MMP-9 105 patients with BMI > 30 kg/m2

Significantly higher in patients with
obesity and paroxysmal AF vs. patients
with obesity without AF; significantly
correlated with left atrial volume.

[34]

TGF-β Sheep with and without calorie-dense
diet

Increased atrial TGF-β, atrial fibrosis,
epicardial fat infiltration, and duration
of induced AF.

[35]

TNFα
407 patients
with metabolic syndrome, of which
128 with AF

Increased levels in patients with AF
and metabolic syndrome compared
with patients with AF, but without
metabolic syndrome; positively
correlated with epicardial fat thickness.

[32]

AF—atrial fibrillation; CRP—C-reactive protein; IL-6—interleukin-6; MMP-9—matrix metalloproteinase-9; TGF-
β—transforming growth factor-β; TNFα—tumor necrosis factor-alpha.

The mechanisms through which obesity-induced inflammation contributes to the onset
and maintenance of AF are complex and multifactorial (Figure 3). Chronic inflammation
leads to atrial myopathy, characterized by substantial changes in the electrical and structural
properties of the atrial tissue. Under the effects of TGF-β (via increased α-SMA expression),
fibroblasts transdifferentiate into myofibroblasts, specialized profibrotic and proinflamma-
tory cells that modify the structure of the extracellular matrix through increased production
of collagen [36]. Collagen then contributes to reducing cardiac compliance, interrupting
cell-to-cell connections, and decreasing conduction velocity, thus contributing to the typical
pathological remodeling observed in AF [37]. In addition, activin A, a member of the
TGF-β family, has been shown to increase the deposition of fibrotic material in cell culture,
supporting the direct role of TGF-β in cardiac fibrosis and structural remodeling [38]. In
addition, cardiac fibrosis involved in the pathogenesis of AF also appears as a consequence
of the upregulation of matrix metalloproteinases and modulation of extracellular matrix
degradation via TNFα [39]. The adipose tissue is also an important source of IL-2, IL-6, IL-8,
and monocyte chemoattractant protein-1. These cytokines contribute to the occurrence
and maintenance of AF through cellular (macrophage and neutrophile) infiltration in the
myocardium, as well as through inflammation-induced oxidative stress and subsequent
fibrosis [37–40]. All these structural changes induced by inflammation lead to collagen
and fibrous tissue deposition within the atria and contribute to progressive loss of atrial
compliance and atrial enlargement and stretching, creating the perfect environment for
initiation and maintenance of AF [25,27]. Atrial fibrosis also disrupts electrical communica-
tion between the adjacent cells and is associated with altered expression and function of
ion channels responsible for the generation and conduction of electrical signals within the
atria [25,27]. These changes can then lead to alterations in atrial action potential duration
and increased spontaneous activity in the atrial cells, increasing the propensity to atrial
ectopic activity and the formation of re-entry circuits, thus favoring AF [25,27].



Antioxidants 2024, 13, 117 5 of 21

Antioxidants 2024, 13, x FOR PEER REVIEW  5  of  20 
 

structural remodeling [38]. In addition, cardiac fibrosis involved in the pathogenesis of AF 

also appears as a consequence of the upregulation of matrix metalloproteinases and mod-

ulation of extracellular matrix degradation via TNFα [39]. The adipose tissue is also an 

important source of IL-2, IL-6, IL-8, and monocyte chemoattractant protein-1. These cyto-

kines contribute to the occurrence and maintenance of AF through cellular (macrophage 

and  neutrophile)  infiltration  in  the myocardium,  as well  as  through  inflammation-in-

duced oxidative stress and subsequent fibrosis [37–40]. All  these structural changes  in-

duced by inflammation lead to collagen and fibrous tissue deposition within the atria and 

contribute to progressive loss of atrial compliance and atrial enlargement and stretching, 

creating the perfect environment for initiation and maintenance of AF [25,27]. Atrial fibro-

sis also disrupts electrical communication between  the adjacent cells and  is associated 

with altered expression and function of ion channels responsible for the generation and 

conduction of electrical signals within the atria [25,27]. These changes can  then  lead  to 

alterations  in atrial action potential duration and  increased spontaneous activity  in  the 

atrial cells, increasing the propensity to atrial ectopic activity and the formation of re-entry 

circuits, thus favoring AF [25,27]. 

 

Figure 3. The arrhythmogenic substrate of atrial fibrillation induced by obesity-associated inflam-

mation. A variety of proinflammatory factors originating from the adipose tissue promote the de-

velopment  of  proarrhythmic  atrial  cardiomyopathy  involving Ca2+  handling  abnormalities  and 

structural, connexin, and electrical remodeling. AF—atrial fibrillation; IL-6—interleukin 6; MCP-1—

monocyte  chemoattractant  protein-1;  MMPs—matrix  metalloproteinases;  SERCA2a—sarcoplas-

mic/endoplasmic reticulum Ca2+ ATPase 2; TGF-β—transforming growth factor-beta; TNFα—tumor 

necrosis factor-alpha. 

The increased inflammation associated with obesity also leads to electrical changes 

within the myocardium, contributing to the typical atrial electrical remodeling observed 

in AF. TNFα has been shown to alter Ca2+ handling in the cardiomyocytes of the pulmo-

nary  veins,  probably  by  decreasing  sarcoplasmic  reticulum  Ca2+ ATPase  expression, 

thereby favoring the occurrence of delayed afterdepolarizations and AF [41,42]. Abnor-

malities in Ca2+ handling are also mediated by IL-6, with major implications in atrial ar-

rhythmogenesis [43]. An increase in Na+ current density induced by IL-2 via SCN3B over-

expression could also contribute to the atrial electrical remodeling observed in AF [44]. In 

addition, in transgenic mice with cardiac-restricted overexpression of TNFα, connexins 40 

and 43 were downregulated and  lateralized,  respectively, with  consequences on atrial 

conduction and atrial arrhythmias [45]. 

Figure 3. The arrhythmogenic substrate of atrial fibrillation induced by obesity-associated
inflammation. A variety of proinflammatory factors originating from the adipose tissue
promote the development of proarrhythmic atrial cardiomyopathy involving Ca2+ handling
abnormalities and structural, connexin, and electrical remodeling. AF—atrial fibrillation;
IL-6—interleukin 6; MCP-1—monocyte chemoattractant protein-1; MMPs—matrix metallopro-
teinases; SERCA2a—sarcoplasmic/endoplasmic reticulum Ca2+ ATPase 2; TGF-β—transforming
growth factor-beta; TNFα—tumor necrosis factor-alpha.

The increased inflammation associated with obesity also leads to electrical changes
within the myocardium, contributing to the typical atrial electrical remodeling observed in
AF. TNFα has been shown to alter Ca2+ handling in the cardiomyocytes of the pulmonary
veins, probably by decreasing sarcoplasmic reticulum Ca2+ ATPase expression, thereby
favoring the occurrence of delayed afterdepolarizations and AF [41,42]. Abnormalities in
Ca2+ handling are also mediated by IL-6, with major implications in atrial arrhythmogen-
esis [43]. An increase in Na+ current density induced by IL-2 via SCN3B overexpression
could also contribute to the atrial electrical remodeling observed in AF [44]. In addition, in
transgenic mice with cardiac-restricted overexpression of TNFα, connexins 40 and 43 were
downregulated and lateralized, respectively, with consequences on atrial conduction and
atrial arrhythmias [45].

The NOD-like receptor family, pyrin domain containing 3 (NLRP3) inflammasome,
is a complex signaling pathway in the immune system that plays a crucial role in the
initiation and regulation of inflammation [46]. The NLRP3 inflammasome is an intracellular
multiprotein complex with a role in cleaving pro-IL-β and pro-interleukin-18 (IL-18) via
cysteine protease caspase-1 to generate proinflammatory IL-1β and IL-18 [46]. In addition
to cytokine maturation, caspase-1 activation triggers pyroptosis, a form of programmed cell
death characterized by cell swelling, membrane rupture, and release of cellular contents,
which further promotes inflammation [46]. Studies have demonstrated the involvement of
the NLRP3 inflammasome pathway in coronary artery disease, acute myocardial infarction,
and heart failure, which are major drivers of AF-promoting atrial remodeling [46]. The
relationship between NLRP3 activation and AF was demonstrated in an experimental
study by Yao and colleagues [47]. In addition, NLRP3 inflammasome activation and
regulation seem to have a role in adipose tissue dysfunction and insulin resistance, possibly
representing a link between obesity and AF [48].

The relationship between obesity, inflammation, and AF could also be mediated by
hypoxia [49]. In AF, an up-regulation of the hypoxia-inducible factor (HIF) pathway and
an increased expression of hypoxic and angiogenic markers were observed [49], and the
transcription factor HIF-1α is upregulated in the adipose tissue in obesity. In obesity, HIF-
1α contributes to chronic inflammation by promoting the expression of proinflammatory
cytokines and recruiting M1 macrophages [50]. The increased expression of HIF-1α leads
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to the activation of a profibrotic transcriptional program, resulting in collagen I, III, IV, and
lysyl oxidase synthesis, ultimately causing fibrosis in the adipose tissue [51,52]. HIF-1α
has also been implicated in the pathophysiology of AF, particularly through structural
remodeling, including fibrosis [53]. Ogi et al. observed increased atrial fibrosis in patients
with AF that may be secondary to myocardial hypoxia, implicating HIF-1α as a key me-
diator in this process [53]. Moreover, inhibition of HIF-1α expression reduced the level of
cytokines involved in atrial fibrosis (e.g., TGF-β1, MMP-9) and attenuated atrial structural
changes [54]. Although a direct relationship between HIF-1α and electrical remodeling
has not yet been demonstrated, cytokines released due to increased HIF-1α activity, such
as IL-6 and TNFα, have been implicated in proarrhythmic electrical remodeling of the
atria [55,56]. This suggests a potential link between HIF-1α-mediated inflammation and
electrical disturbances contributing to AF. Together, these data suggest that the HIF-1α
pathway, which is activated in obesity and contributes to chronic inflammation and fibrosis,
may also play a role in the pathophysiology of AF. Other transcription factors, including
the high-mobility group protein AT-hook 1 (HMGA1), have been identified as participants
in the hypoxia-induced inflammatory responses within the adipose tissue [57]. Functioning
as an architectural transcription factor, HMGA1 plays a central role in a range of biological
processes, including inflammation, tumorigenesis, and metabolism [57,58]. Several studies
have shown that HMGA1 physically and/or functionally interacts with nuclear factor-
kappa B (NF-kB) and HIF-1, particularly in the context of hypoxia-associated inflammation,
leading to the subsequent release of numerous proinflammatory cytokines [58].

In addition to the considerable amount of data regarding the mechanisms by which
inflammation contributes to the occurrence of AF, the inflammation induced by AF per
se is also non-negligible. The increased levels of TNFα and IL-6 and the activation of the
renin–angiotensin–aldosterone and the sympathetic nervous systems commonly associated
with AF all contribute to the proinflammatory status observed in the presence of the
arrhythmia [59]. Thus, inflammation may also be a result of AF, with a bidirectional
relationship between inflammation and AF being present in most patients. This complex
relationship may contribute to the development and maintenance of AF and may represent
a promising therapeutic target in the treatment of arrhythmia.

The relationship between obesity and AF has been less studied from a genetic point of
view. However, variants in genes such as those encoding for cholesteryl transfer protein
(CETP), CRP, and G protein-coupled inward rectifier K(+) channel 4 (GIRK4) have been
shown to play crucial roles in influencing susceptibility to AF, particularly in the context of
obesity. TaqIB of CETP (B2 allele as a protective factor) and CRP 1444 C/T polymorphism
may contribute to the susceptibility to AF [60]. In men, these genetic variants were associ-
ated with BMI, suggesting a gender-specific genetic influence on the relationship between
obesity and AF [60]. Abnormal expression of GIRK4 has also been associated with AF [61].
The connection between GIRK4 expression and AF was previously highlighted and was
shown to be closely related to obesity and metabolic syndrome, suggesting that genetic
variations in GIRK4 may contribute to the link between AF and obesity [61].

Several microRNAs (miRNAs) have been identified as common regulators in both
obesity and cardiac remodeling. These miRNAs may influence shared pathways related to
endothelial dysfunction and fibrosis, providing a possible molecular link between obesity
and AF. Although a direct link to AF is not explicitly mentioned, Zou et al. demonstrated
that miRNA-410-5p is markedly upregulated in the cardiac tissue of obese rats [62]. The
TGF-β signaling pathway activation via miRNA-410-5p suggests a potential mechanism
for cardiac fibrosis and dysfunction in obesity [62]. As cardiac fibrosis is a common feature
in the pathogenesis of AF, miRNA-410-5p could play a role in the relationship between
obesity and AF [9]. Altered concentrations of hsa-miR-125a-5p, hsa-miR-342-3p, and
hsa-miR-365b-3p in the plasma of obese children with endothelial dysfunction raise the
possibility of a connection between these miRNAs and the relationship between AF and
obesity [63]. The emerging evidence that endothelial dysfunction is implicated in the
promotion and maintenance of atrial arrhythmic substrate and predicts adverse outcomes
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in AF supports the idea that these miRNAs could play a role in the complex interplay
between AF, obesity, and endothelial dysfunction [63,64]. MiR-1-3p and miR-133a-3p
were upregulated in extracellular vesicles released from the epicardial adipose tissue [65].
Overexpression of these miRNAs was associated with conduction slowing and reduced
KCNJ2 and KCNJ12 expression, suggesting that they may act as mediators of epicardial
adipose tissue-induced arrhythmogenicity [65]. As the amount of epicardial adipose tissue
is directly proportional to the degree of obesity, these findings suggest a link between
miR-1-3p and miR-133a-3p and the obesity-AF relationship [65]. In a mouse model of atrial
fibrosis induced by a high-fat diet, upregulated miR-205-5p was associated with decreased
atrial fibrosis, suggesting that miR-205-5p could represent a therapeutic target for atrial
fibrosis-related arrhythmias [66]. The role of these miRNAs and others in the obesity-AF
relationship remains to be investigated in future studies.

Inflammation and oxidative stress are interconnected processes, and a complex inter-
relationship exists between the two. On the one hand, inflammation stimulates reactive
oxygen species (ROS) production. For example, during the inflammatory reaction, immune
cells such as macrophages can release ROS to destroy pathogens [67]. On the other hand,
inflammation can induce the activity of antioxidant enzymes and oxidative stress defense
factors to counteract the harmful effects of ROS [67]. In its turn, oxidative stress also
contributes to inflammation [38]. ROS functions as alarm signals for the immune system,
initiating inflammation. For example, ROS activates the NF-κB pathway, a key regulator of
the inflammatory response [67]. ROS also directly affects lipid and protein inflammatory
molecules by causing chemical and functional changes in these molecules [67].

3. Oxidative Stress in Obesity and Atrial Fibrillation

The relationship between obesity and oxidative stress is complex and involves chronic
inflammation, production of free radicals, impairment of mitochondrial function, an-
tioxidant system imbalance, and other metabolic disorders [10,68–70]. All these factors
contribute to a bidirectional relationship between obesity and oxidative stress, with obesity
increasing oxidative stress and increased oxidative stress contributing to the development
of metabolic disorders and diseases associated with obesity [69,70].

Oxidative stress designates an imbalance between ROS production and antioxidants [71].
ROS molecules are produced in the majority of body cells as a result of mitochondrial
aerobic metabolism, cytoplasmic enzymatic reactions, or from exogenous oxidant sources
(e.g., X-rays, pollutants, cigarette smoking) [72,73], and ROS overproduction increases
oxidative stress [74]. At a chemical level, ROS are formed as products of physiological oxy-
gen (peroxide, superoxide, hydroxyl, and singlet oxygen) metabolism [75]. Mitochondria
are responsible for the production of over 90% of the superoxide anion by transferring
electrons to the oxygen molecule through electron transport chain complexes I/III [73]. In
the case of hypoxia, the mitochondrial electron transport chain is disrupted, leading to
an incomplete reduction in oxygen molecules and increased generation of ROS [68]. In
turn, increased oxidative stress can modify proteins, lipids, and DNA, activating various
signaling pathways and leading to cell apoptosis [75].

Even though the white adipose tissue is not considerably rich in mitochondria, normal
mitochondrial function is essential in this tissue for the production of energy required
for adipocyte differentiation and maturation [73]. Prolonged exposure to ROS of the
adipose tissue leads to DNA impairment, resulting in mitochondrial dysfunction and,
consecutively, adipogenesis and adipocyte hypertrophy [73]. Oxidative stress, expressed as
an overproduction of hydrogen peroxide determined by catalase deficiency, was shown
to be involved in obesity through lipo- and adipogenesis [68]. Experimental studies have
shown that a high-fat (at least 41% fat) diet in aging C57Bl/6 mice is associated with
protein oxidation and increased oxidative stress [76]. In parallel, the activity of antioxidant
enzymes glutathioneperoxidase, catalase, and superoxide dismutase is decreased in obese
patients [77]. Importantly, weight loss using caloric restriction [78] or bariatric surgery [79]
appears to be associated with an improvement in oxidative stress parameters. The use of
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dietary and supplement antioxidants has also been shown to mitigate oxidative stress and
improve obesity and obesity-related conditions [69].

A series of features commonly associated with obesity, such as hyperglycemia, raised
levels of plasma lipids and leptin, chronic low-grade inflammation, and altered response to
muscle activity, has been associated with the presence of oxidative stress in obesity. Over-
production of nicotinamide adenine dinucleotide and dihydroflavine-adenine dinucleotide
as a consequence of an increase in intracellular glucose leads to increased proton gradient
across the mitochondrial inner membrane and to superoxide production [80]. Elevated free
fatty acid levels promote the production of free oxygen radicals at the mitochondrial level
via inhibition of adenine nucleotide translocation [81]. The chronic low-grade inflammation
typically associated with obesity also contributes to oxidative stress promotion. Increased
levels of TNFα and IL-6, commonly encountered in obesity, augment superoxide anion
production and nicotinamide adenine dinucleotide phosphate (NADPH) oxidase (NOX)
activity [82,83]. The elevation in plasma leptin further amplifies oxidative stress via NOX
activation and the production of reactive intermediates [84]. Increased levels of lipid hy-
droperoxide, isoprostane, and protein carbonyl were observed in animal models following
leptin administration [85]. Furthermore, in obese patients, muscle activity during exercise
is associated with an abnormal increase in the rate of cellular respiration and oxygen
consumption and, consequently, with abnormally high post-exercise lipid hydroperoxide
levels [86,87].

In parallel, clinical and experimental studies have demonstrated that oxidative stress
contributes to proarrhythmic atrial electrical and structural remodeling through a series
of complex mechanisms, thus increasing the susceptibility to AF. Increased levels of ROS
(e.g., superoxide and H2O2) and the ratio of oxidized to reduced glutathione, a marker of
oxidative stress, have both been associated with AF [88,89]. Atrial structural remodeling
associated with AF seems to be promoted by oxidative damage of myofibrils via hydroxyl
and peroxynitrite radicals [90,91]. In addition, mitochondrial DNA damage induced by
oxidative stress modulates Ca2+ channels and Ca2+ handling proteins, leading to Ca2+

overload and atrial electrical remodeling [92]. Meanwhile, treatment with antioxidants
seems to decrease the risk of postoperative AF. For instance, treatment with vitamin C has
been shown to decrease the incidence of AF after cardiac surgery, as well as arrhythmia
recurrence after electrical cardioversion of persistent AF [93,94]. Treatment with other
antioxidants has also been associated with a lower risk of AF (Table 2). Administration of
N-acetyl cysteine was shown to reduce the risk of AF by increasing the density of L-type
calcium current [95]. Probucol, xanthine oxidase inhibitors (e.g., allopurinol), selective
NOX inhibitors (e.g., apocynin), sodium nitroprusside, and statins, which have potent
antioxidant effects, also demonstrated a positive impact on the risk of developing AF [67].
Treatment with antioxidants to reduce ROS and AF risk could also decrease oxidative stress
and provide additional benefits in other organs. For instance, n-3 polyunsaturated fatty
acids have been shown not only to decrease the incidence of postoperative AF but also to
improve musculoskeletal health related to sarcopenia [96]. A healthy lifestyle, with the
adoption of a Mediterranean diet, consumption of olive oil, and weight loss, has also been
associated with a reduction in oxidative stress and, thus, in the risk of AF [67,97].

Table 2. Therapeutic strategies with positive impact on oxidative stress and atrial fibrillation and
obesity pathogenesis.

Antioxidant Disease Population/
Model Mechanism Results References

Vitamin C AF
Patients with elective
coronary artery bypass
grafting

Downregulation of
nicotinamide
adenine
dinucleotide
phosphate oxidase

↓ incidence of
post-coronary artery
bypass grafting AF

[98]
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Table 2. Cont.

Antioxidant Disease Population/
Model Mechanism Results References

Obesity Overweight students ROS reduction

Attenuation of urinary
8-hydroxy-2′

-deoxyguanosine
levels

[99]

Vitamin E AF
Patients with elective
coronary artery bypass
grafting

ROS reduction
↓ incidence of
post-coronary artery
bypass grafting AF

[100]

Obesity C57BL/6J mice fed a
high-fat diet

Decreases
oxidative stress

Increased levels of
lipid peroxidation and
advanced oxidation
protein products

[101]

Statins AF Patients undergoing
cardiac surgery

Reduces
myocardial O2 and
ONOO−

↓ incidence of
post-coronary artery
bypass grafting AF

[102]

Obesity Rats fed a high-fat diet Reduces renal
oxidative stress

Decreased
malondialdehyde and
glutathione levels;
decreased membrane
expression of Nox4
and p67phox

[103]

n-3 polyunsaturated
fatty acids AF Patients with coronary

artery bypass grafting
Increase electrical
stability

↓ incidence of
postoperative AF [104]

Obesity C57BL/6 mice fed a
high-fat diet

Oxidative stress
reduction

Reduced
4-hydroxy-2-nonenal [105]

N-acetylcysteine AF
Patients undergoing
coronary artery bypass
and/or valve surgery

ROS reduction
↓ incidence of
post-coronary artery
bypass grafting AF

[106]

Obesity
3T3-L1 and C3H/10 T
1/2-clone 8 (C3H)
adipocytes

ROS reduction
Inhibited hydrogen
peroxide-induced
oxidative stress

[107]

Thiazolidinediones AF
Rabbits with
congestive heart
failure

Decrease
nicotinamide
adenine
dinucleotide
phosphate; induce
antioxidant
enzymes such as
Cu/Zn superoxide
dismutase

Attenuated atrial
structural remodeling
and inhibited AF
promotion

[108]

Obesity
Obese, hypertensive,
type II diabetes rat
model

Reduced renal
oxidative stress

Reduced nicotinamide
adenine dinucleotide
phosphate oxidase in
kidney tissues

[109]

Probucol AF Right atrial pacing AF
model

Reduces atrial
oxidative stress
and increases total
antioxidant
capacity

Reduces AF
promotion and
maintenance

[110]

Obesity Mice fed a high-fat
diet

Reduces oxidative
stress

Reduced blood levels
of oxidized
low-density
lipoprotein and
malondialdehyde

[111]

↓—decreased; AF—atrial fibrillation; ROS—reactive oxygen species.

Several sources of ROS have been identified in the setting of AF. Among these, NOX,
xanthine oxidase, nitric oxide synthase uncoupling, mitochondrial dysfunction, myeloper-
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oxidases, and monoamine oxidases are the most studied sources [67]. The molecular mech-
anisms underlying the increase in ROS in AF are complex. Although NOX isoform/subunit
levels were unchanged, NOX-dependent ROS production and highly upregulated Rac1
expression were observed in a model of pacing-induced AF [112]. Cardiac-specific Rac1
overexpression was also associated with increased prevalence of AF in aged mice, whereas
Rac1 downregulation using statins reduced the incidence of angiotensin II-induced AF in
endothelial nitric oxide synthase null mice [113,114]. In agreement with animal studies,
significant upregulation of Rac1 GTPase and NOX activities has also been observed in
patients with AF [114], whereas the use of diphenyleneiodonium and apocynin was shown
to inhibit the production of superoxide via the inhibition of flavin-containing oxidases
and of p47phox translocation, respectively [115]. Overproduction of NADPH-dependent
superoxide was also significantly increased in patients with postoperative AF, whereas
atorvastatin treatment attenuated this process, probably by inhibiting Rac1-dependent
NOX activation [115,116].

Although the increase in oxidative stress seems to precede the appearance of AF, it
could also be a consequence of the arrhythmia. In experimental studies, pacing-induced
AF led to NOX-dependent ROS production and upregulation of Rac1 expression, demon-
strating that oxidative stress is not only a cause but also a consequence of AF. Moreover,
the increase in ROS is also incriminated in the occurrence of consequences of AF, such as
thrombosis, inflammation, and even the “AF begets AF” phenomenon [112].

Emerging research has highlighted the pivotal role played by mitochondrial-derived
ROS in the intricate landscape of AF [102,117]. Beyond their conventional implications
in oxidative stress, mitochondrial ROS are now recognized as crucial components in AF
genesis and maintenance. While the focal point often revolves around ROS generated
through electron leakage within the mitochondrial respiratory chain, an important role is
also played by ROS accumulation resulting from mitochondrial calcium overload.

4. Mitochondrial Dysfunction in Obesity and Atrial Fibrillation

The mitochondria’s main function is the production of adenosine triphosphate (ATP)
from food substrates, thus playing a central role in energy metabolism [118]. The role
of mitochondria extends, however, far beyond the production of energy [118]. During
the reactions responsible for ATP production, ROS is also produced at the level of the
mitochondria, which represent the main seat of ROS production [118,119]. An exact
definition of mitochondrial dysfunction is difficult to formulate. Although it is classically
defined as the inability of the mitochondria to generate and sustain sufficient levels of ATP
for the cell, metabolic disorders of substrate, Ca2+ buffering, mitochondrial DNA mutations,
changes in mitochondrial size and morphology, and/or ROS production are also commonly
present and can be seen as part of the definition of mitochondrial dysfunction [118,119].

Since excessive nutrient consumption affects mitochondrial function, it is not sur-
prising that obesity is a strong contributor to mitochondrial dysfunction [118]. An in-
crease in free fatty acid concentrations, hyperglycemia, and ROS production, as a conse-
quence of excessive nutrient intake, compromises mitochondrial function at the level of
the adipocytes [118]. Further, mitochondrial dysfunction decreases the rate of β-oxidation,
compromising adipogenesis, fatty acid esterification, lipolysis, and adiponectin produc-
tion [118]. The relationship between mitochondrial dysfunction and obesity does not seem
to be limited, however, to the adipose tissue. A reduction in mitochondrial function and
size and in mitochondrial fission, with consequent alteration of mitochondrial dynamics
(balance between mitochondrial fusion and fission), were also observed in skeletal muscles
in mice with both genetic and diet-induced obesity [120]. As a consequence, reduction
in fatty acid oxidation and inhibition of glucose transport occurs in muscle tissues in the
presence of obesity [121]. Alterations of mitochondrial function associated with obesity
have also been shown to occur in the liver. In rats fed for 14 weeks with a high-fat diet,
pathological changes included significant fat deposition, liver steatosis, and a disruption in
the hepatic mitochondrial quality control processes, evidenced by increased mitochondrial
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ROS production, mitochondrial DNA damage, impaired mitochondrial biogenesis, and dis-
rupted mitochondrial fusion [122]. Hepatic mitochondrial fission processes are increased,
with consequences on mitochondrial respiratory capacity and protein expression, including
peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α) [123]. Under normal
conditions, only a small amount of the oxygen uptaken by the mitochondria is released in
the form of ROS [124]. In the presence of mitochondrial dysfunction, there is a significant
increase in the production of ROS, with consequences on mitochondrial and nuclear nucleic
acids, membrane lipids and proteins, and the enzymes of the mitochondrial respiratory
chain [124]. This entire process is significantly amplified by the aging of the adipose organ,
which leads to alterations in adipogenesis, insulin resistance, abnormal adipokine secretion,
inflammation, mitochondrial dysfunction, and cellular and tissue senescence [125,126].

At the level of the heart, more than two-thirds of the energy required for sustained
contraction and relaxation comes from the oxidation of fatty acids in the mitochondria.
The price of this process is the concomitant production of a certain amount of ROS [127].
However, in physiological conditions, this amount is negligible, as it is rapidly removed by
antioxidants [127]. In patients with insulin resistance, such as those with obesity, fatty acid
oxidation becomes exceedingly important for energy production, the cardiomyocytes shifting
away from glucose utilization [127,128]. Consequently, there is an increase in electron leakage
and ROS production, ultimately leading to mitochondrial dysfunction [128,129].

Both experimental and clinical studies have intensively studied the issue of mitochon-
drial dysfunction in AF. In patients with AF, oxidative stress is increased, and damage to the
mitochondrial DNA occurs, altering the bioenergetic function of the mitochondria [92,130].
In parallel, oxidative stress and mitochondrial dysfunction have been shown to contribute
to the onset and progression of AF. Together, these data indicate the existence of a bidi-
rectional relationship between mitochondrial dysfunction and AF [92,117]. Data suggest,
however, that changes in the function of the mitochondria are already present before AF on-
set and that, once installed, AF accelerates further changes in mitochondrial function [131].
The exact mechanisms through which mitochondrial dysfunction contributes to AF are
incompletely understood. Mitochondrial alterations have been shown to contribute to
the electro-pathology of the arrhythmia [132]. Mitochondrial functional and structural
remodeling appears to be involved in the pathogenesis of AF by increasing energy deficit
and metabolic dysregulation in the human and mouse atria [132]. Low ATP levels affect
the intracellular ion balance, decrease the efficiency of all energy-dependent enzymatic
reactions, and alter myocardial contraction and relaxation, all of which have been involved
in the pathogenesis of AF [131]. Increased ROS (especially superoxide anion) generation
and apoptotic cascade activation associated with mitochondrial dysfunction also contribute
to AF occurrence [132]. Increased O2

- oxidizes numerous intracellular targets, including the
ryanodine receptor 2 of the sarcoplasmic reticulum and the sarcolemmal inward Na+ chan-
nels, altering cardiomyocyte excitability and intercellular coupling, and thus contributing
to maintaining re-entry circuits [133].

Considering the association between mitochondrial dysfunction and AF, it is not sur-
prising that restorers of mitochondrial function have a positive impact on the pathogenesis
of AF. Studies have pointed to SS31, a ROS scavenger that improves mitochondrial func-
tion by normalizing ATP levels, mitochondrial membrane potential, and mitochondrial
morphology, as a promising therapeutic compound in AF [131]. Dipeptidyl peptidase-4 in-
hibitors, a class of oral antidiabetics, have been shown to improve mitochondrial membrane
potential and mitochondrial biogenesis via activation of the PGC-1α/NRF1/Tfam signaling
pathway and to decrease the duration of pacing-induced AF in a rabbit model of heart
failure [134,135]. Sodium-glucose co-transporter 2 inhibitors reduced tachypacing-induced
AF susceptibility by approximately 50% in rats with high-fat diet/streptozotocin-induced
diabetes mellitus [136]. The mechanisms potentially involved in this effect are suppression
of mitochondrial ROS production, preservation of the barrier function of cardiac microvas-
cular endothelial cells via adenosine monophosphate protein kinase activation-induced
mitochondrial fission inhibition, as well as restoration of mitochondrial membrane poten-
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tial and mitochondrial respiratory rate [136,137]. Other therapeutic strategies that could
have a positive impact on the pathogenesis of AF by modifying mitochondrial function are
presented in Table 3.

Table 3. Therapeutic strategies with positive impact on mitochondrial function and atrial fibrillation
and obesity pathogenesis.

Medication Mechanism at the
Mitochondrial Level Effect on AF Effect on Obesity

Ubiquinone (coenzyme Q10)

Improves mitochondrial
function
Antioxidant involved in the
electron transport from
complex I to complex II and
from complex II to complex III
of the respiratory chain,
membrane stabilizer, and
cofactor of mitochondrial
uncoupling proteins [138]

AF prevention [139]

Reduction in obesity,
oxidative stress, and
inflammation in metabolic
syndrome [140]

Metformin

Preserves mitochondrial
function (through AMPK
activation), mitochondrial
respiration, and mitochondrial
biogenesis (probably via
upregulation of PGC-1α) [141]

Decreased the incidence of AF
by 19% [142]

Activated AMPK and
improved mitochondrial
respiration in obesity [143]

Fibrates

Improve mitochondrial
biogenesis via increased
PPARGC1A, GFAP, S100B,
DCX NRF1, and TFAM genes
expression [144]

Decreased AF prevalence
[145]

Regulates visceral obesity and
inflammation via PPARα
activation in obese females
[146]

Trimetazidine

Improves ATP synthesis via
inhibition of beta-oxidation;
improves mitochondrial
fusion/fission dynamics via
normalization of the
expression of factors that
regulate mitochondrial
biogenesis [147]

Prevented
tachycardia-induced atrial
ultrastructural remodeling,
decreased AF inducibility, and
shortened AF duration [148]

Successfully mimics exercise
to enhance mitochondrial
quality control [149]

Ranolazine

Improves mitochondrial
function, attenuates oxidative
stress, suppresses apoptosis
[150]

Attenuated AF [151]

Attenuated obesity-induced
non-alcoholic fatty liver
disease and increased hepatic
pyruvate dehydrogenase
activity [152]

AF—atrial fibrillation; AMPK—adenosine monophosphate protein kinase; ATP—adenosine triphosphate; PGC-
1α—peroxisome proliferator-activated receptor-γ coactivator-1α.

5. Clinical Implications

Accumulating evidence supports a close relationship between the presence of obesity
and AF pathogenesis. Given the continuous rise in the prevalence of obesity in the general
population, the burden of obesity-related AF is expected to become increasingly important
in the near future. Further research will have to provide new therapeutic options with
an impact on the genesis and persistence of AF in obese subjects. Several studies have
evaluated the effects of proinflammatory activity, oxidative stress, and mitochondrial
dysfunction modulation through weight loss, physical activity, and various drugs in obese
patients. Although most of these therapeutic interventions managed to efficiently reduce the
inflammatory status, ROS, and mitochondrial dysfunction, more aggressive interventions
may be needed to modulate the critical processes involved in AF pathogenesis.

Inflammatory mechanisms are implicated in obesity and are critical contributors to
AF occurrence and persistence. Different studies have suggested weight loss as a pre-
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vention strategy for AF [8]. Reduction in inflammation in obese patients using direct or
indirect/pleiotropic anti-inflammatory agents has not managed to demonstrate a clear
benefit in the studies carried out so far, suggesting that multitarget pharmacological inter-
ventions along with weight loss may be required and that such strategies may need to be
applied at an early stage of obesity. The most appropriate therapeutic strategy aimed at
preventing atrial remodeling and AF occurrence in obese people remains to be established.
The relative impact of inflammation in different stages of atrial remodeling also remains to
be elucidated.

Although the prognostic role of inflammatory markers in AF has been well established,
the identification of biomarkers that can be used for the diagnosis and prediction of AF
in obese patients would be of interest. To date, a series of such biomarkers have been
proposed, but no cut-off points have been established, and, more importantly, none of them
is specific to AF. Whether such inflammatory markers have additive value in obese people
beyond conventional clinical and echocardiographic risk factors needs further confirmation.
In recent years, extensive studies have demonstrated the role of miRNAs in inflammation
associated with both AF and obesity [65,66]. However, the full impact of miRNAs in obese
patients with AF is still unknown. Further studies should evaluate if there are specific
miRNAs present both in obesity and AF and, if there are, evaluate whether these miRNAs
can be used for diagnosis and/or prediction or as therapeutic targets in obese patients
with AF.

Increased oxidative stress observed in obese patients activates a series of processes
(including atrial inflammation, fibrosis, and electrical remodeling) that are, in turn, involved
in the occurrence of AF [153,154]. But, these processes, including oxidative stress, are also
a consequence of AF. As a result, ROS inhibition in obese subjects may serve as a new
therapeutic strategy for breaking the oxidative stress-AF vicious circle. A series of agents
with antioxidant properties (e.g., vitamin C alone or in combination with vitamin E or
n-acetylcysteine, statins) have been extensively studied in AF, but the results of clinical
trials have been rather unconvincing. The answer could come from more specific strategies
that specifically inhibit ROS-generating pathways or from siRNAs that target different
NOX isoforms.

Considering that the increase in ROS in obese people precedes the appearance of AF,
a series of markers of oxidative stress could emerge as biomarkers for the prediction of
AF in obese people. The strong correlation that appears to exist between AF initiation and
oxidative stress could also be useful for identifying novel biomarkers for AF diagnosis in
obese patients. Changes in ROS have also been shown to occur alongside the progression of
AF. For example, increased expression of p22phox and NOX2 was observed in patients with
postoperative AF. This was not the case in patients with permanent AF [155], suggesting
that oxidative stress is a dynamic process and that certain biomarkers could be used to
determine different evolutionary stages of AF. Determination of these stages using various
biomarkers could have implications in the decision to convert patients to sinus rhythm.
However, considering the high degree of variability of oxidative stress, finding a biomarker
from this spectrum is a real challenge, at least at this moment.

The contribution of mitochondrial dysfunction to AF and obesity and the molecular
mechanisms potentially involved in the obesity-AF relationship have been intensively
studied. However, pharmaceutical and nutraceutical compounds directed at mitochon-
drial dysfunction as a treatment strategy in AF have not been investigated in detail yet.
Although many drugs with an impact on mitochondrial dysfunction have been studied
both experimentally and clinically, there are still gaps in the knowledge regarding their
true impact on the prevention of AF and its clinical outcomes. Further randomized clinical
trials could contribute to expanding the indications of certain drugs that are already used
in cardiovascular diseases or diabetes for AF prevention in obese people or for prevention
of AF-related clinical consequences.

The role of the microtubule network in mitochondrial and cardiac function is well
known. Recent studies have shown a key role of microtubule disruption in AF. In car-
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diomyocytes, overexpression of histone deacetylase 6 (HDAC6), a compound that mediates
α-tubulin acetylation, responsible for the traffic of metabolites through the cell, results in
deacetylation and degradation of microtubules [156]. Experimental and clinical studies
have shown that both HDAC6-induced deacetylation and degradation of the microtubule
network may underlie mitochondrial dysfunction in AF [156]. However, data regarding
the manipulation of the microtubule network in obese patients remain scarce. Elucidating
the role of the microtubule network in mitochondrial function may provide further insights
into mitochondrial dynamics in obese people and reveal new therapeutic strategies in AF,
as suggested by some experimental studies [157]. Biomarkers of mitochondrial dysfunc-
tion, such as 8-hydroxy2′-deoxyguanosine, circulating cell-free mitochondrial DNA, and
heat shock proteins, could also emerge as promising clinical tools for the prediction and
diagnosis of AF in obese people.

6. Conclusions

Atrial fibrillation is the most common cardiac arrhythmia and is associated with
increased morbidity and mortality. Studies suggest that up to 20% of AF cases can be
attributed to being overweight or obese. Although a plethora of obesity-related diseases,
including obstructive sleep apnea, diabetes, metabolic syndrome, and dyslipidemia, con-
tribute to the onset and maintenance of AF, obesity per se has a major contribution to
AF occurrence, mainly via inflammation, mitochondrial dysfunction, and oxidative stress.
These three processes are interdependent, creating a self-perpetuating cycle that contributes
to atrial proarrhythmic structural and functional changes, eventually leading to the ap-
pearance and maintenance of AF. It is, therefore, not surprising that weight loss is a broad
treatment that addresses several central AF mediators, as it is associated in several studies
with a decrease in AF load. Meanwhile, a series of anti-inflammatory and/or antioxidant
strategies act at the molecular level, counteracting the harmful effects of inflammation, ox-
idative stress, and mitochondrial dysfunction, and may thus emerge as possible therapeutic
agents with a role in AF prophylaxis. Further studies will have to clarify if and when these
therapeutic strategies should be used to prevent the occurrence of AF and/or decrease the
arrhythmic load.
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