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Abstract: Inflammation is a vital defense mechanism, creating hostile conditions for pathogens,
preventing the spread of tissue infection and repairing damaged tissues in humans and animals.
However, when inflammation resolution is delayed or compromised as a result of its misregulation,
the process proceeds from the acute phase to chronic inflammation, leading to the development of
various chronic illnesses. It is proven that redox balance disturbances and oxidative stress are among
major factors inducing NF-κB and leading to over-inflammation. Therefore, the anti-inflammatory
properties of various natural antioxidants have been widely tested in various in vitro and in vivo sys-
tems. Accumulating evidence indicates that silymarin (SM) and its main constituent silibinin/silybin
(SB) have great potential as an anti-inflammation agent. The main anti-inflammatory mechanism
of SM/SB action is attributed to the inhibition of TLR4/NF-κB-mediated signaling pathways and
the downregulated expression of pro-inflammatory mediators, including TNF-α, IL-1β, IL-6, IL-12,
IL-23, CCL4, CXCL10, etc. Of note, in the same model systems, SM/SB was able to upregulate
anti-inflammatory cytokines (IL-4, IL-10, IL-13, TGF-β, etc.) and lipid mediators involved in the
resolution of inflammation. The inflammatory properties of SM/SB were clearly demonstrated in
model systems based on immune (macrophages and monocytes) and non-immune (epithelial, skin,
bone, connective tissue and cancer) cells. At the same time, the anti-inflammatory action of SM/SB
was confirmed in a number of in vivo models, including toxicity models, nonalcoholic fatty liver
disease, ischemia/reperfusion models, stress-induced injuries, ageing and exercising models, wound
healing and many other relevant model systems. It seems likely that the anti-inflammatory activities
of SM/SB are key elements on the health-promoting properties of these phytochemicals.
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1. Introduction

Inflammation is an important defense mechanism in humans and animals respon-
sible for creating hostile conditions for pathogens and preventing the spread of tissue
infection. The main task of acute inflammation is related to the elimination of infectious
agents, repair of damaged tissues with the following termination of the inflammation
and the re-establishment the homeostasis (resolution; [1]). However, when inflammation
resolution is delayed or compromised due to misregulation of the immune response, and
the process proceeds from the acute phase to chronic inflammation, this can lead to the
development of various chronic illnesses, including atherosclerosis, cancer, obesity, asthma,
chronic obstructive pulmonary disease, multiple sclerosis, inflammatory bowel disease and
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neurodegenerative disease (Alzheimer’s disease, Parkinson’s disease, amyotrophic lateral
sclerosis), and autoimmune disorders, such as rheumatoid arthritis, systemic lupus ery-
thematosus, psoriasis and celiac disease [1,2]. There are a range of stress factors in human
life and animal/poultry production (Table 1), which can cause excessive inflammation,
compromising health and promoting various diseases.

Table 1. Inflammatory factors in humans and poultry (adapted from [2–4]).

Category Proinflammatory Factors

Human Poultry

Physical factors Radiation, UV, hyperthermia,
hypothermia, trauma

Hyperthermia, hypothermia,
trauma, increased stocking
density

Chemical factors Asbestos, heavy metals, organic
toxicants, dust, lipopolysaccharides

Heavy metals, mycotoxins,
ammonia, CO, dust

Biological factors Bacterial infection, viral infection,
fungal infection

Bacterial infection, viral
infection, fungal infection

Unhealthy lifestyle Smoking, alcohol, high-calorie diet,
stress, sedentary lifestyle

Restricted movement (cage
housing), nutrient deficiency

Chronic diseases Obesity, diabetes, hyperglycaemia Chronic Respiratory Disease

It seems likely that disturbances in redox homeostasis due to the misregulation of the
antioxidant defence network are important elements in over-inflammation in humans and
farm animals/poultry. For the last decade, antioxidant and anti-inflammatory properties of
SM/SB have been extensively studied [2,5–7]. Therefore, the main aim of this paper is to
present an updated view on the anti-inflammatory properties of silymarin/silybin with
specific emphasis on the molecular mechanisms of protective actions of the phytochemical.

2. Molecular Mechanisms of Inflammation

Inflammation is known to be a complex biological response that the body uses to
defend itself against harmful stimuli, including pathogens, damaged cells or irritants [2,8].
At the tissue structural level, inflammation is usually associated with redness, swelling, heat,
pain and loss of tissue function [9]. Furthermore, increased vascular permeability, enhanced
leukocyte recruitment and accumulation associated with inflammatory mediator release are
among the major microcirculatory events related to the inflammatory responses [6,10,11].
It is generally accepted that inflammatory responses are initiated in response to the host
recognition of inflammatory signals in the form of either pathogen-associated molecular
patterns or damage-associated molecular patterns by various pattern recognition receptors
(PRR [12]) in the innate immune system. This includes surface Toll-like receptors (TLRs)
and cytoplasmic NOD (nucleotide-binding oligomerisation-domain)-like receptors (NLRs),
leading to the production of inflammatory cytokines, chemokines and prostaglandins.
Activated immune cells (e.g., neutrophils, macrophages, lymphocytes and mast cells) are
responsible for the synthesis and release of a large number of cytokines and chemokines
(TNF-α, IL-6, IFN-γ, NO, MCP-1, CXCL10, etc. [3]). It is known that neutrophils are leaked
from blood vessels as a result of vasodilatation due to the secretion of vasoactive amines
(histamine and serotonin) by mast cells, basophils and platelets being the first immune cells
to appear at the place of infection or injury. Further, the neutrophils induce re-localisation
and activation of macrophages to arrive at the site of infection or injury. Therefore, the
synthesis and secretion of communicating molecules, including cytokines, by activated
phagocytic cells (e.g., neutrophils and macrophages) control the process of inflammation
associated with the activation of various transcription factors and enzymes (e.g., NF-κB,
STAT, AP-1, HIF-1-α, iNOS, COX-2 and NLRP3 inflammasome). When the major task of the
pathogen destruction and/or injury repair is completed and cellular debris is removed, the
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resolution of inflammation takes place, e.g., the acute inflammatory response is terminated
(Figure 1, [3]).
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Figure 1. Inflammation and resolution (Adapted from [2,3,13–15]). (ASC—the adaptor molecule
apoptosis-associated speck-like protein containing a CARD; CCL2—chemokine (C–C motif) ligand 2;
DAMPS—damage-associated molecular patterns; IL-10—interleukin 10; MAPK—mitogen-activated
protein kinases; STAT—signal transducer and activator of transcription; Mp2—type 2 macrophages;
NLR—Nucleotide oligomerization domain (NOD)-like receptors; PAMPS—pathogen-associated
molecular patterns; TGF—transforming growth factor; RONS—reactive oxygen and nitrogen species;
NLR—nucleotide-binding domain, leucine-rich repeat containing; TNFα—tumour necrosis factor
alpha TLRs—Toll-like receptors). Red colour indicates factors contributing to inflammation and blue
colour covers factors contributing to resolution.

Therefore, acute inflammation is an essential part of the immune system’s defence
strategy, contributing to the healing process. However, when inflammation resolution
is dysregulated, chronic inflammation in the heart, pancreas, liver, kidney, lung, brain,
intestinal tract and reproductive system leads to tissue damage and the development of
various diseases in humans and animals [9,16].

3. Oxidative Stress and Inflammation

It is generally accepted that oxygen is a vital element for eukaryote energy production
in mitochondria; however, this process is not 100% efficient and some electrons can escape
from the electron transport chain (ETC), forming free radicals. In addition, phagocyte cells
produce free radicals and use them as a weapon to kill pathogens. In general, major free
radicals (O2*, OH*) and some non-radical molecules (H2O2) are combined under reactive
oxygen species (ROS). For four decades, ROS-related research has generated important
information, essential for understanding not only the detrimental but also beneficial role of
free radicals in cell signalling, stress adaptation as well as in other physiological processes.
Of note, the benefit or harm of ROS generally depends on the level of their production and
efficiency of their detoxification by the antioxidant defence network. In fact, disturbances
or redox balance and oxidative stress are responsible for the development of a range human
diseases [17]. The antioxidant defence network in various tissues is based on internally
synthesised (superoxide dismutase, catalase, glutathione peroxidase, thioredoxin reductase
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and other selenoproteins, glutathione, thioredoxin, ascorbic acid, ubiquinone, taurine,
carnitine, etc.) and externally supplied antioxidants (vitamin E, carotenoids, polyphenols,
taurine, carnitine, etc.). All the antioxidants in the body work together, providing an
effective antioxidant defence and maintaining the redox balance. The antioxidant defences
are regulated via various transcription factors, including Nrf2 and NF-κB, and the vitagene
network [4].

The concept of oxidative stress as an imbalance between oxidants and antioxidants
and oxidative stress responses was developed by Sies in 1985 [18] and, recently, it has
been updated [4,17] to include current development and understanding of the topic. This
can be briefly summarised as follows. Animals and humans manage stress via adopting
various mechanisms, generally called “stress response” (SR), associated with the induction
of various genes encoding the synthesis of various cyto-protective molecules. Depending
on the conditions, SR can be immediate, lasting from a few seconds to several hours and
associated with receptor-mediated intracellular signalling, or it can be delayed with the
involvement of various modulators and downstream effectors [19]. There are at least eight
stress response pathways responsible for stress sensing and the development of an adequate
response, including oxidative stress response (OSR), heat shock response, unfolded protein
response, DNA damage response, hypoxia-induced stress response, inflammation stress
response, energy stress response and nutritional stress response [4]. Interestingly, all
eight stress responses are interrelated, and oxidative stress response can be placed at
the centre of stress response creation. Therefore, to deal with the oxidative challenge
and to maintain redox homeostasis, a stress response is initiated including the activation
of gene expression in defence systems. There are two major “master regulators” of the
stress response, including the Nrf2/Keap1 and the NF-κB/IκB systems [20–23]. In fact,
oxidative stress response is associated with both transcription factors to be translocated to
the nucleus and create protective, but in many cases opposite, responses. On the one hand,
Nrf2 activates a great number of genes responsible for the synthesis of an array of protective
antioxidant molecules [20]. On the other hand, NF-κB induces the expression of genes
associated with inflammation and immunity [21]. The stress response also includes various
repair programs as well as removal/cell death programs, including autophagy, mitophagy,
apoptosis, necroptosis, ferroptosis, etc. [4]. In general, redox balance maintenance and cell
signalling are shown to be integrated with main homeostatic mechanisms at the molecular,
organellar, cellular, tissue and organismic levels [18], and they are tightly integrated with
the vitagene network and various transcription factors [4].

In general, the inflammatory process is associated with oxidative stress. On the
one hand, ROS production in macrophages (so called oxidative burst) is an essential
process, and they are used as a powerful weapon to kill pathogens and, therefore, activated
macrophages are very efficient at recognising, phagocytosing and killing pathogens in
phagolysosomes [24]. On the other hand, excess or uncontrolled ROS production can
damage phagocyte cells and decrease their protective efficiency. However, ROS also play
signalling roles in macrophage polarisation and inflammation resolution. Therefore, if the
inflammation is not properly controlled and not terminated in timely way, it can become a
chronic state, detrimentally affecting tissue integrity and wound healing. This is associated
with the induction of the transcription factor NF-κB, which regulates the expression and
synthesis of inflammatory mediators [12]. Once the infection is eliminated, NF-κB activity
should drop to its basal level; however, in pathological inflammatory processes, an incorrect
termination of NF-κB signalling is observed [25]. It has been shown that silymarin possesses
antioxidant and anti-inflammatory properties, being an important phytochemical used to
regulate inflammatory responses [2,5,6].

4. Chemical Composition and Structure of Silymarin

Silymarin (SM) is a standardised extract from the milk thistle Silybum marianum contain-
ing a complex of flavonolignans (silybin A, silybin B, isosilybin A, isosilybin B, silychristin,
isosilychristin, silydianin, and the flavonoids taxifolin, quercetin and kaempferol) as its
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main constituents (65–80% [26–28]). To obtain flavonolignans, the seed meal is usually
subjected to successive washes with petroleum ether to remove lipids, and flavonolignans
are then extracted with ethanol [29]. SM is sown to contain silybin A and B as major
active constituents and also includes isosilybin A and B (about 5%), silychristin A (7–10%),
silydianin (10%) with a smaller amount of taxifolin (2–5%) and 2,3-dehydroflavonolignans
(≤3%; [27]). It is important to underline that the chemical composition of SM is quite vari-
able and depends on the variety of S. marianum [30], plant growing conditions such as soil
composition, climatic conditions as well as the techniques for plant processing [27,31–33].
Silybin has a molecular weight of 482.441, a molecular formula of C25H22O10 and a CAS
Number of 22888-70-6 (PubChem, [34], Figure 2).
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Importantly, in scientific literature terms, silybin and silibinin are used as synonyms [35].
As can be seen from Figure 2, in the molecular structure of silybin, there are two domains,
connected by a 1,4-dioxane ring. The first one comprises the flavononol group, and the
second domain is related to the phenylpropanoid group. It is reported that silybin is charac-
terised by five hydroxyl groups, which are the main targets for derivatisation [34]. Natural
silybin is found to be a mixture of silybin A and B, with a ratio of these two stereoisomers
of about 3:7 [27]. Interestingly, in older studies, this ratio was shown to be 1:1 [36]. In fact,
this ratio depends on the source and processing conditions of SM [35]. Therefore, a high
degree of compositional variability in SM [35] is believed to be responsible for experimental
results’ variability.

5. Silymarin and Inflammation: In Vitro Studies

The anti-inflammatory properties of silymarin (SM) or its main constituent, namely
silibinin/silybin (SB), have been proven in various in vitro systems based on cultivated
cells including immune cells and other types of cells. Macrophages and monocytes are
believed to be important players in the innate immune response and vital regulators of
inflammation. They are effective drivers of innate immunity, performing phagocytosis and
initiating inflammation, inducing the adaptive immune response, leading to the resolution
of inflammation and homeostasis re-establishment [24].

5.1. Macrophages

It is well established that macrophages (MPs) play a critical role in tissue develop-
ment/homeostasis, being responsible for the tissue surveillance to detect infection or injury
as well as monitoring tissue changes [24]. There is a growing consensus that the recognition
of various stimuli by MPs is executed by a great variety of receptors, including cytokine
receptors, PRRs and phagocytosis receptors [37]. There is also mounting evidence that
depending on conditions, macrophages can be characterised by various activated pheno-
types (e.g., the M1 and M2 phenotypes). In fact, M1 macrophages are characterised by
pro-inflammatory activities due to secreting important cytokines, chemokines, including
TNF-α, IL-1β, IL-6, IL-12, IL-23, CCL4 and CXCL10, and ROS, including O2*, OH* and
H2O2 [8,38]. This leads to inflammation, phagocytosis and oxidative burst with pathogen
destruction/killing. In marked contrast, M2 macrophages produce anti-inflammatory
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cytokines (e.g. IL-4, IL-10, IL-13, TGF-β, etc.) and lipid mediators (lipoxins, resolvins,
protectins, etc.), leading to the resolution of inflammation [24,39]. Within this scenario,
to deal with infection, at the early stage, there is a macrophage phenotype switch from a
homeostatic function to proinflammatory phenotype. A growing body of evidence indi-
cates that once the pathogen is dealt with, a switch to an anti-inflammatory/pro-resolving
macrophage phenotype takes place in order to limit tissue damage, terminate the inflam-
matory response/resolve inflammation and re-establish homeostasis [24].

Growing evidence also indicates that the M1/M2 classification of MPs seems to be
out of date, since it does not take into account the complexity of the physiological or the
pathophysiological contexts and the diversity of the stimuli activating MPs [37]. However,
to simplify this issue, we keep the main principles of polarisation as they were previously
characterised. Of note, the misregulation of this macrophage polarisation could lead
to over-inflammation associated with the development of various inflammation-related
states/diseases.

Several studies based on LPS-stimulated macrophages clearly demonstrated the anti-
inflammatory properties of SM/SB. For example, SM (50 µg/mL) was reported to supress
morphological changes in LPS-stimulated RAW264.7 mouse macrophages due to the inhi-
bition of the NF-κB pathway, including a reduction in the nuclear translocation as well as
decreasing the transactivation activities of NF-κB [40]. Similarly, in cultured macrophages,
SM (~10–40 µM) was observed to supress LPS-induced NO generation and IL-1β expres-
sion [41]. In a similar model system, SB (40 µM) was indicated to inhibit inflammatory
indexes (NF-κB, IL-6 and TNF-α). Importantly, the combination of SB and thymol (40 µM
and 120 µM, respectively) demonstrated a more pronounced protective effect in comparison
to the single usage of SB [42]. On the same line, the increased anti-inflammatory actions of
SB and capsaicin combination in LPS-induced RAW264.7 cells was due to the suppression
of NF-κB and MAPK activation [43]. The in vitro results obtained with RAW264.7 cells
showed that SB suppressed RANKL-induced nuclear factor of activated T cells 1 (NFATc1)
induction and translocation via the NF-κB and MAPK signalling pathways. Furthermore,
SB decreased the inflammatory cytokine level and oxidative stress in LPS-stimulated human
gingival fibroblasts [44]. Silymarin-functionalized selenium nanoparticles were reported
to be more effective in comparison to silymarin in preventing LPS-induced inflammatory
response (NF-κB, IL-1β and TNF-α) in RAW264.7 cells through downregulation of the
PI3K/Akt/NF-κB pathway [45].

In a model of toxicant-induced macrophage injury, the pretreatment of mouse
macrophages with SM (100 µM) was observed to decrease paraquat (PQ)-induced cy-
totoxicity, simultaneously with an enhancement in the expression of Trx and antioxidant
enzymes (SOD and GPx), the inhibition of oxidative stress and the prevention of the TXNIP
and NLRP3 inflammasome activation, simultaneously with a reduction in proinflammatory
cytokine (IL-1β and IL-18) secretion [46]. Indeed, in mice, SB was effective in preventing
the formation of the NLRP3 inflammasome complex via the NAD+/SIRT2 pathway [47].
In these settings, other stimulating antigens/agents were also successfully employed. For
example, in H. pylori-stimulated macrophages, SB (103.6 µM) was able to suppress the
production of pro-inflammatory mediators, including TNF-α, IL-10 and IL-6, by 100%,
70.3% and 33.9%, respectively [48].

There is considerable evidence that SM treatment of primary mouse macrophages
induced M2 polarisation with decreased levels of pro-inflammatory cytokine (TNF-α and IL-
1β) production and enhanced the levels of anti-inflammatory (IL-10) cytokines [49]. In this
regard, it has been demonstrated that SB suppressed inflammation by promoting M2-type
macrophage polarisation associated with the secretion of anti-inflammatory factors (CD206,
IL-10) and the suppression of the secretion of inflammatory factors (IL-1β, iNOS; [50]).

5.2. Mononuclear Cells

Accumulated knowledge indicates that monocytes comprise about 5–10% of all blood
immune cells with a life span of about 1–3 days, and during an inflammatory process, they
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can differentiate either into inflammatory macrophages or dendritic cells [24]. There is
evidence suggesting that in CD14+/− human monocytes challenged by Paracoccidioides
brasiliensis (Pb18), SB showed anti-inflammatory and anti-fibrotic effects due to the sup-
pression of p65 NF-κB activation [51]. In a subsequent study, treatment with SB (50 µM)
mononuclear cells (lymphocytes and monocytes) obtained from preeclamptic women was
demonstrated to decrease LPS-stimulated NF-κB activation and to inhibit the production of
such inflammatory cytokines as TNF-α and IL-1β [52]. It has been recognised that in HMC-
1 human mast cells, SB (50–200 µM) can suppress pro-inflammatory cytokine (TNF-α, IL-6,
and IL-8) production by inhibiting the NF-κB signalling pathway [53]. These observations
are consistent with an observation that SB reduced histamine release from rat peritoneal
mast cells (RPMCs) induced by compound 48/80 or anti-DNP IgE. It is noteworthy that SB
also decreased the secretion of pro-inflammatory cytokines, including TNF-α and IL-6 in
RPMC [54].

It is of considerable interest that SM treatment (0.1 mM) of LPS-stimulated peripheral
blood mononuclear cells from healthy donors was associated with a reduction in the
production of such important proinflammatory cytokines as IL-1α, IL-1β, IL-6, TNF-α and
IFN-γ [55]. It is of interest that SM also has inhibitory actions on chemokine production,
including CCL2, CCL5 and MIP-1, which could affect the recruitment of monocytes and
neutrophils to sites of local inflammation and regulate inflammation [55]. Most importantly,
it confirmed that the anti-inflammatory action of SM was associated with a decrease in
NF-κB activation.

In various cell cultures in vitro, the anti-inflammatory activities of SM were also
demonstrated. Indeed, SM treatment was associated with the inhibition of multiple pro-
inflammatory mRNAs and signalling pathways, including NF-κB and FOXO [56]. This SM
action was shown to be partially AMPK dependent. Importantly, in primary human im-
mune cells, SM (80 µM) also demonstrated broad anti-inflammatory and immunoregulatory
activity, leading to the inhibition of pro-inflammatory cytokine expression and production
and modulation of T cells [57]. Results from the same study revealed that SM treatment of
T cells obtained from chronically infected, HIV-positive patients suppressed the expression
of T-cell activation and exhaustion markers on CD4+ and CD8+ cells. These results have
been interpreted as indicating that SM can modulate multiple metabolic pathways and
cause the suppression of inflammation in diverse immune cell types.

In line with that discussed above, SB treatment (10 and 50 µM) of equine peripheral
blood mononuclear cells produced anti-inflammatory effects associated with the mitigation
of LPS-induced production of proinflammatory cytokines, including TNF-α, IL-1β, IL-6
and IL-8 [58]. This view is supported by several observations, including a study conducted
by Lovelace et al. [56] using transcriptional profiling, metabolomics and signalling studies
in T-cell lines and the human liver. Overall, SM demonstrated anti-inflammatory properties
as a result of the suppression of expression of various pro-inflammatory cytokines and
signalling pathways, including NF-κB and FOXO. This was also illustrated in monocytes
from preeclamptic women treated with SB (50 µM) and leading to downregulation of the
endogenous activation of NF-κB and to the inhibition of the synthesis of pro-inflammatory
cytokines (IL-1β, IL-6, IL-8, IL-12p70, IL-23 and TNF-α), in comparison to control cultures
not treated with SB. In the meantime, in monocytes from preeclamptic women, SB also
induced in vitro M2-like phenotype polarisation [59]. It seems highly likely that there are
other mechanisms of anti-inflammatory actions of SM/SB on lymphocytes. For instance,
T lymphocytes from female and male healthy donors treated with SB demonstrated a
reduction in expression of pro-inflammatory cytokines (IL-17 and TNF-α), through ERβ
binding and the upregulation of ERβ expression [60].

5.3. Epithelial Cells

In agreement with the above reports, SM (10–20 µM) was found to attenuate cigarette
smoke-induced upregulation of inflammatory cytokines (TNF-α, IL-6 and IL-8) in hu-
man bronchial epithelial cells and decreased levels of TNF-α in cigarette smoke-exposed
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mice [61]. SM was also demonstrated to have inhibitory effects on obesity-induced growth
and ROS production associated with decreased production of proinflammatory IL-6 and
IL-1β in HepG2 cells exposed to sera from obese individuals [62]. In NCI-H292 airway
epithelial cells, stimulated by silica dioxide nanoparticles, SB was reported to mitigate
elevated inflammatory indexes (TNF-α, IL-6 and IL-1β) associated with a reduction in
TXNIP, MAPKs and AP-1 expression [63]. Of interest, the pretreatment of human umbilical
vein endothelial cells (HUVECs) with SB was observed to reduce the TNF-α-induced gene
expression of such proinflammatory genes as IL-6 and MCP-1 [64]. Silibinin was demon-
strated to mitigate LPS-induced inflammation (TNF-α) in porcine mammary epithelial cells
via the regulation of the mTOR/NF-κB signalling pathway, including the attenuation of
increased expression of (phosphorylated) p-NF-κB p65, p-IκB-α and p-MAPK p38 [65].

5.4. Skin and Bone Cells

Growing evidence indicates that SM/SB can decrease inflammatory responses in the
skin cells. For instance, skin injury (skin cells and SKH-1 hairless mouse skin) induced by
sulfur mustard analog was reported to be ameliorated by SB (10 µM in vitro and 1 mg with
topical application) as a result of affecting various pathways associated with oxidative stress
and inflammation, including NF-κB and AP-1 [66]. More recently, an active component
of SM (2,3-dehydrosilybin, 10 and 15 µM) was demonstrated to protect LPS-challenged
human dermal fibroblasts by dose-dependently diminishing IL-6 and IL-8 secretion into
the surroundings, with simultaneous upregulation of IL-8 mRNA associated with NF-κB
and AP-1 activation [25]. According to a recent study, LPS treatment of keratinocytes can
induce the inflammatory response and release of pro-inflammatory cytokines (IL-1α and
IL-6) and the chemokine IL-8. In this context, SB treatment (15 µM) of human epidermal
keratinocytes was associated with the downregulation of the LPS-induced production of
proinflammatory cytokines, including IL-1α, IL-6 and IL-8 [67]. In human chondrocytes
in vitro, SB was demonstrated to inhibit the expression of IL-1β-induced inflammatory
markers, including COX-2, iNOS, NF-κB, NO, PGE2, TNF-α and IL-6 [68]. Similarly, SB
(0.42 mM) regulated intracellular signalling to reprogram the inflammatory response in
osteoblast SB [69]. In summary, SB was shown to be protective against osteoarthritis (OA)
through inhibiting the inflammatory response and cartilage matrix degradation in vitro (in
human OA chondrocytes) and in vivo (in mice OA models).

5.5. Connective Tissue Cells

By inhibiting the NF-κB pathway, SB (50–150 mg/kg) was able to supress the produc-
tion of inflammatory cytokines (TNF-α, IL-1β and IL-6) in rheumatoid arthritis fibroblast-
like synoviocytes [70]. Improved AO defences decreased oxidative stress and ameliorated
H2O2-induced injury in fibroblast cells due to SM treatment [71]. Additional evidence
exists that the protective effects of SM are likely to be condition-dependent. For instance,
treatment of LPS-challenged human dermal fibroblasts with an SM component, namely
2,3-dehydrosilybin (DHS), could have both beneficial and detrimental effects. Indeed, DHS
was indicated to decrease IL-6 and IL-8 secretion. However, it could also significantly
upregulate IL-8 mRNA associated with NF-κB and AP-1 activation [25]. Of note, DHS
was demonstrated in various in vitro assays to significantly diminish NO production and
TNF-α and IL-6 release in a dose-dependent manner [72].

5.6. Cancer Cells

Recent studies have focused on the anti-inflammatory action of SM/SB in cancer
cells. For instance, human colorectal cancer cells (SW480, LoVo, and HT29) treated with
SB (50–200 µM) demonstrated reduced TNF-α-induced NF-κB activation together with
decreased nuclear levels of both p65 and p50 sub-units. This was associated with an
increased IκBα level and decreased phospho-IκBα [73]. In a similar fashion, SM-treated
THP-1 cells were characterised by the inhibition of caspase-1 cleavage and IL-1β and
reduced TNF-α production [74]. The inclusion of SB into the incubation medium was
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also reported to show anti-inflammatory action in monosodium urate-activated THP-1
cells. The protective activity of SB was evidenced by the diminished inflammation-related
gene expression of NLRP1/NLRP3 inflammasomes and TLR4/NF-κB pathway as well as
through the reduced production of pro-inflammatory cytokines, including IL-1β, IL-18 and
TNF-α [75]. The anti-inflammatory actions of SB, as evident from the suppression of NF-κB
and STAT3 with decreased expression of COX-2 and iNOS, were clearly demonstrated
in human gastric cancer MKN-1 cells and in the stomach of C57BL/6 mice infected with
H. pylori [76]. Interestingly, SB was shown to have a cytoprotective effect in IPEC-1 cells,
including mitochondrial integrity, and increased the expression of anti-inflammatory TGF-
β. However, in great contrast, in tumour intestinal CaCo-2 cells, SB was able to increase
apoptosis and significantly reduced the expression of pro-inflammatory cytokines [77].
Furthermore, in a Drosophila melanogaster model, SM was demonstrated to relieve intestinal
inflammation caused by dextran sulfate sodium via modulating the c-Jun N-terminal
kinase (JNK) signalling pathway [78]. In a rat model of experimentally induced renal
carcinogenesis, treatments with SM (150 mg/kg b. w.) or SB (5 mg/kg b. w.) for 9
weeks were shown to suppress proinflammatory mediators (NF-κB, p65, IκBα and IL-
6) and inhibited the PI3K/Akt pathway. Furthermore, the phytochemicals induced the
expressions of PPARs, Nrf2 and IL-4 simultaneously with the downregulation of apoptotic
proteins p53 and caspase-3 and upregulation of antiapoptotic mediator Bcl-2 [79].

5.7. Other Cell Types

Recently, SB (50 and 100 µM) has been reported to show a significant protective
anti-inflammatory effect (decreased expression of IL-1β, IL-6 and TNF-α and increased
expression of IL-10) in the retinal ganglion cells damaged by blue-light-emitting diodes due
to the activation of the MEK/ERK/CREB pathway [80]. In a model of myocardial I/R injury,
the SB-associated cardioprotective effect was illustrated to be a result of decreased oxidative
stress, apoptosis and inflammatory response due to downregulation of the NF-κB pathway.
In fact, SB was effective in inhibiting NF-κB signalling (inhibiting IκBα degradation, IKKα

phosphorylation and p65 NF-κB nuclear translocation) during hypoxia/reperfusion in
embryonic rat cardiomyocytes [81]. The human periodontal ligament cells (PDLs) were
treated with SB (10, 20 and 40 µM) in the presence of LPS. The results clearly demonstrated
that SM treatment was associated with reduced levels of pro-inflammatory mediators,
including NO, PGE2, IL-6, TNF-α, MMP-1 and MMP-3, and improved AO defences by
enhancing the activities of SOD and increasing GSH levels [82]. The anti-inflammatory
protective effects of SB were evaluated in a rat ligature-induced periodontitis model and an
LPS-stimulated human periodontal ligament cell model. In such stress conditions, SB was
found to maintain the expression of Nrf2 and attenuated lipid, protein and DNA oxidative
damage in the periodontal lesion area. In both in vitro and in vivo models, SB demonstrated
strong anti-inflammatory properties, indicative of the suppression of expression of NF-κB
and NLRP3 associated with a downregulation in the levels of proinflammatory cytokines,
including IL-1β, IL-6 and TNF-α [83].

6. Silymarin and Inflammation: In Vivo Studies

Various disease models were used to demonstrate the attenuation of inflammation
by SM/SB treatment. On one hand, extensive research efforts during the last two decades
clearly demonstrated that the protective effects of SM/SB were associated mainly with inhi-
bition of the NF-κB pathway and downregulation of pro-inflammatory cytokines, including
TNF-α and IL-1β [53,84]. On the other hand, SM/SB can induce transcriptional factors (e.g.,
Nrf2), regulating cellular defence against inflammatory and oxidative challenges [85,86]. It
should be noted that SB was studied in a mouse model of concanavalin A (ConA)-induced,
T-cell-dependent hepatitis and was demonstrated to possess immunomodulating proper-
ties in vivo, suppressing the intrahepatic expression of proinflammatory mediators, such
as TNF-α, INF-γ, IL-4, IL-2, iNOS and NF-κB, with the simultaneous augmentation of
synthesis of anti-inflammatory IL-10 [87].
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6.1. Nonalcoholic Fatty Liver Disease (NAFLD)/Steatohepatitis/Diet-Induced Obesity

A large body of evidence indicates that NAFLD is associated with metabolic syn-
drome and type 2 diabetes, having important links to inflammation. The disease is known
to include a range of pathological conditions, ranging from relatively benign steatosis
characterised by ectopic lipid storage in the liver, to nonalcoholic steatohepatitis (NASH)
associated with inflammation as a major factor in tissue remodelling and functional impair-
ment with possible progression to hepatocellular carcinoma [88]. In this sense, parenchymal
cell injury and death are considered to trigger inflammation and tissue fibrosis [89].

Several studies demonstrated the anti-inflammatory protective actions of SM/SN
in various models of NAFLD. Firstly, in a mouse model of experimental nonalcoholic
steatohepatitis, SB (20 mg/kg intraperitoneally for 4 weeks) was reported to affect lipid
homeostasis and to supress NF-κB activation in the liver [90]. Secondly, in high-fat diet
(HFD)-induced nonalcoholic steatohepatitis in vivo and in fat-laden human hepatocytes
in vitro, SM was illustrated to suppress hepatic inflammation, oxidative stress and apop-
tosis [91]. Thirdly, in a similar model system, SB was found to ameliorate O-linked β-N-
acetylglucosamine O-GlcNAcylation associated with the NF-κB signalling pathway and led
to decreased inflammation [92] and to enhanced AO defence associated with the upregula-
tion of Nrf2, suppression of NF-κB signalling and decreased expression of proinflammatory
cytokines to ameliorate hepatic steatosis and fibrosis [93]. In addition, in mice with HFD-
induced nonalcoholic fatty liver disease, SB was able to suppress NLRP3 inflammasome
assembly through the NAD+/SIRT2 pathway. This was confirmed by the disappearance
of the anti-inflammatory effect of SB as a result of SIRT2 silencing or due to usage of the
SIRT2 inhibitor AGK2 [23]. Importantly, SB decreased liver inflammation and inhibited
NF-κB translocation into the nucleus through increased SIRT2 expression and promotion
of p65 deacetylation [94].

Additional information related to the anti-inflammatory actions of SM/SM was ob-
tained with various models of diet-induced obesity. For instance, SM (60 mg/kg) was
illustrated to reduce inflammation (TNF-α, IL-1β and IL-6) and to mitigate liver damage
and insulin resistance in a model of HFD-induced obesity mice [95]. In another study, SM
treatment was also effective in attenuating insulin resistance, dyslipidaemia and inflamma-
tion in the liver of obese mice associated with inhibited NF-κB signalling [96]. Accumulated
data confirmed the ameliorative effects of SM in adipose tissue inflammation (decreased
expression of IL-1β and TNF-α and increased expression of IL-10 and adiponectin) in
an HFD-induced obesity model in mice [97]. Recent studies have also indicated that
milk thistle seed cold press oil was able to improve antioxidant defences (SOD1, HO-1
and SIRT1) and attenuated inflammation markers (IL-6 and NF-κB) in a mouse model
of dietary-induced obesity [98]. In a recent meta-analysis of 26 randomized controlled
trials involving 2375 patients, the main findings were as follows: SM significantly reduced
the levels of TC, TG, LDL-C, fasting insulin (FI) and homeostatic model assessment of IR
(HOMA-IR) and increased the level of HDL-C. Furthermore, SM was proven to attenuate
liver injury and to decrease the levels of fatty liver index and fatty liver score. In addition,
SM was able to improve hepatic steatosis [99].

6.2. Toxicity Models
6.2.1. CCl4

Carbon tetrachloride (CCl4), an important industrial solvent and refrigerant produc-
tion intermediate, is a highly toxic chemical causing oxidative stress in the liver. Accumulat-
ing evidence indicated that the metabolism of CCl4 via CYP2E1 with the production of ROS
is an important mechanism of its toxicity. It is widely accepted that CCl4 can compromise
the antioxidant defence network of various tissues due to the inhibition of AO enzymes
(SOD, GPx and CAT), leading to oxidative stress and hepatic injuries [21]. Classically,
inflammatory responses usually exacerbate chemically induced hepatotoxicity [100].

Multiple studies have reported the potential of SM/SB to control CCl4-induced in-
flammation. For instance, reduced inflammation (IL-6, MAPK, NF-κB) and liver fibrosis in
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CCl4-treated rats was observed due to SM (50 mg/kg BW for 10 weeks) treatment [101].
Furthermore, in a rat model of CCl4-induced liver fibrosis, SM (100 mg/kg) demonstrated
anti-inflammatory (IL-6) and antioxidant (GSH and MDA) protective activities [102]. The at-
tenuation of inflammation, oxidative DNA damage, apoptosis and fibrosis were considered
molecular mechanisms of the protective effects of SM (200 mg/kg) against CCl4-induced
hepatotoxicity [103]. This was associated with ameliorating the CCl4-induced increased
expression of TNF-α, TGF-β1 and MCP-1, simultaneously with decreasing intrahepatic
monocytes [104]. A more recent report showed that SM and SB were able to downregulate
transcription factors (e.g., NF-κB) and proinflammatory cytokines (IL-6), simultaneously
with the suppression of PI3K/Akt signalling and induction of Nrf2 and PPARγ expressions
in a rat model of chemically induced (the diethylnitrosamine/2-acetylaminofluorene/CCl4)
renal carcinogenesis [79]. Similarly, reduced IL-6 levels and increased levels of IL-4 as well
as the inhibition of NF-κB expression in rat kidney due to SM/SB treatment were associated
with protection against chemically induced renal carcinogenesis [79]. In male rats, dietary
SM (100 mg/kg body weight) provided after or before and during CCl4-treatment was
able to decrease toxicosis-induced expression of NF-κB, as well as of pro-inflammatory
cytokines, including TNF-α, IL-6 and TGF-β and COX2 in the liver. This was associated
with the restoration of AO defences (GSH, GPx, SOD) and improved liver functions and
lipid profiles [105]. Importantly, a synergistic hepatoprotective effect of combined usage
of Lachnum polysaccharide (LEP-2b) and SM was found to be associated with decreased
hepatic inflammation (TNF-α, IL-6 and IL-1β) and enhanced AO defences (SOD, CAT, GPx,
GSH, MDA and T-AOC) in a mouse model of CCl4-induced liver toxicity [106].

6.2.2. Other Toxicants

SM (100 mg/kg, intraperitoneally, 2 h before toxicant treatment) was shown to mitigate
maneb (MB)- and PQ-induced activation of inflammatory mediators, including iNOS,
TNF-α and IL-1β, in the rat liver [107]. Furthermore, bleomycin-induced pulmonary
toxicity and lipid peroxidation in mice were demonstrated to be ameliorated by SM, as
evidenced by redox balance maintenance (GSH, GST and CAT) and the regulation of pro-
inflammatory cytokines [108]. Similarly, 12-O-tetradecanoylphorbol-13-acetate-induced
skin inflammation (IL-1β, IL-6, TNF-α, COX-2 and NF-κB) in experimental mice was dose-
dependently downregulated by SB [109]. Importantly, SM (200 mg/kg for 10 days) also
mitigated bisphenol A-induced hepatotoxicity in mouse, as indicated by decreased levels
of pro-inflammatory cytokines (IL-6 and TNF-α) and reduced ultrastructural injuries [110].
The proinflammatory action of triptolide-induced acute hepatotoxicity in rats was dose-
dependently ameliorated by SM (50, 100 and 200 mg/kg for 7 days) by inhibiting the
production of pro-inflammatory cytokines (TNF-α, IL-6 and IL-1β) in the liver [111]. A
reduction in neutrophil infiltration associated with decreased expression of inflammatory
cytokines (TNF-α, IL-1β, IL-12) and reduced iNOS was observed in a model of APAP-
induced hepatotoxicity in mice as a result of SM (100 mg/kg, once daily for three days)
treatment [112]. In a similar manner, SM (50 and 200 mg/kg for 21 days) was demonstrated
to dose-dependently mitigate functional damage to the liver and kidneys simultaneously
with an improvement in AO defences and reduced inflammation in a model of cyclosporine
A-induced hepatorenal toxicity in rats [113]. Importantly, docetaxel-induced brain and
sciatic nerve injuries were also ameliorated by SM as a result of enhancements in the
antioxidant defence network (GSH, SOD, CAT, GPx, HO-1 and Nrf2) and inhibition of
inflammation (NF-κB and TNF-α) and apoptosis [114].

The protective effects of SM (400 mg/kg, p.o.) in an acute liver toxicity model induced
by TAA in rats were associated with reduced inflammation (TNF-α) due to decreased
oxidative stress, indicated by diminished ROS, MDA and NO levels and increased GSH
content, SOD, HO activities and enhanced Nrf2 expression [115]. Similarly, SB was able
to suppress abrin (a potent bio-warfare agent)-induced hepatotoxicity as a result of the
mitigation of oxidative stress and inhibition of inflammation in mice [116]. Interestingly,
SM in combination with chlorogenic acid showed protective effects against hepatotoxicity
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caused by doxorubicin in rats. This was associated with the effective maintenance of
antioxidant enzyme activities, reducing the expression of pro-inflammatory cytokines (TNF-
α and IL-1β), decreasing NF-κB levels and apoptosis biomarkers [117]. SM was shown to
protect rats against Zn-induced dopaminergic neuronal loss through the suppression of
oxidative stress and inflammation. In fact, SM (100 mg/kg body weight; i.p) was reported
to mitigate Zn-induced oxidative stress (SOD, GSH, GST and MDA) and inflammation
(NF-κB, IL-1β, IL-6, TNF-α) in the rat brain [118].

6.3. Ischemia/Reperfusion (I/R) Models

There are many published reports showing the protective effects of SM/SB in kid-
neys, lungs, the brain and liver in various I/R models. For instance, in various models
of renal I/R, SM showed protective action by dose-dependently decreasing oxidative
stress, neutrophil infiltration, histological damage and reducing kidney dysfunction [2].
Furthermore, SM treatment (250 mg/kg/day for 8 days) was able to inhibit I/R-induced
oxidative stress (SOD and MDA) and inflammation (Il-1β, IL-6, TNF-α and NF-κB) in
the lungs of experimental rats [119]. In addition, SM-loaded chitosan nanoparticles were
effective in decreasing cerebral inflammation (IL-6 and TNF-α) associated with improved
AO defences (SOD, CAT, GPx, GR, GSH) in the I/R rat brain [120]. Finally, in a model
of hepatic I/R injury in rats, SB protective action in the liver was related to decreasing
inflammation (eNOS and neutrophil infiltration), inhibiting hepatocyte vacuolisation and
the degeneration [121] and amelioration of I/R-induced induction of NF-κB and NLRP3
expression as well as inflammatory liver tissue injuries (e.g., neutrophil and macrophage in-
filtration, cytoplasmic vacuolation, hepatocyte degeneration, etc. [122]). Silybin phytosome
(SIBP) treatment was shown to significantly enhance AO defences (increased SOD activity
and GSH levels, decreased MDA) simultaneously with decreasing inflammation markers
(TNF-α and IL-6) in the hippocampus and cortex of the cerebral ischemia-reperfusion-
injured rats [123]. In a recent study with rats, it was demonstrated that intravenous SB
has remote anti-inflammatory protective effects in both lungs and kidneys, after hepatic is-
chemia/reperfusion, as evidenced by the regulation of inflammatory biomarkers, including
TNF-α, IL-6 and MCP-1 [124].

6.4. Ageing and Exercising Models

The anti-inflammatory actions of SM/SB have been demonstrated in ageing and exer-
cising animal models. For example, in senescence-accelerated mice, SB (100 and 200 mg/kg
for 6 weeks) was illustrated to have anti-inflammatory action by downregulating proin-
flammatory IL-6 as well as inflammation-associated proteins (iNOS and COX-2), leading to
decreased microglial activation [125]. This could be an important anti-ageing mechanism
of SM. For example, Caenorhabditis elegans treated with SM (25 µM or 50 µM) showed an
increase in mean lifespan by 10.1% and 24.8%, respectively, in comparison to untreated
controls. Moreover, SM treatment improved tolerance to stress and increased the resistance
of animals to Alzheimer’s disease development [126]. Of note, SM (20 mg/kg/day i.p,
4 weeks) was demonstrated to enhance the expression of SIRT1 associated with decreased
expression of NF-κB, providing anti-inflammatory effects in the hippocampus of old male
rats [127]. In addition, SM was indicated to improve muscle recovery and to ameliorate in-
flammation and damaged tissue in rats subjected to regular exercise training [128]. Finally,
a reduction in lung tissue inflammation was evident in rats subjected to 8-week exercise
training due to the administration of SM (100 mg [129]). In elderly rats with HFD-induced
liver injury, the combination of SM and vitamin C dietary supplementation with exercise
was shown to effectively reduce oxidative stress and liver inflammation [130].

6.5. Stress-Induced Injuries

It was clearly demonstrated that oxidative stress and increased expression of pro-
inflammatory mediators (TNF-α, IL-1β, IL-6 and CCL2) in the liver and serum of mice
affected by restraint stress were mitigated by SM (100 mg/kg [131]). Acute respiratory
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distress syndrome in rats was also characterised by enhanced inflammatory responses,
and SM (50, 100 and 200 mg/kg) was shown to reduce lung damage as a result of the
downregulation of inflammation markers (TNF-α, IFN-γ and IL-6) simultaneously with
the induction of anti-inflammatory IL-10 in broncho-alveolar lavage fluid [132]. The
anti-inflammatory protective effects of SB were also observed in a mouse-based chronic
unpredictable stress model, as evident from the decrease in stress-induced inflammatory
mediators (serum IL-1β, TNF-α) and improved antioxidant defences (GSH and SOD) in
stressed animals [133].

Radiation-induced lung injury, inflammation (the number of inflammatory cells in
the bronchoalveolar lavage fluid) and fibrosis were found to be significantly reduced by
SB treatment (100 mg/day) in experimental mice [134]. Interestingly, UVB-induced skin
damage and inflammation were ameliorated by topical application of SB just before UVB-
treatment or immediately after UVB exposure (5 days per week for 8 weeks), as evidenced
by the suppression of the UVB-induced inflammatory markers (NF-κB, TNF-α, COX2
and iNOS) in the animal skin [135]. In a later study, with a similar model, SB-loaded
hydrogel demonstrated anti-inflammatory effects, indicated by a significant reduction in
the inflammation mediators’ levels, including IL-22 and TNF-α in the skin [136].

LPS-induced inflammatory responses and oxidative stress are commonly used in vari-
ous stress models, and SM/SB was illustrated to have protective anti-inflammatory effects.
First of all, LPS-induced lung injury and inflammation in a mouse model were significantly
inhibited by SB, as indicated by the suppressed recruitment of airway inflammatory cells
(macrophages, T cells and neutrophils) associated with the inhibition of NF-κB signalling
and a substantial reduction in the production of proinflammatory cytokines (IL-1β and
TNF-α) in bronchoalveolar fluid and serum [74]. Secondly, partial inactivation of multiple
mitogen-activated protein kinase signalling pathways in the lungs of LPS-treated rats was
a result of SM pretreatment [109]. Thirdly, SM treatment (75 mg/kg BW and 150 mg/kg
BW) of mice with multiple-organ damage induced by D-galactose/LPS was associated
with a significant improvement in liver function (reduced ALT and AST in the serum). The
SM treatment was also responsible for improved AO defences and redox balance (SOD,
CAT, GSH, GPx, T-AOC activities and expression of SOD1, SOD2, CAT, GPx, IL-10, Nrf2,
HO-1, NQO1, Trx and IκB-α). Importantly, a reduction in inflammation, as evidenced by in-
creased IL-10 and IL-12 and reduced IL-6, IL-1β and TNF-α concentrations and expressions,
decreased the expression of NF-κB, NLRP3, COX2 and p38, which were major protective
effects of SM in the mouse liver [86].

Recent studies have indicated that cigarette smoke has a pro-inflammatory action [137].
For example, SM (25 and 50 mg/kg; [116]) or SB (10 and 20 mg/kg; [115]) was demonstrated
to decrease inflammatory cell count and to supress the secretion of pro-inflammatory cy-
tokines (TNF-α, IL-1β and IL-8) in bronchoalveolar lavage fluid of cigarette smoke-treated
mice [138,139]. In a similar fashion, SB was able to supress the smoke- and LPS-induced
neutrophilic airway inflammation and reduced MPO expression in the mouse lung [140].
Importantly, SM treatment was associated with the amelioration of lung inflammation,
simultaneously with an improvement in antioxidant defences, as evidenced by the upreg-
ulation of Nrf2 and HO-1 in a model of HCl-induced acute lung injury in rats [141]. Of
note, the anti-inflammatory effects of SM + curcumin-loaded albumin nanoparticles coated
by chitosan, evidenced by decreased IL-6 in the lung and reduced CRP in serum, were
demonstrated in a mouse model of oleic acid-induced lung injury [142]. In a model of mild
traumatic brain injury, SM (50 mg/kg/day for 20 days) was reported to reduce inflamma-
tory responses (TNF-α) in the mouse prefrontal cortex [120] and hippocampus [143,144].
There is also evidence demonstrating that SM-loaded gold nanoparticles were able to
improve liver function by enhancing antioxidant defences and decreasing oxidative stress,
inflammation and fibrosis in a rat model of extrahepatic cholestasis [145].

The anti-inflammatory properties of SM/SB were demonstrated in various stress
models, including restraint stress, acute respiratory distress syndrome and a chronic un-
predictable stress model. Furthermore, radiation- and UVB-induced tissue damage and
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inflammation were also ameliorated by SM/SB treatment in various animal models. When
LPS and cigarette smoke were used as inflammation-promoting stress factors, SM/SB also
demonstrated significant protective actions. In addition, HCl- and oleic acid-induced lung
injuries as well as traumatic brain injuries and inflammatory responses were ameliorated
by SM/SB treatments. There was a range of other inflammation-associated medical condi-
tions, including benign prostatic hyperplasia, varicocele, dermatitis and peritoneal dialysis,
where the anti-inflammatory effects of SM/SB were clearly demonstrated.

6.6. Other In Vivo Model Systems and Disease States

There is evidence suggesting that SM could be considered as a useful treatment for
inflammation, as evidenced by decreased serum TNF-α in peritoneal dialysis patients [146].
It was emphasized that SM could show protective ant-inflammatory effects in benign
prostatic hyperplasia. In fact, SM significantly ameliorated testosterone-induced NF-κB,
COX2 and iNOS, leading to the downregulation of inflammation and hyperplasia [147].
Importantly, SM (50 mg/kg, orally) was demonstrated to partially mitigate the varicocele-
induced downregulation of the testicular antioxidant defence network (TAC, SOD and
GPx) and decreased COX2 and iNOS expression as well as NO content [148]. Atopic
dermatitis (redness, swelling and inflammation) was illustrated to be relieved by the
silymarin pluronic-lecithin organogel formulation [149]. Similarly, it was revealed that in a
mouse model of irritant contact dermatitis, decreased ear oedema and reduced leukocyte
infiltration in damaged tissue were observed due to treatment with hydrogel containing SB
nanocapsules [150].

The downregulation of NF-κB activity in a mouse asthma model was suggested to
be the main molecular mechanisms of protective effects of SB against ovalbumin-induced
airway inflammation [151]. Importantly, it seems likely that SB affects Th cell polarization,
as evidenced by a downregulation in the secretion of pro-inflammatory Th1 cytokines,
simultaneously with the upregulation of anti-inflammatory Th2 cytokines in vitro. This
was associated with a dose-dependent inhibition of the production of Th1 cytokines ex
vivo [152]. The inhibition of the release of inflammatory mediators (IL-1β, IL-6 and TNF-
α) and reduction in sepsis-induced oxidative damage in rat lung tissues were shown to
result from SM administration [153]. Two major SM isomers (isosilybin A and silydianin)
were reported to have anti-inflammatory properties associated with their ability to reduce
eosinophilic infiltration of the lungs, IL-4 and IL-5 levels and gene expression in bron-
choalveolar lavage fluid in a Balb/c mouse model of allergic asthma [154]. In IFN-ß-treated
multiple sclerosis patients, SM was demonstrated to suppress Th1 proliferating activity
associated with the inhibition of T-bet gene expression and IFN-γ production by the im-
mune cells [155]. In an animal model of multiple sclerosis, SB was illustrated to decrease
DC activation and to suppress pathogenic Th17 inflammatory cell responses, significantly
attenuating inflammation and demyelination of the central nervous system in experimental
mice [156]. Importantly, SM treatment was found to mitigate virus-induced increased
pro-inflammatory cytokine production and liver inflammation in a mouse model of Mayaro
virus infection [157]. SM/SB was shown to be effective in controlling various diabetic
complications in several organs, including neuropathy, retinopathy, impaired healing,
hepatopathy, cardiomyopathy, nephropathy and osteoporosis [158,159].

The pathological roles of inflammation in the development and progression of diabetes
have recently received substantial attention [160]. Furthermore, SM/SB was reported to
ameliorate various diabetic, inflammation-related complications in several organs, includ-
ing neuropathy, retinopathy, impaired healing, hepatopathy, cardiomyopathy, nephropathy
and osteoporosis [158,159]. In a model of STZ-induced diabetes in mice, SM was illustrated
to improve antioxidant defence mechanisms and to ameliorate inflammation indexes in-
cluding pancreatic TNF-α and inflammatory cell infiltration in islets [161]. Similarly, in a rat
model of STZ-induced diabetic nephropathy, SM (100, 300 and 900 µg/kg) in nanoliposome
form was able to mitigate oxidative stress by improving SOD, CAT and GPx activity in the
kidneys. Importantly, the STZ-induced increased expression of inflammatory mediators
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(IL-8, IL-10, TNF-α, IL-6, TGF-β and ICAM-1) in renal tissue was also ameliorated by SM
treatment [162]. In a zebrafish model of type 2 diabetes, a treatment with SM combined
with metformin was demonstrated to suppress the expression of important inflammatory
genes (IL-1β and TNF-α) associated with the amelioration of intestinal inflammation [163].
In an experiment with ApoE−/− mice fed with a high-fat diet, co-administration of SB
with Clopidogrel was found to significantly mitigate the inflammation and endothelial
dysfunction in aorta roots [164]. In stroke-induced brain ischemia in rats, SB was able to
significantly decrease the expression of Bax and NF-κB, simultaneously with the upregu-
lation of Akt, mTOR, HIF-1α and Bcl-2, leading to the mitigation of neurological deficits,
reduced infarct volume and suppressed brain oedema [165].

Inflammation is an important hallmark of many neurodegenerative disorders, includ-
ing Alzheimer’s disease [166,167] and Parkinson’s disease (PD, [168,169]). Therefore, the
protective anti-inflammatory properties of SM/SB are of great importance in the develop-
ment of effective measures to deal with neurodegenerative disorders. For example, in the
1-methyl-4-phenylpyridinium ion (MPP(+))-treated rat model of PD, in vivo animals were
intraperitoneally injected with 10, 50 or 100 mg/kg of SB, starting 1 day before MPP(+)
injection. It was clearly shown that the highest SB dose (100 mg/kg) was effective in the
amelioration of MPP(+)-induced neurotoxicity in the substantia nigra in a dose-dependent
manner. This was associated with the mitigation of MPP(+)-induced increased levels of
inflammatory markers, including TNF-α, IL-1β and iNOS [170]. In the same fashion, in a
mouse model of Alzheimer’s disease, SB encapsulated in macrophage-derived exosomes
was able to decrease astrocyte inflammation-mediated neuronal damage as a result of a
reduction in the secretion of proinflammatory cytokines (IL-6, IL-1β and TNF-α), with a
concomitant downregulation of the protein expression involved in NF-κB signalling [171].
Importantly, SB was effective in suppressing the prothrombin kringle-2-induced production
of proinflammatory mediators, including iNOS, IL-1β and TNF-α, in the mouse substantia
nigra [172]. The oral administration of SB (100 mg/kg) was demonstrated to protect against
MPTP-induced neurotoxicity by reducing the levels of pro-inflammatory cytokines (TNFα,
IL-1β and IL-6) in the striatum and substantia nigra and increasing anti-inflammatory
cytokine (IL-10 and IL-4) levels in the substantia nigra in mice [173]. The administration of
silymarin (200 mg/kg) to aggression-induced mice was indicated to attenuate inflammation
(decreased serum IL-6 and TNF-α) and decrease oxidative stress (GSH, CAT and SOD) in
the mouse brain [174]. The lower SM dose (100 mg/kg) also improved AO defences in
the brain and decreased TNF-α levels in serum but did not affect the IL-6 concentration in
serum. The neuroprotective effects of SM against thiamethoxam (TMX)-induced cortical
injury in male rats were investigated. Compromised cortical AO defences (decreased
activities of SOD, CAT, MDA and reduced expression of Sod, Cat, GPx and Nrf-2) and
elevated inflammation (increased concentration of IL-1β and TNF-α as well as enhanced
expression of IL-1β, IL-6, iNOS, TNF-α and NF-κB) were observed in TMX-treated rats.
Importantly, pre-treatment with SM (150 mg/kg) provided significant neuroprotective
effects associated with the amelioration of disturbed AO defences and restoration of in-
flammatory balance [175]. In 3-nitropropionic acid-induced neurotoxicity in male mice, SM
has shown neuroprotective effects associated with attenuating neuroinflammation (TNF-α,
IL-17 and IL-1β) and oxidative stress (MDA, SOD, TAC) as well as improving behavioural
deficits [176].

Preeclampsia (PE), a leading cause of maternal and foetal mortality worldwide, was
demonstrated to be related to inappropriate inflammatory responses, leading to pathophys-
iological changes [177,178]. Therefore, research related to the anti-inflammatory action of
SM/SM in attempts to ameliorate pathologic changes in patients is quickly developing. For
instance, increased endogenous activation of NF-κB as well as TNF-α and IL-1β release
by PBMC in the preeclampsia-affected group compared with the normotensive pregnant
women was confirmed, and SB was illustrated to decrease the levels of NF-κB and the
expression of pro-inflammatory cytokines (TNF-α and IL-1β) in preeclamptic women [179].
Furthermore, in patients with preeclampsia, SB was able to suppress the spontaneous
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and LPS-induced NF-κB activation and production of inflammatory cytokines [179]. In
monocytes from preeclamptic pregnant women, SB demonstrated antioxidant and anti-
inflammatory activities, as evidenced by the inhibition of pro-inflammatory cytokine
(TNF-α) production and the in vitro endogenous release of ROS [180]. Of note, SB (200
µM) was shown to significantly reduce the LPS-induced expression of IL-6 and IL-8, COX-
2 and prostaglandins PGE2 and PGF2α in human foetal membranes [181]. Finally, in
pregnant preeclamptic women, SB was effective in downregulating the NF-κB pathway,
including decreased expression of proinflammatory cytokines (IL-1β, IL-18 and TNF-α)
and NLRP1/NLRP3 inflammasomes in monocytes [51,75]. In addition, in pregnant women
with preeclampsia, SB (100 µM) was reported to downregulate the expression of the Th1
and Th17 profiles by decreasing inflammatory transcription factors (STAT1/STAT4/T-bet
and STAT3/RORγt) and increasing anti-inflammatory (STAT6/GATA-3 and STAT5/FoxP3)
transcription factors. This was associated with a reduction in the release of inflammatory
cytokines and increased levels of anti-inflammatory IL-10 and TGF-β [182].

Chronic inflammation and oxidative stress are considered to be among the most im-
portant factors promoting immunological abnormalities and enhanced susceptibility to
infections observed in patients with thalassemia [183]. In fact, thalassemia patients are
characterised by enhanced inflammation (decreased expression of anti-inflammatory IL-10
and increased concentrations of pro-inflammatory TGF-β and IL-23), and, in such condi-
tions, SM treatment was demonstrated to have anti-inflammatory effects [184]. Similarly, in
beta-thalassemia major patients, there was a redox disbalance, evidenced by a reduction in
the GSH concentration, and it was associated with decreased proliferation of PHA-activated
PBMC. Importantly, SM treatment was illustrated to effectively restore both GSH levels
and PBMC proliferation [185]. More recent observations confirmed the anti-inflammatory
actions of SWM/SM in thalassemia patients. For instance, in patients with β-thalassemia
major, SM (140 mg, 3 times a day for 12 weeks) was able to improve the inflammatory
status, as evidenced by decreased CRP and IL-6 and increased IL-10 levels [186].

In a rat model of L-arginine-induced acute pancreatitis, pretreatment with SB was
associated with the amelioration of inflammation, as evidenced by the prevention of
histopathological changes in the pancreas and decreased oxidative stress [187]. In As-
pergillus fumigatus-treated pulmonary microvascular endothelial cells, SB treatment was
demonstrated to significantly downregulate the expression of proinflammatory factors
and adhesion molecules (IL-6, IL-1β and ICAM-1) simultaneously with the suppression
of A. fumigatus-induced p38 MAPK activation [188]. Interestingly, in a mouse model of
pulmonary fibrosis, SB was indicated to mitigate the alleviated inflammatory markers,
including IL-1β, IL-6 and TNF-α, in the fibrotic tissue [189]. Furthermore, in a double-blind
clinical trial with patients suffering from painful knee osteoarthritis, SM (300 mg/day for
8 weeks) was found to significantly reduce IL-1α and IL-8 levels and complement proteins
C3 and C4 in serum compared to the pre-treatment levels [190].

In a model of experimental gastric ulcer in rats, SM (50 mg/kg orally) pretreatment was
reported to suppress gastric inflammation, as evidenced by reduced MPO, TNF-α and IL-6
levels and NF-κB expression. The anti-inflammatory action of SM was associated with an
improvement in the AO defences, indicated by the upregulation of Nrf2 and enhancement
of SOD and GPx activities [191]. Similarly, in a rat model of experimental colitis, SB was
demonstrated to ameliorate intestinal inflammation and decrease colonic tissue injury due
to the inhibition of NF-κB activity and neutrophil infiltration/activation in the inflamed
colon, simultaneously with a decreased expression of proinflammatory cytokines, such as
TNF-α and IL-1β [192]. The protective effects of SM and its nanoemulsion on 5-fluorouracil-
induced gastrointestinal toxicity in male rats have been demonstrated [193]. This was
evidenced by the decreased gene expression of inflammatory markers (IL-2 and TNF-α),
reduced oxidative stress (MDA and TAC) and decreased histopathological degeneration in
the gut due to SM treatment. Since intestinal inflammation is a driving force of development
of many different diseases/disorders, which cause decreased productive and reproductive
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performance of poultry and farm animals [194], the possible protective role of SM in the
gut warrants further research.

6.7. Wound Healing

Accumulating evidence indicates that the effective control of inflammatory reactions
is of great importance in wound healing. For example, topical application of SM was re-
ported to be able to improve the biochemical, morphological and biomechanical properties
of experimentally induced wound defects in rats [195]. SM topical application was also
shown to significantly reduce inflammation and improve epithelialisation in full-thickness
wounds in rats [196]. Of note, in patients with second-degree burns, a 4-week adjuvant
treatment with oral SM promoted fuller and faster wound recovery [197]. By downregu-
lating phosphorylated NF-κB p65, SM is shown to be involved in the regulation of type I
collagen-enhanced migration in murine 3T3-L1 preadipocytes, a vital process in adipocyte
tissue wound healing [198]. In a rat model of experimental Achilles tendon, SM treatment
led to an improved healing process, as evidenced by a significant improvement in tissue
healing indices, the functional index and biomechanical properties [199].

7. Silymarin and NF-κB Regulation

The anti-inflammatory properties of phenolic compounds have been demonstrated
in a range of in vitro and in vivo studies, and polyphenols may affect inflammation as
modulators of inflammatory redox signalling pathways [200]. It is generally accepted
that the polyphenolic compounds demonstrate anti-inflammatory activities by modulat-
ing the expression of pro-inflammatory genes, including cyclooxygenase, lipoxygenase,
nitric oxide synthases and cytokines, mainly through the regulation of NF-κB and MAPK
signalling [200,201]. Recent studies have confirmed that the protective anti-inflammatory
effects of SM/SB could be mediated by their inhibitory potential on NF-κB, which is a key
transcriptional factor for numerous genes involved in the regulation of inflammation, im-
mune system, cell differentiation, survival, apoptosis, etc. [21,23]. Due to the great number
of studies devoted to the regulatory roles of SM/SB on NF-κB expression in various in vitro
and in vivo model systems, in this paper, we focus only on recent investigations addressing
the issue.

7.1. In Vitro Studies

SB is a potent inhibitor of NF-κB activation. For example, 25 years ago, Manna
et al. [202] tested SB in a number of in vitro human cell experimental systems and found
it inhibited TNF-mediated NF-κB activation in a dose-dependent manner, showing that
as an NF-κB regulator, SB was 100-times more effective than aspirin. SM was found to
be effective in inhibiting T-cell activation and proliferation by inhibiting NF-κB activa-
tion/translocation. In particular, in CD4+ splenocytes from C57/Bl6 mice, SM (50 µM)
significantly inhibited CD4+ cell proliferation, suppressed IL-2 and IFN-γ production and
blocked nuclear translocation of transcription factor NF-κB. Moreover, SM was reported to
inhibit p65/NF-κB phosphorylation in CD4+ T cell [203].

It heat-stressed chicken hepatocytes, there was a significant upregulation of ox-
idative stress biomarkers, including increased MDA and inhibited activities of AO en-
zymes (SOD, CAT, GR). Furthermore, heat stress was responsible for the increased ex-
pression of pro-inflammatory indexes (IL-1β, TNF-α, NF-κB, COX-2 and iNOS), while SM
(259 µM) was able to normalise the expression of all those biomarkers [204]. SB was clearly
demonstrated to suppress the expression of NF-κB at transcriptional and translational
levels in a mouse hepatocyte cell line [205]. In a similar fashion, SB treatment (25 and
50 µM) of LPS-induced human hepatocytes (LO2 cells) was observed to reduce the nuclear
translocation of NF-κB and decrease the induction of downstream pro-inflammatory cy-
tokines [206]. In a rat hepatoma cell model of NAFLD progression, based on cell exposure
to oleate/palmitate followed by TNF-α treatment, SB (50 µM) was shown to decrease the
activation of NF-κB and autophagy turnover [207]. In a dermal inflammatory model based
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on the LPS-induced hoof dermal cells of dairy cows, SM was illuminated to inhibit the
phosphorylation of p65 NF-κB and p38 MAPK associated with decreased secretions of
pro-inflammatory cytokines (IL-1β and TNF-α [208]). In a bladder cancer cell line, SB
was reported to inhibit the radiotherapy-induced NF-κB and PI3K pathways [209]. In a
model system based on murine 3T3-L1 preadipocytes, SB reduced NF-κB p65 activity and
decreased ROS generation simultaneously with the induction of sirt1 expression [210]. In
an imiquimod-induced psoriasis mouse model, SM was found to suppress inflammatory re-
sponses in keratinocytes by inhibiting the transcriptional activity of NF-κB [211]. However,
there is a need for further studies on NF-κB inhibition by SB in physiologically relevant
(0.2–2 µM) concentrations.

7.2. In Vivo Studies

It has been reported that SB (50 mg/kg/BW) has a protective effect against D-galactose-
induced senescence as a result of the inhibition of NF-κB activation and ROS produc-
tion [212]. Furthermore, SB (75 mg/kg/BW) significantly reduced the As-induced over-
expression of NF-κB and inhibited caspase-3-mediated tubular cell apoptosis [213]. In a
nonalcoholic steatohepatitis mouse model based on a methionine-choline deficient diet, in-
creased NF-κB p65 and p50 binding activities were recorded, while SB (20 mg/kg/BW/i.p.)
significantly reduced the activity of both sub-units of NF-κB [214]. Importantly, SM
(200 mg/kg/BW) was found to decrease the CCl4-induced hepatic NF-κB expression and
reduced CCl4-induced liver fibrosis [215]. Decreased expression of the NF-κB mRNA and
protein in the rat brain due to SB treatment (150 mg/kg/BW/intragastric) was observed in
an animal model of cerebral ischemia [216]. In a D-galactosamine-induced hepatotoxicity
model in rats, SM treatment (25 mg/kg/BW) was shown to significantly downregulate
the expressions of mRNA and protein expression of NF-κB [217]. In cirrhosis rats, SM
(50 g/kg) was illustrated to significantly decrease elevated serum levels of NF-κB, IL-6 and
transforming growth factor (TGF-β [218]). Furthermore, in alcoholic liver fibrosis in guinea
pigs, SM (250 mg/kg/BW) was found to inhibit the NF-κB signalling cascade [219,220]. In
a mouse model of nonalcoholic steatohepatitis, SB treatment was reported to suppress the
NF-κB-signalling pathway to alleviate the severity of hepatic inflammation and steatohep-
atitis [221]. Similarly, SB was demonstrated to inhibit NF-κB, leading to the mitigation of
renal fibrosis in vitro and in vivo [222]. In insulin-resistant rats, SM (100 mg/kg/day) was
indicated to inhibit the AlCl3-induced activation of the TLR4 signalling pathway, including
the downstream induction of NF-κB [223]. In a rat model of scopolamine-induced demen-
tia, SM pretreatment (200, 400, 800 mg/kg) mitigated the enhanced protein expression
of NF-κB in the brain cortex and hippocampus and partially prevented toxicant-induced
histopathological changes [224]. Similarly, SM treatment (200 mg/kg) was able to signifi-
cantly downregulate the inflammatory responses, indicated by the inhibition of NF-κB-p65
levels and preventing NLRP3 inflammasome activation in a mouse model of intracerebral
haemorrhages. Importantly, the anti-inflammatory protective action of SM was related to
the improved AO defence network, indicated by increased Nrf-2/HO-1 expression [225].
Interestingly, SB (10, 20 and 40 mg/kg) was reported to reduce LPS-induced NF-κB activa-
tion and inhibited the expression of the NLRP3 inflammasome, causing the suppression of
inflammatory cytokine production in the bronchoalveolar lavage fluid in a mouse model
of LPS-induced acute lung injury [226]. In a mouse model of irinotecan-induced nonal-
coholic steatohepatitis, SM (1.5 mg/kg) was demonstrated to mitigate increased IL-1β
and IL-6 levels and prevented NF-κB overexpression in the liver [227]. Recently, it has
been demonstrated that SB is able to mitigate STING-mediated neuroinflammation via the
downregulation of ferroptotic damage [228]. Similarly, SM was reported to ameliorate the
phosphorylation of NF-κB p65 and p38 MAP kinase, inhibited STZ-induced overexpression
of inflammatory cytokines, vascular endothelial growth factor (VEGF), adhesion molecules
and extracellular matrix proteins in rats [229].

Therefore, SM/SB, as one of the most widely studied phytochemicals with antioxidant
and anti-inflammatory properties [2,5,6], has received significant attention for the last
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30 years. The aforementioned research data clearly demonstrated that SM/SB has great
potential as an anti-inflammation agent (Figure 3). In particular, in in vitro studies, SM/SB
was illustrated to downregulate NF-κB and downstream proinflammatory cytokines and
chemokines, including TNF-α, IL-1β, IL-6, IL-12, IL-23, CCL4 and CXCL10.
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Of note, in the same model systems, SM/SB was able to upregulate anti-inflammatory
cytokines (IL-4, IL-10, IL-13, TGF-β, etc.) and lipid mediators involved in the resolution
of inflammation. The inflammatory properties of SM/SB were clearly shown in model
systems based on immune (macrophages and monocytes) and non-immune (epithelial, skin,
bone, connective tissue and cancer) cells. At the same time, the anti-inflammatory action
of SM/SB was clearly confirmed in several in vivo models, including toxicity models,
nonalcoholic fatty liver disease, ischemia/reperfusion models, stress-induced injuries,
ageing and exercising models, wound healing and many other relevant model systems.

Overall, it is clearly shown that SM/SB targets multiple signalling pathways, in-
cluding NF-κB, leading to the inhibition of the secretion of pro-inflammatory cytokines
and preventing over-inflammation. It seems likely that targeting the NF-κB signalling
pathway by SM/SB may have potential practical applications in the clinical sciences and
veterinary medicine.

8. Conclusions

Inflammation is generally known to be an important immunological defence mecha-
nism, responsible for the creation of hostile conditions for penetrating pathogens, restricting
the spread of tissue infection and maintaining cell/tissue homeostasis. However, as a re-
sult of various stresses and redox balance alterations, inflammation can be misregulated,
leading to damage to various tissues and organs [2,4]. The consequences of oxidative stress
and over-inflammation are known to cause various human health complications, including
obesity, metabolic syndrome, type 2 diabetes, atherosclerosis and other cardiovascular
diseases, chronic kidney disease as well as auto-immune diseases [230]. Similarly, low-
grade chronic inflammation in poultry/animal production systems [231] is also of great
importance for health maintenance and for achieving high productive and reproductive
performance [13,232–234].

Pro-inflammatory stress includes a number of universal components, as follows [2,4,235]:

• Oxidative stress response;
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• DNA damage response;
• Unfolded protein response;
• Heat shock response;
• Autophagy modulation;
• Formation of inflammasome;
• Non-coding RNA response;
• Inducible networks of signalling pathway formation and epigenetic changes.

When the binding energies of SM with four different inflammation-related compounds,
e.g., NF-κB, MAP kinase, COX-2 and PLA2, were calculated, they were shown to be in
a range from −5.29 to −9.18 kcal/mol. Therefore, the docking data indicated that SM
could act as a potent anti-inflammatory molecule because of negative binding energies
and hydrogen bonding [236]. Accumulating evidence indicates that SM/SB possesses anti-
inflammatory properties, demonstrated in both in vitro and in vivo inflammatory disease
models, being promising candidates for the prophylactic/treatment of several inflamma-
tory diseases. The main anti-inflammatory mechanism of SM/SB action is attributed to
an inhibition of TLR4/NF-κB-mediated signalling pathways and the downregulated ex-
pression of pro-inflammatory mediators [2,237]. A recent phenotypic screen identified
SM as a novel anti-inflammatory analgesic [238]. When the authors screened a library of
906 bioactive compounds, they discovered 24 hits that decreased calcium flux elicited by
agonists. Among those hits, SM was found to significantly supress activation by the stimu-
lation cocktail, as well as by a mixture of bradykinin and prostaglandin E2. In addition, in
an in vivo study, SM pretreatment was able to block the development of adjuvant-mediated
thermal hypersensitivity [238].

Furthermore, SM showed promising results as a preventive or therapeutic measure for
chemotherapy and radiotherapy-induced adverse reactions, including inflammation [239].
For example, SM was reported to protect the liver from the harmful effects of the anti-
cancer drug paclitaxel, showing anti-inflammatory (TNF-α), anti-apoptotic and antioxidant
effects [240]. Therefore, it could be concluded that the anti-inflammatory properties of
SM/SB are key elements of health-promoting properties of these phytochemicals, and
further research should pay more attention to the molecular mechanisms of the protective
actions of this phytochemical.
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