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Abstract: Ascorbic acid (AsA), also known as vitamin C, is a well-known antioxidant found in
living entities that plays an essential role in growth and development, as well as in defensive
mechanisms. GDP-L-galactose phosphorylase (GGP) is a candidate gene regulating AsA biosynthesis
at the translational and transcriptional levels in plants. In the current study, we conducted genome-
wide bioinformatic analysis and pinpointed a single AsA synthesis rate-limiting enzyme gene in
melon (CmGGP1). The protein prediction analysis depicted that the CmGGP1 protein does not have a
signaling peptide or transmembrane structure and mainly functions in the chloroplast or nucleus. The
constructed phylogenetic tree analysis in multispecies showed that the CmGGP1 protein has a highly
conserved motif in cucurbit crops. The structural variation analysis of the CmGGP1 gene in different
domesticated melon germplasms showed a single non-synonymous type-base mutation and indicated
that this gene was selected by domestication during evolution. Wild-type (WT) and landrace (LDR)
germplasms of melon depicted close relationships to each other, and improved-type (IMP) varieties
showed modern domestication selection. The endogenous quantification of AsA content in both the
young and old leaves of nine melon varieties exhibited the major differentiations for AsA synthesis
and metabolism. The real-time quantitative polymerase chain reaction (qRT-PCR) analysis of gene
co-expression showed that AsA biosynthesis in leaves was greater than AsA metabolic consumption,
and four putative interactive genes (MELO3C025552.2, MELO3C007440.2, MELO3C023324.2, and
MELO3C018576.2) associated with the CmGGP1 gene were revealed. Meanwhile, the CmGGP1
gene expression pattern was noticed to be up-regulated to varying degrees in different acclimated
melons. We believe that the obtained results would provide useful insights for an in-depth genetic
understanding of the AsA biosynthesis mechanism, aimed at the development of improving crop
plants for melon.

Keywords: acclimatization; Cucumis melo L.; germplasm; L-galactose pathway; metabolism

1. Introduction

AsA is an important trace element that is required for the primary functions of the
typical growth and development of plants and the human body against adverse stress
conditions [1]. In plants, it exists in a varied array of tissues and serves as a main redox
buffer. It is a versatile metabolite associated with several biological activities, e.g., the
regulation of photosynthesis activity, cell wall biogenesis, regulation of seed germination,
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influencing flowering time, hormone biosynthesis, fruit maturation and softening, and
generating new antioxidants facilitating signal transduction and boosting plants resistance
in biotic and abiotic stress phases [1–8].

Endogenous biosynthesis is the primary factor affecting the molecular regulation of
AsA levels within an organism and is influenced by normal biosynthetic and metabolic
pathways [1,3,9]. AsA mainly acts as a powerful antioxidant, neutralizing the free radicals
generated as a result of regular metabolic processes or in reaction to stress, thus preventing
damage to the cells in plants [10]. The rapidly developing plant tissues exhibited the highest
activity of ascorbate oxidase, regardless of whether they are from fruits or leaves [8], and
this has the potential to regulate a variety of signaling pathways [11]. The natural synthesis
of AsA mainly yields L-type and D-type structures. D-AsA itself is not biologically active
and L-AsA mainly functions as an antioxidant [12]; however, the chemical structure of AsA
is extremely unstable and easily loses its activity due to oxygen, light, high temperatures,
and alkaline substances. AsA deficiency leading to elevation in the reactive oxygen species
(ROS) levels within the cell compartments, destroying the protoplasmic membrane structure
and causing a decrease in the active transport ability of cells, eventually leading to the
expulsion of intracellular proteins and other substances, as well as causing irreversible
damage to cells in severe cases [13]. In particular, the human body cannot synthesize AsA
by itself and a lack of AsA is likely to cause major symptoms such as bleeding gums, joint
pain, rapid aging, cancer, and further serious diseases [14,15]. Human beings need to rely
on fresh and healthy plant food to obtain certain AsAs [16]; hence, it holds significant
importance to study AsA synthesis in targeted crop plants.

The complete elucidation of the pathway contributions to AsA synthesis is still incom-
plete in many plants. At present, there are four possible suggested pathways, as follows:
the L-gulose pathway, the L-galactose pathway, the D-galacturonic acid pathway, and the
inositol pathway, which are well known for AsA biosynthesis. Of these, L-galactose is
thought to be the main pathway regulating AsA synthesis in higher plants [12,17]. This
pathway mainly contains five important enzymes that perform mutual biological and
catalytic functions for AsA synthesis from GDP-D-mannose in the following different
steps: (1) GDP-D-mannose 3′,5′-epimerase (GME) changes the GDP-D-mannose to GDP-
L-galactose 1-phosphate [18,19]; (2) the conversion of GDP-L-galactose phosphorylase
(GGP) into L-galactose phosphorylase [20,21]; (3) L-galactose-1-phosphate phosphatase
(GPP) transforms the L-galactose-1-phosphate into L-galactose [22,23]; (4) L-galactose
dehydrogenase (GalDH) changes L-galactose to L-glactose 1,4-lactone [12,24]; and (5) L-
Galactono-1,4-lactone dehydrogenase (GalLDH) converts the L-Glactose-1,4-lactone into
AsA [25,26].

GGP, identified as the rate-limiting enzyme, serves as the primary step involved in the
pathway of L-galactose biosynthesis, exerting a significant impact on the AsA synthesis in
numerous crop plants [27]. The main role of GGP remained unknown until 2007 and the
gene encoding GGP was the final gene to be cloned from the L-galactose pathway [28]. Fur-
thermore, two candidate GGP genes (VTC2 and VTC5) were discovered in Arabidopsis
(Arabidopsis thaliana) [21]. The characterization, expression analysis, and functional regula-
tion mechanisms of GGP genes have been stated in different crop species, e.g., Arabidop-
sis thaliana [20], Arabidopsis thaliana and kiwi (Actinidia deliciosa) [29], potato (Solanum tubero-
sum) [30], strawberry (Fragaria × ananassa) [31], blueberry (Vaccinium myrtillus) [32], and
tomato (Solanum lycopersicum) [4,33]. It was also proved that GGP is a key regulatory enzyme,
which triggers the internal biosynthesis of ascorbic acid levels and seems to increase in tobacco
(Nicotiana tabacum) [34], rice (Oryza sativa) [35], bread wheat (Triticum aestivum) [36], and
kiwi (Actinidia deliciosa) [37]. The molecular regulation in Arabidopsis thaliana mainly showed
that the GGP gene was significantly up-regulated by more than 20 times and AsA content
was also increased after 24 h of intense light treatment in leaves [20]. Light can perform a
key role in triggering GGP gene expression [38,39]. The activity of major enzymes in the
synthetic pathway was significantly up-regulated by twice the activity of the GGP enzyme,
and other enzymes were not changed under the induction of strong light, which confirmed
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that GGP was a key regulatory gene in the L-galactose pathway synthesis of AsA under light
treatment [40]. AceGGP3, a potential gene involved in AsA synthesis, was investigated in
kiwifruit with significant AsA content differences. It was also found that the interaction of
two genes (AceMYBS1 and AceGBF3) mainly promoted the expression of the AceGGP3 gene,
triggering a significant upsurge in the AsA content in kiwi [37].

Melon (Cucumis melo L.) is a popular fruit in the Cucurbitaceae family, which is
mainly classified into two subspecies (ssp. melo and ssp. agrestis) [41]. Based on the ge-
netic diversities and identification of the chromosomal localization of candidate genes
for breeding [42], melon germplasms have been categorized into improved variety (IMP),
landrace (LDR), and wild type (WT) germplasms, depicting a broad divergence in mor-
phology and quality traits [43]. Due to its broad genomic assets, melon has become an
excellent model plant for dissecting the essential biological pathways involved in the regu-
lation of numerous complex traits [44]. In recent years, due to the essential roles of AsA
in enduring plant life activities, there has been a significant focus on exploring the AsA
biosynthesis pathways and associated genes, particularly GGP. Genome-wide analyses for
identification and characterization of the GGP gene family have been well-documented
in wheat [36], leek [45], and citrus [46]. Although key genes governing the AsA biosyn-
thesis in plants have been pinpointed, the understanding of the molecular and biological
mechanisms by which GGP gene family members contribute to AsA biosynthesis is limited
in melon.

Herein, we performed a comprehensive bioinformatics analysis for the genome-wide
identification and characterization of the GGP gene family in melon. Further, the endoge-
nous determination of AsA synthesis and the associated gene expression patterns were
checked in the plant leaves of four melon germplasm resources (including nine varieties)
during the plant growth activity. We believe that the identified results gave us an impor-
tant genetic regulatory basis for figuring out how the GGP gene family works for AsA
biosynthesis in melon.

2. Materials and Methods
2.1. Genome-Wide Bioinformatics Analysis for Identification of GGP Gene

First of all, the primary data (the GFF, CDS, and Pep files) of GGP gene family members
was obtained by searching the reference genome of melon_DHL92_V4 publicly available
on the Cucurbitaceae website (http://cucurbitgenomics.org/, accessed on 5 March 2023).
The relevant dataset was downloaded and the targeted GGP gene was identified. Then, the
GGP protein sequences were identified by searching on the online website of the National
Centre for Biotechnology Information (NCBI) (https://www.ncbi.nlm.nih.gov/, accessed on
5 March 2023) and the obtained homologous sequences were aligned using the online BLAST
search and multiple sequence alignment tool. Later, the primarily identified GGP genes
obtained using the above two methods were combined and filtered to remove the duplicates.

The protein secondary structure analysis was performed based on the online Self-
Optimized Prediction Method With Alignment (SOPMA) (http://npsa-pbil.ibcp.fr/cgi-
bin/npsa_automat.pl?page=npsa_sopma.html, accessed on 15 March 2023). The protein
tertiary structure analysis was performed using the online structural bioinformatics web
server SWISS-MODEL (https://www.swissmodel.expasy.org/, accessed on 15 March 2023)
and the predicted local distance difference test score (pLDDT, >70) method of the AlphaFold
database (version 2.0). The protein signal peptides were predicted using the online SignalP
server (version 5.0) and the transmembrane helices of integral membrane proteins struc-
tures were analyzed using the online server of TransMembrane prediction using Hidden
Markov Models (TMHMM, version 6.0) (https://services.healthtech.dtu.dk/service.php?
DeepTMHMM, accessed on 15 March 2023).

Then, the subcellular location of proteins was detected by operating the online tool “Plant-
mPLoc” (http://www.csbio.sjtu.edu.cn/bioinf/plant-multi/, accessed on 25 March 2023).
The NCBI function module “Cn3D macromolecular structure viewer” was utilized to display
the binding positions of the functional domain. The protein–protein interaction (PPI) network
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of melon GGP was explored using the online STRING database (https://string-db.org/,
accessed on 25 March 2023). Then, the downloaded data of the melon_DHL92_V4 genome
(http://cucurbitgenomics.org/, accessed on 20 March 2023) was further used for GGP gene
and its interactions analysis in different tissues of the melon plant, using the transcriptome
sequencing data with BioProject ID (PRJNA383830) [47].

2.2. Genomic Evolutionary Relationship Analysis of GGP Protein Sequences

The GGP protein sequences were searched among different crop families (Cru-
ciferae, Actinidiaceae, Cucurbitaceae, and Acaridae) using the online web database of
NCBI (https://www.ncbi.nlm.nih.gov/, accessed on 12 April 2023). The homologous
evolutionary tree for all GGP protein sequences was constructed with MEGA software
(version 7.0) [48] using the proximity method (NJ) and 1000 bootstrap repetitions. The
GGP genes of cucurbit crops were selected from a filtered bioinformatics dataset and the
obtained complete gene structure and chromosomal information of GGP gene, compris-
ing length of gene, CDS location, as well as prediction of function domain, was displayed
using the Gene Structure View function of integrative toolkit of the Tbtools (version 2)
software package.

Afterward, the conserved motifs of the melon GGP protein were identified based on the
online database of MEME (http://meme-suite.org/, accessed on 23 April 2023). The motif
length was fixed to 6 to 200 amino acids (aa), the number of main motifs was fixed to 10, and
the final data were then saved. The multiple protein sequences of the GGP gene of cucurbit
crops were aligned using the MEGA software (version 7.0) [48] and the results of comparative
amino acid sequences were demonstrated through the Conserved Domain Database (CDD)
function domain [49]. The domain site was analyzed by using the function domain binding
site information on the NCBI website (NCBI-CDD) (https://www.ncbi.nlm.nih.gov/Structure/
cdd/wrpsb.cgi, accessed on 23 April 2023).

2.3. GGP Gene Structure Analysis among Different Germplasm Resources of Melon

A total of four types of melon germplasm resources “wild-type (WT, three varieties
named PI 614174, PI 614410, and PI 614414), improved-type (IMP, two varieties named
PMR45 and 16H), landrace-type (LDR, three varieties named Cinderella melon, PI 179914,
and Shu Shu melon), not defined-type (ND, one variety named Xin Yin No.2)” belonging
to the two subspecies (Cucumis melo ssp. melo and ssp. agrestis) were selected as experi-
mental material (see Supplementary Table S1). The different geographical origins of the
germplasm resources were visualized by drawing a worldwide map (Figure 1) using the R
language tool (version 4.02). Whole genome DNA resequencing of all germplasm materials
was downloaded from the NCBI GenBank (https://www.ncbi.nlm.nih.gov/, accessed on
28 April 2023), along with the BioProject (ID: PRJNA529037) and varieties of corresponding
sample numbers [43].

The SNP-associated variant call format (VCF) file of resequenced accessions was
obtained using the following methods: (1) clean end sequence reads were plotted on
to the melon reference genome and SAM files were obtained using Burrows Wheeler
Alignment software (v0.7.15-r1140) and (2) the obtained SAM file was converted into BAM
and its indexed files [50]. The filtered VCF files of nine melon varieties were aligned in
pairwise form and principal component analysis (PCA) was performed. The CmGGP1
gene was searched in the comparative whole genome sequences and reference genomes of
melon_DHL92_V4 (along with annotation) by operating the Integrative Genomic Viewer
(IGV, version 2.4.4) software. Further, the multiple sequence differences were visualized
using DNAMAN (version 9.0) by selecting the function of Align by Muscle command.

https://string-db.org/
http://cucurbitgenomics.org/
https://www.ncbi.nlm.nih.gov/
http://meme-suite.org/
https://www.ncbi.nlm.nih.gov/Structure/cdd/wrpsb.cgi
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and membrane structure. (D) Prediction of CmGGP1 protein structure model. bp, base pairs; aa,
amino acids.

2.4. Endogenous Determination of AsA Content and Gene Expression Patterns

The seeds of nine melon varieties (PI 614174, PI 614410, PI 614414, PMR45, 16H,
Cinderella melon, PI 179914, and Shu Shu melon) were cultivated in a big plastic greenhouse
located at Xiangyang Experimental and Agricultural Base (45◦07′ N, 125◦430′ E), Harbin. A
total of five plants from each melon variety were grown in a completely randomized design
(CRD), following three replications, and Plant × Plant (65 cm) and Row × Row (45 cm)
distance were maintained. All the integrated cultural practices were applied to attain the
better development of crop plants.

Regarding the endogenous determination of AsA content (mg/100 g), a total of 5 g
of young leaves (true leaf stage) and 5 g of old leaves (fully expanded leaf stage) were
freshly sampled after being weighed from the replicated plants of each melon variety and
were quickly stored in ultra-freezing liquid nitrogen, respectively. The endogenous AsA
content in the leaves was quantified through a method of catalytic titration with hexavalent
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chromium by using a single-beam UV–Vis spectrophotometer (model CECIL 121, England),
as reported by Abera et al. [51].

The gene expression pattern was determined by performing an analysis of the quan-
titative real-time polymerase chain reaction (qRT-PCR). In short, the fresh samples were
collected from respective young true leaves and fully expanded old leaves, and a good-
quality total RNA was isolated using the Trizol reagent protocol, as earlier reported by
Rio et al. [52]. The purified first-strand complementary DNA (cDNA) was synthesized using
the PrimeScript RT Master Mix Perfect Real-Time kit (Toyobo, Osaka, Japan). The primers
of the CmGGp1 gene and interactive genes were exported through Primer Premier software
(version 6.25) [53] and Actin7 was used as a reference gene, as earlier reported [43]. All the
gene primer information can be seen in Supplementary Table S2. qRT-PCR analysis was
performed by following three biological replicates per sample, as reported earlier [54]. The
relative expression levels of putative identified CmGGP1 and associated genes were deter-
mined using an earlier reported method [55], respectively.

2.5. Statistical Data Analysis

The experiment dataset was recorded in numerical values using Microsoft Excel Sheet
(version 2021). The final arranged data were analyzed and visualized using GraphPad
Prism software (version 9.0) and statistical analysis was performed at probability levels of
p < 0.01 and p < 0.05, respectively.

3. Results
3.1. Analysis of Identified CmGGP1 Gene in Melon Genome

The preliminary identification results of the GGP gene were obtained from the refer-
ence genome of melon_DHL92_V4. The gene density across the whole genome chromo-
somes was checked and filtered, which showed a single genetic locus between a 12,223,955
and 12,227,154 base pair (bp) interval over chromosome 1 (Chr01), containing only one
target gene (MELO3C013136.2) named CmGGP1 (Figure 1A). The gene structure contains
5′ and 3′ UTRs, seven exons, and six introns; the full length of the gene was 3200 bp and
the coding region was 1359 bp, encoding a total of ~452 amino acids (aa) (Figure 1B). The
secondary structure characteristics of the CmGGP1 protein seemed to be composed of a
random coil (44.69%), followed by an alpha (α) helix (33.41%), and an extended strand
(17.04%), respectively (Figure 1C).

The CmGGP1 protein model was predicted using the AlphaFold v2 database and
the average pLDDT model confidence was 81.44, consistent with the melon A0A1S3BIN8
(A0A1S3BIN8_CUCME) model in the SWISS-MODEL database (Figure 1D). The plant-
mPLoc subcell prediction exhibited that the CmGGP1 protein was localized in the chloro-
plast or nucleus, and the protein prediction results of SignalP (version 5.0) showed that the
CmGGP1 protein did not have a signal peptide (Supplementary Figure S1). The TMHMM
tool (version 2.0) analysis predicted that the CmGGP1 protein has no transmembrane
structure either inside or outside (Supplementary Figure S2).

3.2. Analysis of CmGGP1 Gene Evolutionary Relationship

According to the phylogenetic tree analysis, it was noticed that the CmGGP1 gene
in melon evolution is very conservative. The multi-species evolutionary relationships
are mainly divided into four family categories, including Cruciferae, Kiwifruit, Cucur-
bitaceae, and Graminaceae (Figure 2A). The Cucurbitaceae family contains five species, as
follows: Bitter gourd (Momordica charantia), Cucumber (Cucumis sativus), Squash (Cucur-
bita moschata), Melon (Cucumis melo), and Oriental melon (Cucumis melo var. Makuva), which
exhibited highly consistent motif elements in six GGP protein sequences (MELO3C013136.2,
XP_022139724.1, XP_004139797.1, XP_022940636.1, TYK23075.1, and KAA0049789.1). The
structural analysis of six proteins of Cucurbitaceae was also conducted, which showed that
the ten main motif elements were completely consistent and the similarity of six proteins
was exhibited to be highly conserved (Figure 2B).
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The multiple sequence analysis of six proteins of the Cucurbitaceae family showed
a differentiated structure, and a high sequence similarity index (83.98%) was observed
(Figure 2C). We found a highly variable region at the 3′ end of the protein that can be
used to distinguish the Cucurbitaceae species, and melon (Cucumis melo) and oriental
melon (Cucumis melo var., Makuva) are indistinguishable in this interval. Two GGP protein
sequences (TYK23075.1 and KAA0049789.1) in Cucumis melo var., Makuva showed the
most significant structural variation compared with other cucurbit species; however, the
GGP protein (TYK23075.1) has four amino acids inserted relative to the KAA0049789.1
protein sequence, which may lead to the differentiation in gene function. The functional
prediction of cucurbit family proteins also showed that the six GGP proteins belong to the
DUF4922 superfamily (Supplementary Figure S3), whose functional domain has not been
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fully annotated in other studies. Hence, we assumed that this is currently identified as
a new protein and classified as having GDP-D-glucose phosphorylase 1 family domain
architecture ID 52482. These are kinds of very specific and efficient enzymes that have the
main function of regulating the level of GDP-D-glucose in cells.

3.3. Analysis of CmGGP1 Protein in Melon Genome

According to the protein analysis, the XP_008447718.1 (MELO3C013136.2.1) protein
was exhibited as a candidate protein encoding the GDP-L-galactose phosphorylase 1
(CmGGP1) pathway in melon, as shown in Tables 1 and 2, and Supplementary Table S3.
The CmGGP1 protein (MELO3C013136.2.1) interaction network analysis in melon showed
11 nodes, 41 edges, PPI enrichment p-value < 5.97 × 10−13, average node degree (7.45),
and average local clustering coefficient (0.915) (Figure 3 and Supplementary Table S3). The
CmGGP1 protein (MELO3C013136.2.1) in the Cucurbit database was highly consistent
with the melon protein (XP_008447718.1) (Figure 3). There were mainly 10 proteins inter-
acting with the CmGGP1 protein and seven proteins (XP_008440075.1, XP_008447718.1,
XP_008455112.1, XP_008455923.1, XP_008457599.1, XP_008460972.1, and XP_008463619.1)
seemed to be involved in the ascorbate and aldarate metabolism pathway (cmo00053)
(Tables 1 and 2, and Supplementary Table S3).

Among these seven proteins, a total of four proteins (XP_008463619.1, XP_008460972.1,
XP_008455923.1, and XP_008440075.1) were predicted with the interaction threshold value
scores of >0.95, and three other proteins (XP_008457599.1, XP_00845512.1, and XP_008451819.1)
had interaction threshold values of >0.7 with the CmGGP1 protein (Table 3 and Supplemen-
tary Table S3). These might have a main function in the ascorbate and aldarate metabolism
pathway, but its interaction relationship with the melon CmGGP1 protein has not been
reported at present. However, it has been preliminarily identified in other species as co-
regulating AsA synthesis under drought stress and light treatment, and we also focused on
these identified proteins.

Table 1. Analysis of metabolic pathways of interacting proteins.

Pathway Description Gene Set Counts p-Value

cmo00053 Ascorbate and aldarate metabolism 7 of 45 2.35 × 10−15

cmo01110 Biosynthesis of secondary metabolites 9 of 958 4.84 × 10−10

cmo01100 Metabolic pathways 7 of 1685 4.75 × 10−8

cmo04070 Phosphatidylinositol signaling system 3 of 53 1.12 × 10−5

cmo00562 Inositol phosphate metabolism 3 of 58 1.16 × 10−5

cmo00520 Amino sugar and nucleotide sugar metabolism 3 of 114 6.87 × 10−5

Table 2. Annotation information of ascorbate and aldarate metabolism protein.

NCBI Database CuGenDB Annotation

XP_008447718.1 MELO3C013136.2.1 GDP-L-galactose phosphorylase 1
XP_008457599.1 MELO3C020736.2.1 L-galactono-1,4-lactone dehydrogenase, mitochondrial
XP_008463619.1 MELO3C025552.2.1 Inositol-1-monophosphatase
XP_008455112.1 MELO3C018576.2.1 L-galactose dehydrogenase
XP_008460972.1 MELO3C023324.2.1 Bifunctional phosphatase IMPL2, chloroplastic isoform X1
XP_008455923.1 MELO3C018576.2.1 GDP-mannose 3,5-epimerase 2 isoform X1
XP_008440075.1 MELO3C007440.2.1 Inositol-1-monophosphatase; Inositol-phosphate phosphatase-like

Table 3. Protein interaction prediction analysis.

Node1 Node2 Score

XP_008447718.1 XP_008455923.1 0.984
XP_008447718.1 XP_008440075.1 0.970
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Table 3. Cont.

Node1 Node2 Score

XP_008447718.1 XP_008463619.1 0.970
XP_008447718.1 XP_008460972.1 0.967
XP_008447718.1 XP_008457599.1 0.853
XP_008447718.1 XP_008455112.1 0.811
XP_008447718.1 XP_008451819.1 0.708
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3.4. Analysis of Comparative Genomic Characterization of CmGGP1 Gene within Different
Germplasms of Melon

The worldwide map view of WT, LDR, IMP, and ND germplasm resources belonging
to different geographical origins showed that WT, LDR, and IMP were classified as domes-
ticated materials, but ND germplasms are not known from the domestication type and
come from Russia (Figure 4A). The constructed phylogenetic tree depicted the significant
genomic evolutionary relationships in different clades among the four melon germplasm
resources (Figure 4B).

Further, the principal component analysis (PCA) plot exposed the major variability
along two axes (PC1 and PC2), which depicted that these four germplasm resources are
well separated from each other and consistent with their geographical origins. The varieties
of WT and IMP germplasm seemed concentrated and showed obvious differences. A highly
variable genomic variation was observed in local varieties; however, ND genome showed
a more close resemblance with IMP material (Figure 4C). Regarding the CmGGP1 gene
(MELO3C013136.2), there were evolutionary differences in the gene structure among the
melon germplasm materials. The CmGGP1 gene structure in WT and LDR germplasm
materials exhibited a relatively close association and abundant structural variations were
observed as compared to IMP and ND germplasm materials (Figure 4D).
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Figure 4. CmGGP1 gene characterization in the genome of four melon germplasms. (A) Geographical
origins of germplasms. (B) Genomic evolutionary relationships analysis. (C) PCA analysis for
genomic variability. (D) CmGGP1 gene analysis based on comparative whole genome resequencing.
(E) Comparative analysis of CmGGP1 gene sequence mutation, respectively. WT, wild-type; LDR,
landrace; IMP, improved-type; ND, not defined. The area marked with red dotted boxes denotes the
candidate gene mutation sites among the comparative genomes of four melon germplasms.

A total of five mutation sites were mainly identified in the candidate gene-coding
region of comparative genome sequences of four germplasm resources, but two of them
had non-synonymous mutations that similarly altered the amino acid sequences in two
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melon varieties “Cinderella melon (LDR-type) and PMR45 (IMP-type)”. The A–G base
mutation (changing adenine to guanine) occurred at about 12,226,363 bp, which changed
the amino acids from K to R (lycine (lys) to arginine (Arg)). The other C–A base mutation
(cytosine to adenine) was observed at 12,224,652 bp that changed the amino acids from
D to E (aspartate (Asp) to glutamic acid (Glu)). These non-synonymous mutations were
effectively observed among the comparative genome sequences of WT versus LDR, IMP
versus ND germplasm materials, and the reference genome of melon_DHL92_V4 (Figure 4E
and Supplementary Table S4), exhibiting evolutionary differences during the domestication
process. Thus, our analysis strongly suggests that the CmGGP1 gene may be affected by
artificial breeding and the AsA synthesis function has changed in the melon germplasm
resources of two subspecies.

3.5. Transcriptome Analysis of CmGGP1 and Interacting Genes in Different Tissues of Melon

The CmGGP1 gene and its associated interactive genes were analyzed in different
tissues (male flower, female flower, root, fruit, and leaf) of melon plants using transcrip-
tome sequencing. The tissue expression specificity analysis of seven identified puta-
tive genes (MELO3C013136.2, MELO3C020736.2, MELO3C025552.2, MELO3C018576.2,
MELO3C023324.2, MELO3C0004377.2, and MELO3C007440.2) involved in ascorbate and al-
darate metabolism pathways were checked (Figure 5). The results showed that the CmGGP1
gene (MELO3C013136.2) and its interactive gene expression were highly expressed in fe-
male flowers, male flowers, and leaves, respectively. However, it is observable that the
other six genes have relatively lower expression in the roots and fruits, except for the
MELO3C020736.2 gene. Therefore, it is speculated that the CmGGP1 gene demonstrated
higher levels of expression, modulating the AsA biosynthesis pathway in flowers and
leaves more so than that in roots and fruits, respectively.
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3.6. Analysis of AsA Content in Melon Leaves and CmGGP1 Gene Expression Pattern

The young and old leaves were sampled from different varieties of domesticated melon
germplasm, as shown in the model diagram (Figure 6A). The endogenous synthesis of AsA
content (mg/100 g) showed an obvious accumulation effect and significant differences for
AsA synthesis and metabolism; however, the AsA content in young leaves was significantly
lower, as compared to the old leaves, for all melon materials (Figure 6B).
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Figure 6. Endogenous quantification of AsA content and expression pattern analysis in the young
and old leaves of differentiated melon varieties. (A) Leaf sampling diagram. (B) Endogenous AsA
content levels. (C) CmGGP1 gene expression patterns. (D) Heat maps of expression patterns of the
CmGGP1 gene and related interactive genes. (E) Genes modulating the AsA biosynthesis pathway
model. The statistical letters (a and b) indicate that the significant differences were observed at a
probability level of p < 0.01.

The qRT-PCR analysis of CmGGP1 gene expression patterns showed that the expres-
sion level of four melon varieties (PI 614414, Cinderella melon, PMR45, and 16H) was
significantly increased in the old leaves than that of young leaves (Figure 6C), while the
gene expression level of five melon varieties (PI 282448, PI 614174, PI179914, Shu Shu melon,
and Xin Yin No.2) remained stable in both young and old leaves, having no visualized
significant differences, respectively. Interestingly, we found that the expression of the
CmGGP1 gene (an important rate-limiting enzyme in AsA synthesis) was stable in the
young and old leaves of five materials, while the content of AsA was increased in all these
materials. This indicated that AsA was continuously synthesized during the development
of leaves and that AsA metabolism was not greater than AsA biosynthesis.



Antioxidants 2024, 13, 397 13 of 19

Further, the CmGGP1 gene and interactive gene expression patterns exhibited that two
Inositol-1-monophosphatase linked genes (MELO3C025552.2 and MELO3C007440.2), one
bifunctional phosphatase IMPL2 related gene (MELO3C02332.2), and one GDP-mannose
3,5-epimerase 2 isoform X1 related gene (MELO3C018576.2) were significantly upsurged
in most of the melon varieties during leaf development and that their gene expression
patterns were similar to those of CmGGP1 expression in young and old leaves (Figure 6D).
For the known L-galactose pathway to synthesize the AsA pathway genes, we can see that
the interactive expressions of four candidate genes (MELO3C025552.2, MELO3C007440.2,
MELO3C023324.2, and MELO3C018576.2) had similar patterns to the CmGGP1 gene expres-
sion in the young and old leaves of the melon variety (PI 614414), depicting the regulatory
mechanism of the ascorbate metabolism pathway (Figure 6E). Overall, the experimental
results and analysis exhibited that these four genes might interact with the CmGGP1 gene
and modulate the AsA biosynthesis in melon plant leaves.

4. Discussion
4.1. There Is Only One Gene (CmGGP1) Contributing to the L-Galactose Pathway, Modulating
AsA Biosynthesis in Melon Plants

In the former study of Tao et al. [56], it was found that among the 71 plant species,
50 species contain two or more copies of GGP genes, which are mainly distributed in the
lineage of angiosperms and gymnosperms, while the species containing only one copy
of the GGP gene are found mainly in the lineage of chlorophytes, and only 10 of the
41 dicotyledonous species have a single GGP gene [56]. Melons are dicotyledonous plants
and there is also the presence of one single GGP gene, as mentioned in the above-stated
plant groups, but this case is very rare. According to our genome-wide bioinformatics
analysis, we also identified only one gene (CmGGP1) in the improved reference genome
of melon_DHL92_V4, located on the Chr01 segment (Figure 1), depicting a consistent but
extremely rare result. It is supposed that this may possibly be related to the occurrence of
whole genome duplication (WGD) events, while it has been stated in previous studies that
no WGD events occurred in the whole genome studies of melon [57] and cucumber [58].

Moreover, it has been reported that the evolution of the plant GGP gene family is
primarily restricted by purification selection, indicating the functional significance and
conservation of the GGP gene in its evolutionary progression [56]. Therefore, the CmGGP1
gene is particularly known as a key rate-limiting enzyme gene involved in the L-galactose
pathway controlling AsA synthesis in melon. It was proposed that the CmGGP1 protein
of melon is predicted to have no transmembrane domain, which is consistent with the
protein structure of the VTC2 and VTC5 genes in Arabidopsis thaliana [20]. Herein, our
subcellular localization analysis similarly predicted that the CmGGP1 protein was located
in the chloroplast or nucleus (Supplementary Figures S1 and S2). Although it has not been
confirmed in melon, its homologous protein has been confirmed in Arabidopsis thaliana. GGP
protein in Arabidopsis thaliana was identified intracellularly by using GFP-labeled protein
and there was also a fluorescent signal in the nucleus [59], indicating that the GGP gene not
only has a significant role in the intracellular network, but also has a certain nuclear function.
However, it is generally believed that AsA synthesis occurs mainly in the cytoplasm,
including GMP [60], GME [18], GGP [21], GPP [22,28], and GalDH [26], and the six key
enzymes forming L-Glactose 1, 4-Lactone are oxidized to AsA by the L-GalLDH when they
cross the outer membrane of mitochondria [61]. Our comprehensive bioinformatics analysis
revealed only one GGP protein encoded by the CmGGP1 gene in melon, which may be an
important enzyme involved in the L-galactose pathway controlling AsA biosynthesis in
the cytoplasm. However, the GGP protein function in the nucleus still needs further study
at an in-depth level.

4.2. GGP Gene Family Evolution Is Very Conserved and Protein Structure Has Highly
Conserved Characteristics

Regarding the analysis of phylogenetic association, we used earlier published protein
sequences from multiple plant species and found that they could be categorized into four
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types of different crop families, as follows: Cucurbitaceae, Cruciferae, Actinidiaceae, and
Lepidaceae. The GGP proteins from the Cucurbitaceae family depicted highly similar
sequence structures and conserved motifs. The similarity index of six protein sequences
from different species of the Cucurbitaceae family was 83.98%, and 10 motif sequences
were highly similar (Figure 2). However, the high consistency of GGP protein sequences in
the Cucurbitaceae family suggested that similar catalytic functions may exist.

In earlier studies, genome-wide analysis identified a total of six GGP genes in bread
wheat, except for TaGGP2-D, which could not be differentiated due to Agrobacterium
technology [36], but the AsA content of Arabidopsis thaliana was significantly upsurged in
varying degrees after the instantaneous transformation of the remaining five GGP genes.
However, subtle differences in homologous genes may also lead to functional differentia-
tion, e.g., two genes (VTC2 and VTC5) encoding GGP were spotted in Arabidopsis thaliana,
but only the expression trend of the VTC2 gene showed significant expression affecting the
AsA biosynthesis [21]. It was shown that the CSN5B engages with VTC1, influencing the
modulation of AsA biosynthesis in Arabidopsis thaliana [62]. The earlier study findings of
GGP genes showed that both SlGGP1 and SlGGP2 genes were expressed in tomato fruits,
but SlGGP1 primarily showed contribution for the regulation of AsA content during fruit
development, while SlGGP2 is associated with the fruit ripening process [4]; but, these two
homologous genes showed some functional differentiation.

Herein, we also found two highly homologous GGP proteins in Cucumis melo var.
makuva, which may have a similar phenomenon (Figure 3). However, only the CmGGP1
gene encoding GGP exists in melon, belonging to the Cucurbitaceae family, so the biosyn-
thesis of AsA in different tissues of melon may be regulated by the CmGGP1 gene, and this
gene plays a vital role in the metabolism pathway of AsA synthesis in melon. In addition,
a comparative whole genome analysis of the CmGGP1 gene from different domesticated
melon germplasms exhibited that WT and LDR germplasms were more similar, and the ND
was observed closer to IMP germplasm. A total of two non-synonymous type mutations
between the CmGGP1 gene of these two materials were also identified (Figure 4), which
perhaps indicated that the function of this gene may be changed. This means that the AsA
biosynthesis of melon may have changed during domestication.

4.3. CmGGP1 Gene Has a Tissue Specificity Expression Conferring AsA Biosynthesis in Melon

In earlier studies, it has been stated that light is an important factor affecting AsA
biosynthesis, and female flowers, male flowers, and leaves are important tissues for re-
ceiving sunlight signals [38,39]. A total of four proteins (XP_008463619.1, XP_008460972.1,
XP_008455923.1, and XP_008440075.1) have been focused on, although their interaction
relationship with the melon CmGGP1 protein has not been reported at present. However,
it has been preliminarily identified in other species as co-regulating AsA synthesis under
drought stress and light treatment [1,63,64].

Herein, we identified that the interaction threshold value scores predicted by the
STRING platform were all greater than 0.95 (Table 3). We also checked CmGGP1 gene
expression through different tissue expression specificity analysis of the flowers, leaves,
fruits, and roots of melon and results revealed that CmGGP1 gene expression in flowers
and leaves was significantly higher than that in roots and fruits (Figure 5). This result was
in accordance with the previous findings of Arabidopsis thaliana studies, showing the VTC2
and VTC5 expression in roots, stems, leaves, and flowers [20,59]. GGP is considered to
be an important rate-limiting enzyme in the process of AsA biosynthesis [28]. In melon
plants, the flowers and leaves are the main organs that receive sunlight signals as compared
with fruits and roots, and light affects AsA biosynthesis. As an antioxidant molecule, the
AsA product is widely present in various tissues of plants and essentially contributes
to photosynthesis, plant cell wall formation, fruit softening and aging, enhancing plant
stress resistance, etc. [1,65,66]. These findings imply that CmGGP1 may play a significant
function in various tissues of melon. Previous studies have similarly shown that GGP gene
expression and AsA biosynthesis are significantly increased when exposed to light for a
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long time [20,67]. For example, in tomatoes, the effect of light treatment on the AsA content
change in leaves was greater than that in fruits [68]. Moreover, it was found that the AsA
content in fruits was not affected by the biosynthesis of AsA content in leaves, which may
indicate that AsA does not exist in inter-tissue transport and accumulation [69] and is only
synthesized in cells of different tissues to participate in the physiological development
process of plants.

Herein, we analyzed the endogenous synthesis of AsA content in nine melon varieties
of different germplasms during plant growth. It was found that the AsA content in old
leaves was generally higher compared to young leaves. Further, the relative expression
of the CmGGP1 gene in old leaves was also higher than that in young leaves; however,
no substantial differentiation in CmGGP1 gene expression was observed in five melon
materials, while AsA was increased in old leaves (Figure 6). Some earlier studies also
depicted that the dynamic change of AsA content in plants during development has a
certain relationship with species characteristics, e.g., ascorbic acid increases with fruit
ripening in tomatoes, grapes, citrus, and strawberries during each development and
growth stage [7,34,46,66,69,70], which is also consistent with our results of AsA synthesis
in melon. However, AsA content in peach fruits decreased with fruit ripening, which was
inconsistent with our results [71]. AsA content in kiwifruit was high in the immature stage
but decreased with fruit maturity and finally stabilized at a certain concentration until
full maturity [12,70], which was inconsistent with our results. Whether the AsA dynamic
pattern in melon fruits is consistent with that in leaves needs further study.

4.4. The Co-Expressed Genes Indicated the Possible Interaction with the CmGGP1 Gene

We performed the protein interaction network prediction in melon and found that six
proteins (like the L-galactose and the inositol pathway) may interact with the CmGGP1
protein (Figure 3); however, two of the proteins “MELO3C018576.2.1 (L-galactose dehydro-
genase) and MELO3C020736.2.1 (L-Galactono-1,4-lactone)” were also identified for signif-
icant interaction (Table 2). Previous studies also exposed that dehydrogenase is directly
involved in the biosynthesis of AsA by the L-galactose pathway. GPP converts L-galactose
1-phosphate to L-galactose [22,23]. L-Galactono-1,4-lactone dehydrogenase (GalLDH) changes
L-Glactose 1,4-Lactone into AsA [25,26,72]. Therefore, it is supposed that MELO3C018576.2.1
and MELO3C020736.2.1 proteins may be directly involved in the AsA biosynthesis in melon
plant. Thus, we also focused on the analysis of the other four proteins, e.g., MELO3C025552.2.1
and MELO3C007440.2.1, both of which are inositol-1-monophosphatases, MELO3C023324.2.1
function annotation is bifunctional phosphatase IMPL2, and MELO3C018576.2.1 function
annotation is GDP-mannose 3,5-Epimerase 2 isoform X1.

It was found that the Inositol-1-monophosphatase (IMP) is an indispensable enzyme in
the Inositol-1-monophosphatase metabolic pathway, which has the function of dephospho-
rylating inositol-1-monophosphatase and participates in multiple metabolic and signaling
pathways in chickpeas (Cicer arietinum L.) and the improved-type germplasm not only par-
ticipated in inositol biosynthesis, but also depicts the overexpression of CalIMP that signifi-
cantly affected AsA biosynthesis [73,74]. However, it was observed that MELO3C025552.2.1
and MELO3C007440.2.1 have similar functions and need further study for strong vali-
dation. The earlier studies have shown that improved-type germplasm material has a
hydrolytic L-galactose 1-phosphate (L-Gal 1-P), which is a substrate for GGP [22], sug-
gesting that IMP may affect endogenous AsA biosynthesis by affecting the concentration
of the GGP substrate. The IMPL2 participates in the histidine synthesis process [75], but
not in the hydrolysis of inositol and galactose phosphate in plant cells [76]. It was sup-
posed that MELO3C023324.2.1 protein may not participate in the synthesis of AsA in
melon and its specific functions need to be further explored. GDP-mannose 3,5 epimerase
and VTC2 are well known as key hubs for the synthesis of GDP-hexoses and L-galactose
1-phosphate [28,77], further extending the VTC2 cycle, which connects photosynthesis
activity with AsA biosynthesis and plant cell wall metabolism.
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Herein, we found that two genes (MELO3C025552.2 and MELO3C007440.2) of Inositol-
1-monophosphatase, one gene (MELO3C02332.2) of bifunctional phosphatase IMPL2, and
one gene (MELO3C018577.2) of GDP-mannose 3,5-epimerase 2 isoform X1, were signif-
icantly upsurged in melon materials during leaf development, and its gene expression
patterns were similar to those of the CmGGP1 gene in young and old leaves (Figure 6). In
short, we speculated that the MELO3C018576.2.1 protein may have a direct interaction
with the CmGGP1 gene to affect AsA biosynthesis in melons.

5. Conclusions

In this study, we identified a single AsA synthesis rate-limiting enzyme gene (CmGGP1)
in the melon genome using bioinformatics analysis and found that the CmGGP1 protein
has its main functions in the chloroplast or nucleus. The multiple sequence alignment
analysis showed that the CmGGP1 protein has a highly conserved motif in cucurbit crops
and suggested that the CmGGP1 gene was selected by domestication during evolution.
Although the gene was different in different domestication materials, AsA biosynthesis
was not greatly affected during plant development. The internal AsA quantification and
interactive gene expression analysis in melon leaves showed that AsA biosynthesis in
leaves was greater than AsA metabolic consumption, and four possible interactive genes
linked with CmGGP1 were revealed in the ascorbate metabolism pathway. In short, our
research findings deliver a theoretical basis for an in-depth study of the AsA biosynthesis
pathway in melon, which will further help in developing improved cultivars based on
marker-assisted selection and breeding approaches.
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