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Abstract: Liver fibrosis is a condition characterized by the excessive buildup of scar tissue in the liver.
This scarring occurs as a result of chronic liver damage, often caused by conditions such as hepatitis,
alcohol abuse, certain metabolic disorders, genetic abnormalities, autoimmunity, and noninfectious
diseases such as fatty liver which leads to liver fibrosis. Nanoparticles have gained attention in
recent years as potential therapeutic agents for liver fibrosis. They offer unique advantages due
to their small size, large surface area, and ability to carry drugs or target specific cells or tissues.
Studies have suggested that nanoemulsions may enhance drug delivery systems, enabling targeted
drug delivery to specific sites in the liver and improving therapeutic outcomes. In this study, we
explore the protective and therapeutic values with phytochemical profiling of the used agro-wastes
decaffeinated palm date seeds (Phoenix dactylifera L., PSC) coffee and caffeinated Arabic coffee seeds
(Coffea arabica L.; ACS). Both ACS and PSC extracts were converted into nanoemulsion (NE) forms
using the oleic acid/Tween 80 system, which was recruited for the purpose of treating a rat model
with liver fibrosis. Transmission electron microscopy (TEM) and dynamic light scattering (DLS) were
used to record the sizes, morphologies, hydrodynamic diameters, and ζ-potentials of the prepared NE-
ACSE and NE-PSCE. Accordingly, the NE-ACSE and NE-PSCE imaged via TEM and their ζ-potentials
were recorded at 20.7, 23.3 nm and −41.4, −28.0 mV, respectively. The antioxidant properties were
determined with a DPPH scavenging assay. The synthesized NE-PSCE and NE-ACSE were employed
to treat a rat model with CCl4-induced liver fibrosis, to estimate the role of each emulsion-based
extract in the treatment of liver fibrosis through recording inflammatory parameters, liver functions,
antioxidant enzymes, and histopathological analysis results. The nanoemulsion forms of both ACSE
and PSCE provided significant increases in antioxidant enzymes, reducing inflammatory parameters,
compared to other groups, where liver functions were decreased with values close to those of the
control group. In conclusion, both nanoemulsions, ACSE and PSCE, provided a new avenue as
therapeutic approaches for liver diseases, and further studies are encouraged to obtain maximum
efficiency of treatment via the combination of both extracts.

Keywords: liver fibrosis; nanoemulsions; decaffeinated palm date seeds; Arabic coffee seeds

1. Introduction

Chronic liver disease encompasses a wide range of conditions, including non-alcoholic
fatty liver disease (NAFLD), hepatitis B and C, cirrhosis, and autoimmune liver diseases [1].
In liver fibrosis, fibrous scar tissues are accumulated in the liver with an excessive pattern [2].
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This scarring occurs as a result of chronic liver damage, often caused by conditions such as
hepatitis, alcohol abuse, certain metabolic disorders, genetic abnormalities, autoimmunity,
and noninfectious diseases such as fatty liver which leads to liver fibrosis [3]. In advanced
liver fibrosis, impaired blood flow can cause fluid to accumulate in the abdominal cavity,
resulting in a condition called ascites [2]. Liver fibrosis can impair the liver’s ability
to remove toxins from the bloodstream, leading to hepatic encephalopathy, a condition
characterized by confusion, cognitive impairment, and even coma [4,5]. Prolonged liver
fibrosis increases the risk of hepatocellular carcinoma [6].

Nanoparticles have gained attention in recent years as potential therapeutic agents for
liver fibrosis. They provide unique properties due to their small size, large surface area,
and ability to carry drugs or target specific cells or tissues. Several types of nanoparticles
have been investigated for the treatment tof CCl4-induced liver fibrosis. These include
liposomes [7], and polymeric [8], gold [9], and magnetic nanoparticles [10]. For example, li-
posomal formulations containing antioxidants like vitamin E, N-acetylcysteine, or curcumin
have shown promising results in animal models of CCl4-induced liver fibrosis [11].

It is worth mentioning that nanotechnology and nanoemulsions are a rapidly evolving
field of research, and there is ongoing exploration of their potential applications in liver
disease treatment. Emulsions are colloidal systems comprising dispersed oil droplets in an
aqueous bulk phase. This system needs to be stabilized via a surfactant/emulsifier and a co-
surfactant [12]. Various techniques such as homogenization and ultrasonication were used
to disperse the oleic phase into the aqueous phase, which can help to provide oil droplets
in nanoscale in the range of 10 nm to microscale. In nanoemulsions, both the continuous
aqueous phase and the dispersed oleic phase are immiscible enough with droplet sizes in
the scale of 10 to 500 nm [13,14]. Studies have suggested that nanoemulsions may enhance
drug delivery systems, enabling targeted drug delivery to specific sites in the liver and
improving therapeutic outcomes [15,16].

However, further research and clinical trials are needed to understand their safety,
efficacy, and potential benefits in the treatment of chronic liver disease. The treatment of
chronic liver disease depends on the specific underlying cause and severity of the condition.
One of the notable aspects of using nanoemulsions is their ability to encapsulate and deliver
natural components effectively. These natural components can include bioactive compounds
obtained from plants, such as polyphenols, flavonoids, essential oils, and many therapeutic
molecules. By encapsulating these components in nanoemulsions, their stability, solubility,
and bioavailability can be greatly enhanced. While nanoemulsions of natural components
may have some potential in the field of liver disease treatment, it is important to note that
they are still under investigation and not yet widely used in clinical practice.

Oleic acid (OA), a naturally occurring fatty acid, is derived from plant and animal
sources. OA nanoemulsions are produced through using high-pressure homogenization
technology [17]. OA exhibits an inefficient packaging effect in the bulk phase due to a
double bond in the cis configuration in the middle of its 18-carbon chain. Thus, OA is very
fluid and not viscous or dense at room temperature. This results in the generation of liquid
droplets as cores in nanosystems [18]. Thus, using Tween 80 as a surfactant in addition to
polyethylene glycol (PEG) as a co-surfactant provides a perfect complement for achieving
the NE structure.

Phoenix dactylifera is sub-classified under the family of Arecaceae, which is known
as Palmaceae, and it contains the date seed [19]. Palm date seed coffee has gained popu-
larity in recent years, primarily for its potential health benefits. While more studies are
still required to fully understand the extent of such health values, preliminary studies
suggest several positive effects of consuming palm date seed coffee due to its antioxi-
dant, anti-inflammatory, and digestive-health-promoting properties, nutritional value, and
energy-boosting properties [20,21]. Palm date seed coffee contains phenolic compounds
and flavonoids, which exhibit potent antioxidant activity [22,23]. Palm date seed coffee
contains dietary fiber, which is important for maintaining a healthy digestive system. Fur-
thermore, coffee with palm date seeds is a good source of important nutrients [24]. It has
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significant concentrations of iron, calcium, magnesium, potassium, and other elements that
are necessary to sustain physiological processes [25].

The Arabian coffee (Coffea arabica) plant is a member of the Coffea genus, which
belongs to the family Rubiaceae. Coffee has been investigated for its protective effect
against many chronic diseases, such as cancer [26], liver diseases, Parkinson’s disease [27],
and diabetes mellitus T2. Regular consumption of coffee can help maintain liver function
activity, with a reduction in the risk of chronic liver disease [28,29]. Furthermore, coffee
phytochemicals are claimed to improve mitochondrial function and oxidation of lipids, and
minimize steatosis risk in liver tissues [30].

Inedible parts of vegetables and fruits are usually thrown away as wastes. However,
such agro-wastes contain bioactive compounds with health values, such as phenolic com-
pounds, which display antioxidant properties [22]. In this study, we explore the protective
and therapeutic values with phytochemical profiling of the used agro-wastes palm date
seed coffee (PSC) and Arabic coffee seeds (ACS). Both ACS extract (ACSE) and PSC extract
(PSCE) were converted into nanoemulsion (NE) forms (NE-PSCE, NE-ACSE), and the
antioxidant properties were analyzed. An in vivo study was carried out in which the NEs
of both ACSE and PSCE were given to animal models with chronic liver disease. In the
current study, a green nano-delivery system was fabricated for the efficient delivery of
PSCE and ACSE, which were recruited for the purpose of treating a mouse model of liver
fibrosis. The composite systems composed of ACSE or PSCE were emulsified into the oil
phase of oleic acid. The synthesized NE-PSCE and NE-ACSE were employed to treat a
CCl4-induced liver fibrosis model to estimate the role of each emulsion-based extract in the
treatment of liver fibrosis through recording inflammatory parameters, liver functions, and
antioxidant enzymes.

2. Materials and Methods
2.1. Materials

The date palm (Phoenix dactylifera L.) and Arabica seed coffee (Coffea arabica L.) used in
this study were purchased from a local market, Malaz Dist., Riyadh, Riyadh Province, Saudi
Arabia. Oleic acid, Tween 80, and polyethylene glycol-2000 (PEG-2000) were purchased from
Sisco Research Laboratories Pvt. Ltd., Mumbai, India. Carbon tetra chloride (CCL4) of 100%
concentration and olive oil were purchased from the Algomhoria Company, Cairo, Egypt.

Animals

Healthy male rats (body weight = 190 ± 10 gm) were used in this study. Rats were
divided into 6 groups, where each group contained 6 rats. The animals were purchased
from the Agricultural Research Center, Giza, Egypt. The experiments were conducted for
2 months and rats were housed in suitable conditions, on a regular light/dark cycle and
fed on a basal diet, and the animals were provided with ad libitum access to water for the
pharmacokinetic experiments.

2.2. Extraction of Date Palm Seed Coffee (PSC) and Arabica Seed Coffee (ACS)

Palm date seeds were taken out and carefully washed in water. At room temperature,
the gathered seeds were allowed to dry for two to three days. The dried hard seeds were
then ground into a coarse powder using a coffee seed grinder. Coffee seeds were ground as
well. Ethanol extracts of PSC and ACS were obtained using the following method. Around
250 g of PSC or ACS was soaked in 10 volumes of ethanol with occasional stirring for 48 h.
The macerates were separated by the filtration technique. Then, the filtrate was placed in a
rotary evaporator at 50 ◦C to obtain a condensed extract. The raw extracts were obtained,
placed in darkened bottles, and stocked in a deep freezer until utilization.

2.3. Gas Chromatography–Mass Spectrometry (GC-MS) Analysis

Using a direct capillary column TG–5MS (30 m × 0.25 mm × 0.25 µm film thickness),
a GC-TSQ mass spectrometer (Thermo Scientific, Austin, TX, USA) was used to analyze
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the chemical composition of the samples. The temperature of the column oven was first
maintained at 60 ◦C, then raised by 5 ◦C/min to 250 ◦C and held for 2 min, then raised
to 280 ◦C at a rate of 25 ◦C/min. At 270 ◦C, the injector temperature was maintained. As
a carrier gas, helium was employed at a steady flow rate of 1 mL/min. Diluted samples
containing 1 µL were automatically injected using an Autosampler AS3000 connected to
a GC in split mode, with a 4 min solvent delay. In full scan mode, EI mass spectra were
obtained at 70 eV ionization voltages covering m/z 50–650. The ion source and transfer
line were respectively set at a temperature of 200 ◦C. By comparing the mass spectra of
the constituent parts with those of the NIST14 and WILEY 09 mass spectral databases, the
components were identified.

2.4. Preparation of PSCE Nanoemulsions (NE-PSCE) and ACSE Nanoemulsions (NE-ACSE)

NE-PSCE and NE-ACSE were prepared using a water/oil nanoemulsion with some
modifications [31,32]. An aqueous phase was achieved by adding Tween 80 (5.5%) to an
aqueous solution (87.5%) with seed extract (2.5%), which was then stirred for 30 min at
room temperature. The oil phase, containing oleic acid (~4.45%) with PEG (0.05%) as a co-
surfactant, was then stirred for 20 min. After complete dissolution, the oil phase was added
dropwise into the aqueous phase and stirred for 30 min. Finally, the total emulsion was
ultrasonicated for 30 min using a 24 kHz 400 W ultrasonicator (Model UP400S, Ultrasound
Technology, Teltow, Berlin, Germany).

2.5. Characterization of Nanoemulsions

The particle shapes of NE-PSCE and NE-ACSE were investigated using a transmission
electron microscope (TEM; JEM model 1400, 100 kV). The particle size distributions and
ζ–potentials of both NE-ACSE and NE-PSCE were recorded using dynamic light scatter-
ing (DLS) measurements (Malvern Instruments Ltd., Malvern, UK). DLS analyses were
performed at 633 nm. Scattering intensity was recorded using a photodiode detector at a
173◦ angle relative to backscattering. Each sample was measured 3 times, in 10 runs for
each measurement.

2.6. Antioxidant Activity Using DPPH Radical Scavenging Assay

In the DPPH assay, the free radical DPPH (DPPH•) reacts with antioxidants to provide
2,2-diphenyl-l-picryl hydrazine, which is colorless, where the more colorless it is, the
greater its antioxidant properties. Various concentrations of extracts prepared in ethanol
were mixed with a determined amount of freshly prepared DPPH• in ethanol as described
previously, with some modifications [33]. The prepared mixture was vortexed and then
incubated at room temperature in the dark for 0.5 h. The absorbance of the mixtures was
recorded at 517 nm using a spectrophotometer. The inhibition % was calculated using the
following equation [34]:

Inhibition (%) = [(Acontrol − Asample)/Acontrol] × 100

where Acontrol is the absorbance of the control and Asample is the absorbance of the tested
sample. The efficient concentration that is required to obtain 50% antioxidant activity
(EC50) was recorded as well.

2.7. Experimental Conditions
2.7.1. Experimental Animal Protocol

There were six sets of Wistar albino rats, each containing 6 animals. The animals were
fasted for 24 h before being treated with carbon tetrachloride (CCl4). Intraperitoneal (IP)
injection of carbon tetrachloride (CCl4), diluted in olive oil, was administered twice a week
at a concentration of 0.5 mg/kg body weight of the rat to cause liver fibrosis [35,36]. All
animal groups were given CCl4 except the first group (group 1), which was maintained as
a normal control and received normal saline at 5 mL/kg orally. Liver fibrosis groups were
divided as follows: group 2 was maintained as a positive group left without treatment,
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group 3 was treated with a diet of ACSE at 100 mg/kg daily, group 4 was treated with a
diet of PSCE at 100 mg/kg daily, group 5 was treated with NE-PSCE at 100 mg/kg daily,
and group 6 was treated with NE-ACSE at 100 mg/kg daily.

2.7.2. Calculation of Nutritional Parameters

The rats’ daily food intake was tracked, and once a week, their weight was assessed to
determine how much weight they had acquired (body weight gain). At the conclusion of
the experiment, the body weight gain, body weight gain percentage, and relative organ
weight were determined using the following equations:

Body weight gain % = [Final weight (gm) − Initial weight (gm)/Initial weight (gm)] × 100

Relative organs weight = (organ weight (g)/final body weight (g)) × 100

2.7.3. Biochemical and Enzyme Activities

Glutathione peroxidase (GPx) and malondialdehyde (MDA) were measured according
to a previous study [37,38]. Hydrogen peroxide (H2O2) was measured using a H2O2 assay,
and catalase was recorded with a catalase assay with kits from Biodiagnostic, according to
Aebi [39]. Reduced glutathione (GSH) was measured according to [40]. SOD and catalase
were recorded according to Nishikimi et al. [41], using specific kits in accordance with the
manufacturer’s instructions. Interleukin-6 (IL-6) was assessed and quantified using an
enzyme-linked immunosorbent assay (ELISA) according to the manufacturer’s instructions,
in accordance with the method of [42]. The C-reactive protein level (CRP) was measured
using an immunoturbidimetric assay [43]. Rat TNF-α (tumor necrosis factor alpha), was
measured by using the manufacturer’s protocol for a Mouse/Rat Dopamine ELISA Assay
Kit (No. 438204 (5 plates); BioLegend, Inc., San Diego, CA, USA). Evaluation of liver
functions was calculated through utilization of kits for the following analyses: Alanine
aminotransferase (ALT) and aspartate aminotransferase (AST) activities were analyzed
according to the method of [44], using kits bought from Randox Company (Crumlin,
UK). Serum albumin levels (Alb) were determined according to the method of [45], using
kits purchased from Diamond (Germany). Serum globulin (Glb) values were detected
by subtracting the albumin from the total proteins. Serum total bilirubin (T-Bil) was
determined using the enzymatic colorimetric method according to Balistreri WF and Shaw
LM (1987), using kits purchased from Diamond (Hildesheim, Germany).

2.7.4. Histopathological Examination of Liver

Tissue specimens from the liver were collected from the rats, and then they were
instantly fixed in 10% buffered formaldehyde solution for 24 h. Then, the fixed tissues were
dehydrated with ethanol solutions in differing concentrations and inserted into paraffin wax
blocks. Then, paraffin blocks were made by cutting them into slices of 4 microns thickness;
then, the cut specimens were placed on glass slides and stained with hematoxylin and
eosin staining (H&E) to be photographed under a light microscope, according to [46].

2.8. Statistical Analysis

The results were analyzed with the software GraphPad Prism 8.0.2. The data are
expressed as means ± SD, as statistical significance was evaluated using one-way ANOVA
followed by Tukey’s correction (* p < 0.0332; ** p < 0.0021; *** p < 0.0002; **** p < 0.0001;
versus control).

3. Results
3.1. Chemical Compositions of Coffea arabica and Phoenix dactylifera Extracts Obtained Using Gas
Chromatography–Mass Spectrometry (GC-MS)

In gas chromatography–mass spectrometry (GC-MS), the features of gas–liquid chro-
matography along with mass spectrometry are combined in a technical method to identify
various substances within a tested sample [47]. Lately, GC-MS has become the primary
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technical platform for characterizing secondary metabolites in plants and organisms that
are not plants [48]. According to the GC-MS analysis, thirty-five (35) compounds were
identified in ACSE. The active principles, retention times (RTs), molecular formulas, molec-
ular weights (MWs), and concentrations (%) are displayed in Table 1 and Figure S1. The
prevailing compounds were 1h-purine-2,6-dione, 3,7-dihydro-1,3,7-trimethyl-(caffeine),
and palmitic acid, TMS derivative, as shown in Table 1. A total of 42 compounds were
identified in PSCE. Triethylene glycol, palmitic acid, and oleic acid are the active principles
that are shown in Table 2 and Figure S2, together with their RTs, MWs, molecular formulas,
and concentration percentages. Because of its greater ability to be extracted, ethanol may
yield a variety of active ingredients that are involved in a wide range of biological processes.
In order to use them for the creation of traditional medicines, more research is required
to extract unique active components from the medicinal plants, which could lead to the
development of a new treatment for a number of incurable illnesses [49]. The fatty acid
profiles of 14 different types of date seeds that were examined using GC-MS were recorded,
as the fat contents were located in the range of 5% to 9% (w/w). A total of 11 fatty acids
were recorded, and oleic acid and palmitic acid were found in most varieties [50]. This was
found in a previous study as well [51].

Table 1. GC-MS of ACS extract.

S. No. RT Name of the Compound Molecular
Formula M.W. Area %

1 9.33 Trimethylsilyl)oxy]phenol C9H14O2Si 182 0.67
2 11.36 Niacin, TMS derivative C9H13NO2Si 195 0.78
3 11.65 Methoxy-4-vinylphenol C9H10O2 150 0.71
4 14.01 10,11-Dimethylbicyclo [6.3.0]undec-1(8)-en-9-one C13H20O 192 0.68
5 14.78 2,6-Dicarbomethoxy-4-chloroterahydropyran C13H20O 192 0.58
6 16.13 2,2-Dimethyl-5-[2-(2-trimethylsilylethoxymethoxy)-propyl]-[1,3]dioxolane-4-carboxaldehyde C15H30O5Si 318 1.27
7 16.95 Triethylene glycol, 2TMS derivative C12H30O4Si2 294 0.63
8 17.34 6-D1-androst-5-en-3á-ol C19H31DO 227 1.43
9 17.99 2,2,18,18-Tetramethyl-3,6,10,13,17-pentaoxa-2,18-disilaneonadecane C16H38O5Si2 366 0.37
10 18.13 2,2,18,18-Tetramethyl-3,6,10,13,17-pentaoxa-2,18-disilaneonadecane C16H38O5Si2 366 0.49
11 18.23 Tripropylene glycol monomethyl ether, TMS derivative C13H30O4Si 278 0.34
12 18.63 à-L-Galactopyranoside, methyl 6-deoxy-2-O-(trimethylsilyl)-, cyclic methylboronate C11H23BO5Si 274 0.97
13 20.30 Dodecanoic acid, TMS derivative C15H32O2Si 72 0.54
14 21.60 á-D-Galactopyranoside, methyl 2,6-bis-O-(trimethylsilyl)-, cyclic methylboronate C14H31BO6Si2 362 0.56
15 23.22 1H-Purine-2,6-dione, 3,7-dihydro-1,3,7-trimethyl- C8H10N4O2 194 56.36
16 24.43 Myristic acid, TMS derivative C17H36O2Si 300 0.73
17 25.68 Pentadecanoic acid, 14-methyl-, methyl ester C17H34O2 270 0.32
18 26.47 Hexadecanoic acid C16H32O2 256 2.53
19 28.22 Palmitic Acid, TMS derivative C19H40O2Si 328 10.81
20 29.44 9,12-Octadecadienoic acid (Z,Z)- C18H32O2 280 1.29
21 29.62 trans-13-Octadecenoic acid C18H34O2 282 1.65
22 30.08 Octadecanoic acid C18H36O2 284 0.41
23 30.99 9,12-Octadecadienoic acid (Z,Z)-, TMS derivative C21H40O2Si 352 0.94
24 31.14 9-Octadecenoic acid, (E)-, TMS derivative C21H42O2Si 345 1.49
25 31.67 Stearic acid, TMS derivative C21H44O2Si 356 0.63
26 34.08 Creatindial C20H24O2 296 0.81
27 34.53 5,16,20-Pregnatriene-3beta,20-diol diacetate C25H34O4 389 3.23
28 34.78 (20R)-18,20-Epoxypregn-5-en-3á-yl acetate C21H30O 289 0.71
29 35.14 9-Anthracenol, 1,4,8-trimethoxy-2-methyl- C18H18O4 298 3.37
30 35.63 Aarda-5,20(22)-dienolide, 3,14,19-trihydroxy-, (3á)- C23H32O5 388 1.05
31 36.20 5-Iodo-6-formyl-3,4-dimethoxy-2,2’-bipyridine C13H11IN2O3 370 1.10
32 40.44 Aucubin, hexakis(trimethylsilyl) ether C33H70O9Si6 778 0.33
33 44.22 Stigmasta-5,22-dien-3-ol C29H48O 412 0.58
34 44.74 á-Sitosterol C29H50O 414 0.93
35 45.23 9,12-Octadecadienoic acid (z,z)-, 2,3-bis[(trimethylsilyl)oxy]propyl ester C27H54O4Si2 498 0.69

Table 2. GC-MS of PSC extract.

S. No. RT Name of the Compound Molecular
Formula M.W. Area %

1 9.32 à-Phenylbenzenemethyl 4-nitrobenzoateate C20H15NO4 333 1.03
2 10.62 Diethylene glycol, 2TMS derivative C10H26O3Si2 250 0.76
3 13.16 Tetraethylene glycol, TMS derivative C11H26O5Si 266 5.23
4 14.84 Tripropylene glycol monomethyl ether, TMS derivative C13H30O4Si 278 0.80
5 14.94 Tripropylene glycol monomethyl ether, TMS derivative C13H30O4Si 278 1.30
6 15.03 1-(1-Butoxy-2-propoxy)-2-propanol, TMS derivative C13H30O3Si 262 1.44
7 15.12 1-(1-Butoxy-2-propoxy)-2-propanol, TMS derivative C13H30O3Si 262 0.97
8 16.96 Triethylene glycol, 2TMS derivative C12H30O4Si2 294 9.98
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Table 2. Cont.

S. No. RT Name of the Compound Molecular
Formula M.W. Area %

9 17.75 Tripropylene glycol monomethyl ether, TMS derivative C13H30O4Si 278 1.20
10 17.99 Tripropylene glycol monomethyl ether, TMS derivative C13H30O4Si 1.56
11 18.13 Tripropylene glycol mono-n-butyl ether, TMS derivative C16H36O4Si 320 1.99
12 18.24 Tripropylene glycol monomethyl ether, TMS derivative C13H30O4Si 278 2.23
13 20.30 Dodecanoic acid, TMS derivative C15H32O2Si 272 4.37
14 21.59 Cyclopentanetridecanoic acid, methyl ester C19H36O2 296 0.68
15 24.42 Myristic acid, TMS derivative C17H36O2Si 300 3.62
16 25.68 Pentadecanoic acid, 14-methyl-, methyl ester C17H34O2 270 0.67
17 26.41 Hexadecanoic acid C16H32O2 256 0.62
18 26.49 d-Galactose, 2,3,4,5,6-pentakis-O-(trimethylsilyl)-, o-methyloxyme, (1Z)- C22H55NO6Si5 569 0.67
19 28.22 Palmitic Acid, TMS derivative C19H40O2Si 328 15.32
20 28.86 10-Octadecenoic acid, methyl ester C19H36O2 296 1.27
21 29.61 cis-13-Octadecenoic acid C18H34O2 282 2.87
22 29.74 Benzoxepino [5,4-b]pyridine-3-carbonitrile, 5,6-dihydro-2-methyl-4-(methylthio)- C16H14N2OS 282 0.86
23 29.90 9-octadecenamide C18H35NO 281 0.48
24 30.91 Decaethylene glycol, 2TMS derivative C26H58O11Si2 602 0.40
25 30.99 Linoelaidic acid, trimethylsilyl ester C21H40O2Si 352 2.03
26 31.16 Oleic Acid, (Z)-, TMS derivative C21H42O2Si 354 12.63
27 31.67 Stearic acid, TMS derivative C21H44O2Si 356 1.90
28 32.08 Glycidyl palmitate C19H36O3 312 0.58
29 32.84 9-octadecenamide C18H35NO 281 1.16
30 34.87 Glycidyl oleate C21H38O3 338 1.10
31 35.86 Diisooctyl phthalate C24H38O4 390 1.22
32 36.57 1,3-Dipalmitin, TMS derivative C38H76O5Si 640 1.02
33 37.94 9-Octadecenoic acid (Z)-, 2-hydroxy-1-(hydroxymethyl)ethyl ester C21H40O4 356 1.30
34 38.98 9-Octadecenoic acid (z)-, 2-[(trimethylsilyl)oxy]-1-[[(trimethylsilyl)oxy]methyl]ethyl ester C27H56O4Si2 500 0.88
35 39.10 9-Octadecenoic acid (z)-, 2-[(trimethylsilyl)oxy]-1-[[(trimethylsilyl)oxy]methyl]ethyl ester C27H56O4Si2 500 2.32
36 40.45 D-(+)-Trehalose, octakis(trimethylsilyl) ether C36H86O11Si8 918 1.52
37 43.20 9,12,15-Octadecatrienoic acid, 2,3-bis[(trimethylsilyl)oxy]propyl ester, (z,z,z)- C27H52O4Si2 496 1.14
38 43.43 2-(dodecanoyloxy)-1-(hydroxymethyl)ethyl laurate # C27H52O5 456 0.88
39 43.92 Ethyl iso-allocholate C26H44O5 436 0.69
40 44.15 Lup-20(29)-en-3-one C30H48O 424 1.09
41 44.75 ç-Sitosterol C29H50O 414 5.87
42 44.87 Cholest-5-en-3-ol, 24-propylidene-, (3á)- C30H50O 426 1.26

3.2. Morphological Investigation of NE-ACSE and NE-PSCE

The sizes and shapes of the as-prepared NE-ACSE and NE-PSCE were recorded with
the help of a transmission electron microscope (TEM), as shown in Figure 1. The images
of the NEs recorded with the TEM depict that the prepared NE-ACSE and NE-PSCE are
spherical, with nanosizes of 20.7 ± 3.9 nm and 23.3 ± 6.2 nm, respectively.
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Figure 1. TEM images and particle size distribution histograms of NE-ACSE and NE-PSCE.

3.3. Distribution of Particle Sizes and ζ-Potentials of Nanoemulsions NE-PSCE and NE-ACSE

DLS was used to measure the prepared NEs’ particle size distributions and ζ-potentials,
as shown in Figure 2. According to the obtained results, NE-ACSE showed a hydrodynamic
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diameter of 68.3 ± 26.6 nm, whereas NE-PSCE exhibited 69.9 ± 27.9 nm. Moreover, both
nanoemulsion samples were imaged as displayed in Figure S3a,b. For the ζ-potentials,
as shown in Figure 2c (Figure S4), NE-ACSE displayed −41.4 ± 7.5 mV, whereas NE-
PSCE showed −28.0 ± 5.8 mV. The negative charges of the NEs could be attributed to the
polyphenols which are available in both ACS and PSC extracts, and also to using Tween
80 (a non-ionic surfactant) and oleic acid as an anionic surfactant in addition to PEG [52].
It was reported that, for nanomaterials with ζ-potentials over ±30 mV, it is necessary to
stabilize the NPs in the aqueous suspension [53–55]. And it can be observed that NE-ACSE
is more stable than NE-PSCE. The particle sizes depicted by the TEM analysis are smaller
than in the DLS measurements, as in DLS, nanoparticles could be aggregated to form larger
particles. Furthermore, the suspended nanoparticle solution swelled in the solvent used
to prepare samples for DLS analysis. The values of the polydispersity index (PDI) were
0.332 and 0.321 (<0.5), which indicates that the NE particles are distributed uniformly when
suspended in the solution.
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Figure 2. DLS measurements displaying hydrodynamic diameters (particle size distributions) (a,b) of
the developed NE-ACSE and NE-PSCE, respectively. ζ-potentials (c) of the developed NE-ACSE and
NE-PSCE.

3.4. DPPH Scavenging Activity Measurements of Nanoemulsions

The antioxidant activities of the tested samples were evaluated as shown in Figure 3
using a DPPH radical scavenging assay at various concentrations of the extracts and their
nanoemulsions, while recording the efficiency concentration required to obtain a 50%
antioxidant effect (EC50). The antioxidant activities of the encapsulated ACSE and PSCE
were slightly lower than those of the corresponding free extracts. It is better for bioactive
materials to be bio-accessible and released in a sustained manner when displaying the
related bioactivity. Though the antioxidant properties of the encapsulated extracts are
less than free, the nanoemulsified components are protected against rapid degradation
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and loss, and their antioxidant activities are maintained efficiently [56]. Such protection
could be achieved against rapid pepsin digestion or during storage against light, heat, and
oxygen, which encourage the chemical breakdown of the bioactive compounds, lowering
their biological value [57–59].
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NE-PSCE.

Such findings are consistent with a previous study which found that a nanoemulsion
of curcumin solid lipid particles provided antioxidant activity using a FRAP assay, with a
value of 0.996 ± 0.07 mM L-ascorbic acid equivalent; in addition, the free curcumin dis-
played antioxidant activity with a value of 2.504 ± 0.06 mM L-ascorbic acid equivalent [60].
The antioxidant properties of ACS extract could be attributed to it being rich in antioxidants
including phenolic compounds and flavonoids [61]. The same is true for PSC extract, as its
antioxidant activity is a result of high polyphenol content [21].

3.5. Effects of NE-PSCE and NE-ACSE on CCL4-Induced Liver Fibrosis in Rat Model
3.5.1. Antioxidant Enzymes and MDA

The effects of PSCE, ACSE, and their nanoemulsion forms, NE-PSCE and NE-ACSE,
on chronic liver disease-afflicted rats’ antioxidant enzyme and free radical levels, including
those of malondialdehyde (MDA), glutathione peroxidase (GPx), catalase (CAT), reduced
glutathione (GSH), and superoxide dismutase (SOD), were observed, as illustrated in
Figure 4. When compared to the control group, the CCL4 group demonstrated a significant
decrease in MDA levels and a significant decrease in the values of SOD, GPX, GSH, and
CAT. Treatment with both PSCE and ACSE increased the levels of SOD, GPx, CAT, and GSH
while decreasing MDA in comparison to the chronic liver group (CCl4). The administration
of the NE-ACSE and NE-PSCE nanoemulsion forms to ill animals resulted in significant
improvements in SOD, GPx, GSH, and CAT levels. In this case, NE-ACSE may be able to
improve things more than the other treatments.

3.5.2. Liver Functions

The activities of alanine aminotransferases (ALTs), aspartate aminotransferases (ASTs),
albumin (Alb), globulin (GLb), and total bilirubin (T. Bil) are among the liver’s activities
that are tracked in the chronic liver disease rat groups treated with date palm seed coffee
extract (PSCE), Arabica seed coffee extract (ACSE), and their corresponding nanoemulsions,
including nanoemulsions of date palm seed coffee extract (NE-PSCE) and of Arabica
seed coffee extract (NE-ACSE), as displayed in Figure 5. The control rat group showed
significant decreases in AST, ALT, and T. Bil while showing significant increases in Alb and
Glb compared with the group of non-treated diseased animals (CCl4). Rats with persistent
liver damage treated with PSCE and ACSE had significantly lower levels of AST, ALT, and
T. Bil than those in the group that was not treated (CCl4), while the levels of Alb and Glb
were increased significantly in the PSCE and ACSE groups compared to the CCl4 group. In
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animals treated with nanoemulsions, including NE-PSCE and NE-ACSE, the levels of AST,
ALT, and T. Bil decreased more than in either the PSCE or ACSE groups, whereas levels of
Alb and Glb increased more than in the PSCE and ACSE groups. It can be observed that
NE-ACSE and NE-PSCE were more effective in improving the levels of AST, ALT, T-Bil,
Alb, and Glb for animals with chronic liver disease. In particular, NE-ACSE provided more
effective treatment than other groups.
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to show the effects of extracts in normal forms or nanoemulsion forms on the levels of 
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Figure 5. Effects of NE-PSCE and NE-ACSE on liver enzymes; AST, ALT, and T-Bil, Alb, and Glb
(a–e) in treated rats with induced liver fibrosis compared to normal and CCl4-induced liver fibrosis
groups. Data are expressed as average ± SD (n = 6). Where, ns indicates not significant, * p < 0.0332,
** p < 0.0021, *** p < 0.0002, **** p < 0.0001, versus control. # p < 0.0332, ## p < 0.0021, ### p < 0.0002,
#### p < 0.0001, versus CCl4 group.

3.5.3. Anti-Inflammatory Parameters

Anti-inflammatory parameters including C-reactive protein (CRP), hydrogen peroxide
(H2O2), interleukin-6 (IL6), and tumor necrosis factor alpha (TNF-α) were recorded to
show the effects of extracts in normal forms or nanoemulsion forms on the levels of such
inflammatory parameters, as displayed in Figure 6. It can be observed that the inflammatory
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markers CRP, H2O2, IL6, and TNF-α were increased in the diseased liver group compared
to control group, whereas the administration of extracts as ACSE and PSCE could minimize
the levels of such parameters compared to those of the non-treated diseased liver group.
In addition, the reduction in inflammatory markers was clearly observed when animals
were treated with the nanoemulsion forms of the extracts, NE-PSCE and NE-ACSE. In
accordance with the above results, NE-ACSE exhibited lower levels of the inflammatory
parameters, as in the control.
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Figure 6. Effects of NE-PSCE and NE-ACSE on inflammatory parameters in treated rats with induced
liver fibrosis compared to normal and CCl4-induced liver fibrosis groups with measurements of CRP
(a), H2O2 (b), IL6 (c), and TNF-α (d). Data are expressed as average ± SD (n = 6). Where, ns indicates
not significant, * p < 0.0332, ** p < 0.0021, *** p < 0.0002, **** p < 0.0001, versus control. # p < 0.0332,
## p < 0.0021, ### p < 0.0002, #### p < 0.0001, versus CCl4 group.

3.5.4. Liver Weight, Relative Liver Weight, Weight Gain, and Food Intake

Liver weight and relative liver weight were recorded, as can be observed in Figure 7.
According to the obtained results, the liver weight increased upon giving CCl4 to the
diseased animal group with chronic liver disease in comparison with the control group.
This was obvious in terms of the relative liver weight as well. As a result of treatment with
extracts of both PSCE and ACSE, both liver weight and relative weight were decreased
compared to the diseased CCl4 group. In addition, these decreases in the liver weight and
relative liver weight were more obvious in diseased animals treated with NE-PSCE and
NE-ACSE compared to the diseased non-treated group. Consistent with above results,
NE-ACSE provided a more prominent effect.
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The effects of ACSE, PSCE, and their nanoemulsion forms NE-ACSE and NE-PSCE on
body weight gain and food intake in the chronic liver disease rat groups were determined as
exhibited in Table 3. The effects of chronic liver disease on the diseased non-treated animals
were negative in terms of health, feeding intake, and consequently weight gain, and such
parameters were decreased significantly compared to the control group. On the other hand,
weight gain and food intake were increased upon provision of the diseased animals with
extracts of ACSE and PSCE. Moreover, the nanoemulsions of NE-ACSE and NE-PSCE could
significantly improve weight gain and food intake compared to the diseased non-treated
group. The nanoemulsions were more effective than the free extracts. Similar to the above
results, NE-ACSE improved the status of the diseased animals, making it close to that of
the control group.
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Figure 7. Effects of NE-PSCE and NE-ACSE on liver weight and relative liver weight in treated rats
with induced liver fibrosis compared to the normal and CCl4-induced liver fibrosis groups. Data are
expressed as average ± SD (n = 6). Where, ns indicates not significant, * p < 0.0332, ** p < 0.0021,
**** p < 0.0001, versus control.

Table 3. Effects of NE-PSCE and NE-ACSE on weight gain (%) and food intake in treated rats with
induced liver fibrosis compared to the normal and CCl4-induced liver fibrosis groups. Data are
expressed as average ± SD (n = 6). Where, ns indicates not significant, ** p < 0.0021, *** p < 0.0002,
**** p < 0.0001, versus control.

Group Weight Gain
%

Food Intake
(g)

Control 30.29 ± 6.5 24.48 ± 3.71
CCl4 17.48 ± 5.24 *** 16.32 ± 0.32 ****
ACSE 24.65 ± 3.92 ns 24.40 ± 0.49 ns

NE-ACSE 29.07 ± 4.37 ns 25.89 ± 0.34 ns

PSCE 24.21 ± 3.36 ns 20.39 ± 0.84 **
NE-PSCE 25.63 ± 1.31 ns 24.49 ± 0.21 ns

3.5.5. Histopathological Analysis

Histopathological analysis was performed for all groups—control, CCl4, PSCE, ACSE,
NE-ACSE, and NE-PSCE—as can be observed in Figure 8. Under a microscope, hepatic
slices stained with HE reveal a regular configuration of hepatic cords around central veins,
together with normal portal regions and sinusoids in the normal control group. Hepatic
sections from the positive group that received CCL4 show marked distension of portal
areas due to fibrosis, leukocyte cell and hemosiderin-laden macrophage infiltration (blue
arrow), congested blood vessels (yellow arrow), and thick anastomosing fibrous tissue
extension from portal areas (grey arrow). Green arrows indicate ballooning degeneration
in hepatocytes. Hepatic slices from the PSCE-treated group exhibit reduced portal area
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distension (grey arrow), a small infiltration of leukocyte cells and hemosiderin-loaded
macrophages (blue arrow), less congested blood vessels (yellow arrows), and a long, thin
fibrous tissue extension that anastomoses from the portal areas. Hepatic sections from the
ACSE-treated group show greatly decreased distension of portal areas (grey arrows), fewer
leukocytic cell infiltrations (blue arrows), few dilated blood vessels (yellow arrow), and
few short non-anastomosing fibrous tissue extensions from portal areas. Hepatic sections
from the NE-PSCE-treated group show few very short and very thin non-anastomosing
fibrous tissue extensions from portal areas (blue arrows). Hepatic sections from the NE-
ACSE-treated group show very few short and very thin non-anastomosing fibrous tissue
extensions from portal areas (grey arrow).
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4. Discussion

Regular coffee’s beneficial components have led to its classification as a functional
food [62–64]. Particularly in wealthy nations, coffee is commonly consumed. Coffees are
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classified into broad categories according to how they are roasted or processed, which has
an impact on the finished product’s chemical makeup. There are thus various varieties,
including filtered and unfiltered coffee, as well as brewed, expresso, infused, instant,
boiling, and decaffeinated coffee [65].

Coffea canephora (robusta) and Coffea arabica (C. arabica) are regarded as the two main
species of coffee consumed globally. C. arabica is grown extensively, accounting for 70% of
the world’s coffee production. One possible explanation for C. arabica’s exceptional quality
is its organoleptic characteristics [66]. In Yunnan Province, China, C. arabica is widely used
as a plant with significant medicinal value. Many of the chemical components of coffee
have been separated thanks to advancements in contemporary technology and experi-
mental methodologies. These components comprise sterols, taste compounds, alkaloids,
flavonoids, terpenes, phenolic acids and their derivatives, and other substances. Numer-
ous pharmacological actions, including those that are antioxidative, anti-inflammatory,
anticancer, antidiabetic, liver-protecting, and neuroprotective, are a result of the chemical
variety of its constituents. Caffeine, as a main constituent of C. arabica, was reported for its
antioxidant properties, and in a wide range of dosages, caffeine is a safe xanthine alkaloid
for human consumption [67]. The Food and Drug Administration classified caffeine as
safe because the average adult’s hazardous amount is greater than 10 g [68]. Additionally,
it has been reported that caffeine reduces oxidative stress, which may lessen liver dam-
age and enhance neurological symptoms in rat models of hepatic encephalopathy [69].
Moreover, previous studies demonstrated that caffeine can partially prevent alcoholic
liver fibrosis in rats, a condition that is assumed to be mediated by the cAMP-PKA-CREB
signaling pathway [70,71]. It should be noted that the primary goal of the research is to
identify the chemicals in C. arabica [72]. C. arabica beans are medium-roasted to produce
Arabian coffee. It is a well-liked beverage in most Middle Eastern Arab nations [73]. Natu-
ral active substances found in abundance in C. arabica include sucrose, trigonelline, and
chlorogenic acid [74]. C. arabica provides several pharmacological properties such as anti-
inflammatory [75], antimicrobial [76], anticancer [26,77,78], and antioxidant properties [79].
Coffee attracts attention due to its significant application in clinical trials, in particular in
inhibition of and protection against both alcoholic and non-alcoholic liver cirrhosis [80–82].

Date seed extract shows health benefits due to its antioxidant bioactive compounds
including flavonoids, phenolic compounds, and vitamins, which have the capability to
scavenge free radicals [83] and provide protection from hepatorenal toxicity [84]. GC/MS
was used to examine Al-Baha date palm kernel (AB-DPK) extract. Antioxidants like 1-
Trilinolein and (Z,Z) 3Dioctadecenoyl Glycerol as well as anti-tumor, anti-inflammatory,
and antiviral medicines like botulin were among the compounds discovered in the in-
vestigation [85,86]. Extracts of the flesh and pits of dates were evaluated to ameliorate
CCl4-induced hepatotoxicity in a rat model, and the extracts displayed significant hepato-
protective activity for animals that received the date extracts [87]. In a different study, when
thioacetamide-treated animals were compared to control rats, there were notable increases
in biochemical indicators of liver injury, such as ALT, AST, ALP, and total bilirubin, and a
decrease in albumin levels. In addition, there was a substantial decrease in liver enzymes
and an increase in serum albumin (p < 0.05) after treatment with extracts from palm dates.
The hepatoprotective properties of palm date extracts may be due to their concentration of
quercetin, which possesses potent antioxidant properties [88]. The power of P. dactylifera
seed extract to scavenge DPPH could be attributed to the high antioxidant capacity of
the extract contents. It was demonstrated that the antioxidant properties of date palms
could have emerged from available compounds such as selenium, vitamin E, ascorbic acid,
flavonoids, tannins, and other phenolic compounds [89,90].

The levels of intracellular enzymes, including AST and ALT as well as T. Bil, are
biomarkers and significantly sensitive to hepatic injuries [91]. As a result of leakage of
the cell membrane associated with a loss of membrane integrity, the activities of ALT and
AST are increased; meanwhile, the impairment in the biliary function of the liver and the
associated damages to hepatic tissues result in an increase in the level of T-Bil [92,93]. ALT,
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AST, and T-Bil serum levels in rats exposed to PSCE or ACSE were reduced compared
to those in the chronic liver disease group in this study. Such results attest to the safety
profile and protective therapy of both ACSE and PSCE in restoring liver functions. In a
previous study, methanolic and aqueous extracts of Phoenix dactylifera were demonstrated
as protective products against oxidative and hepatic injuries induced by paracetamol.
According to the study, the extracts worked through blocking the oxidative stress caused
by the paracetamol, thus ameliorating the induced hepatocellular injury and elevated
serum ALT and AST [94]. In another study which used aqueous Ajwa date fruit extract
as an anticancer agent to protect against and treat hepatocellular carcinoma induced
using diethylnitrosamine in a rat model, the extract could improve liver functions due
to its antioxidant activity, and the levels of ALT and AST were reduced [95]. As a result
of the capability to improve kidney and liver functions that emerges from their potent
antioxidant properties, there is the possibility of using date seed extracts as anticancer
agents against colorectal and hepatocellular carcinoma cell lines, but further investigations
are still required [96].

According to the obtained results of this study, the Coffea arabica and Phoenix dactylifera
nanoemulsions NE-ACSE and NE-PSCE provided more significant therapeutic effects
against CCl4-induced chronic liver disease in a rat model compared to the free extracts.
These results were obvious due to reductions in liver intracellular enzymes such as AST,
ALT, and T. Bil. Also, the inflammatory parameters, such as IL6, TNF alpha, CRP, and
H2O2, were significantly decreased for diseased animals that received either nanoemulsion,
NE-ACSE or NE-PSCE, compared to the CCl4 group and those provided with free extracts.
Also, antioxidant enzymes such as SOD, CAT, GSH, and GPx were improved significantly.
Furthermore, the health status parameters, including food intake, weight gain, and food
efficiency rate, were improved more by using nanoemulsions than by using free extracts.
Such results were confirmed and were consistent, as displayed in histopathological exam-
inations, where the nanoemulsions NE-ACSE and NE-PSCE could decrease the cellular
infiltrations and damages more than the free extracts. The obtained results, which indi-
cate the high efficiency of nanoemulsions of NE-ACSE or NE-PSCE as protective agents
in induced chronic liver disease, could be attributed to the high stability of the extracts
when they are nanoemulsified, and the slow and sustained release of the extracts over a
longer period than that of the free extracts. Because of the special qualities of the involved
nanosized droplets, such as large surface area, nanoemulsions are being studied in the
fields of food and healthcare [97]. Furthermore, texture, stability, absorption, absorbability,
fortification, and bioavailability will all be improved by the extracts’ active components
in nanoemulsified latex [98–100]. Additionally, nanoemulsions can protect natural com-
ponents from degradation, thereby extending their shelf life and preserving their efficacy.
Bioactive substances can eventually deteriorate due to direct exposure to external influences
including heat, light, and oxygen, and this is prevented by encapsulation. Furthermore,
nanoemulsions can improve the targeted delivery of the natural components of PSCE and
ACSE to the targeted affected organ/tissue within the body.

5. Conclusions

The present study reported on nanoformulations of ACSE and PSCE with the aid of
oleic acid and the Tween 80 system. To the best of our knowledge, the influence of the
developed nanoemulsions NE-PSCE and NE-ACSE on induced liver fibrosis in a rat model
was investigated herein for the first time. The major findings reveal that both NE-ACSE
and NE-PSCE were allocated in nanoscales with negative ζ-potentials. The antioxidant
activity was determined, and ACS and PSC extracts and their nanoemulsions displayed
antioxidant properties. In a rat model with liver fibrosis induced via CCl4, the influence of
both nanoemulsions was demonstrated in the aspects of inflammatory parameters, liver
functions, antioxidant enzymes, and histopathological analysis. In comparison to normal
extracts of ACSE and PSCE, the nanoemulsions NE-ACSE and NE-PSCE provided signif-
icant improvements in antioxidant enzymes and decreases in inflammatory parameters,
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and the liver functions of ALT and AST were decreased to be close to those of the control
group. It can be concluded that nanoemulsions of ACSE and PSCE provide a new avenue
as a therapeutic approach to liver diseases, and further studies are encouraged to obtain
maximum efficiency of treatments via the combination of both extracts in nanoforms.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/antiox13030355/s1. Figure S1. Compounds Identified in the ACS
extract using GC-MS; Figure S2. Compounds Identified in the PSC extract using GC-MS; Figure
S3. Nanoemulsion of (a) NE-ACSE and (b) NE-PSCE; Figure S4. ζ-potential (a,b) of the developed
NE-ACSE and NE-PSCE, respectively.
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