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Abstract: The intricate interplay between plant-based nutrition, antioxidants, and their impact
on athletic performance forms the cornerstone of this comprehensive review. Emphasizing the
pivotal importance of dietary choices in the realm of sports, this paper sets the stage for an in-depth
exploration of how stress and physical performance are interconnected through the lens of nutrition.
The increasing interest among athletes in plant-based diets presents an opportunity with benefits
for health, performance, and recovery. It is essential to investigate the connection between sports,
plants, and antioxidants. Highlighting the impact of nutrition on recovery and well-being, this
review emphasizes how antioxidants can help mitigate oxidative stress. Furthermore, it discusses
the growing popularity of plant-based diets among athletes. It elaborates on the importance of
antioxidants in combating radicals addressing stress levels while promoting cellular health. By
identifying rich foods, it emphasizes the role of a balanced diet in ensuring sufficient intake of these
beneficial compounds. Examining stress within the context of sports activities, this review provides
insights into its mechanisms and its impact on athletic performance as well as recovery processes. This
study explores the impact of plant-based diets on athletes including their types, potential advantages
and challenges. It also addresses the drawbacks of relying on plant-based diets, concerns related to
antioxidant supplementation and identifies areas where further research is needed. Furthermore, the
review suggests directions for research and potential innovations in sports nutrition. Ultimately it
brings together the aspects of sports, plant-based nutrition, and antioxidants to provide a perspective
for athletes, researchers and practitioners. By consolidating existing knowledge, it offers insights that
can pave the way for advancements in the ever-evolving field of sports nutrition.

Keywords: sports; plant-based nutrition; antioxidants; oxidative stress; athletic performance

1. Introduction
1.1. Background

Athletic performance is closely connected to a variety of factors, with nutrition being a
crucial driver [1]. The importance of food choices in optimizing training regimens and im-
proving recovery has become a prominent focus in sports science [2]. From infancy through
adolescence to adulthood, lifestyle factors such as nutrition, exercise, and other habits play a
pivotal role in shaping athletic abilities and overall health. Vandoni et al. suggested that op-
timal nutrition and lifestyle habits during early developmental stages can have long-lasting
effects on sports performance and health outcomes later in life [3]. Factors such as breast-
feeding duration, introduction to solid foods, and physical activity levels during childhood
can influence growth, development, and athletic potential. During adolescence, a critical
period marked by rapid growth and development, nutritional intake becomes even more
crucial for supporting physical activity and optimizing performance. Adolescents engaging
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in sports activities may have increased energy and nutrient requirements, necessitating a
balanced diet rich in essential nutrients to fuel growth, support muscle development, and
enhance recovery [4,5]. Nutrition has the dual purpose of providing energy to the body
and maintaining physiological equilibrium. It also plays a vital function in supporting the
metabolism of energy and facilitating the body’s response to exercise-induced stress [6].
Athletes face the challenge of managing oxidative stress, a natural byproduct of cellular
metabolism and physical exertion while pursuing peak performance [7]. Oxidative stress
arises when there is an imbalance between the production of reactive oxygen species (ROS)
and the body’s ability to counteract them with antioxidants [8,9]. While moderate levels of
oxidative stress are integral to training adaptations, severe or sustained oxidative stress can
cause cellular damage, and inflammation, and hinder recovery [10].

The complex interplay between oxidative stress and antioxidant defense mechanisms
highlights the intricate connection between exercise and nutrition [11,12]. Athletes and
researchers are acknowledging the growing importance of optimizing nutritional tech-
niques to regulate oxidative stress, which can lead to enhanced performance and reduced
risk of overtraining-related issues [13]. An observable pattern in modern sports nutrition
is the increasing fascination with diets that mostly consist of plant-based foods [14,15].
Plant-based diets are becoming increasingly popular among athletes due to their potential
to supply essential nutrients, enhance recovery, and include a wide range of bioactive com-
pounds [16,17]. These bioactive substances comprise a range of phytochemicals, such as
flavonoids, phenolic compounds, carotenoids, and other phytochemicals possessing various
properties and are present in fruits, vegetables, nuts, seeds, and whole grains. For example,
flavonoids are recognized for their anti-inflammatory and anti-oxidant properties, while
phenolic compounds support immunological and cardiovascular health [18,19]. Carotene
and lycopene as carotenoids are vital for eye health and may prevent chronic illnesses [20].
Cruciferous vegetable phytochemicals like glucosinolates may prevent cancer [21]. The
attractiveness of plant-based diets extends beyond nutritional criteria, embracing ethical,
environmental, and performance-related aspects [22,23]. Diets of athletes that include
a variety of bioactive compounds sourced from plant-based foods may enhance athletic
performance and provide synergistic health benefits [24]. The study aims to offer practical
insights for athletes, coaches, and nutrition professionals as they navigate the complex
interaction between sports, nutrition, and overall well-being. This is achieved by a detailed
examination of the existing literature.

The quest for athletic excellence involves the crucial convergence of training, nutrition,
and recovery [25,26]. This article provides guidance on achieving optimal performance
by exploring the intricate relationship between nutrition and sports, the delicate balance
with oxidative stress, and the changing trends of plant-based diets among athletes. In the
field of athletics, where achievements are frequently evaluated in terms of milliseconds
and millimeters, the human body encounters exceptional physical requirements [27,28]. In
this review, it becomes clear that nutrition goes beyond just providing sustenance—it has a
powerful influence on energy levels, recovery processes, and the body’s ability to adapt to
the demands of training.

Oxidative stress, a complex and significant factor, that is typically overlooked in the
context of athletics, plays a crucial role in performance [29]. This article explores the
complex physiological processes involved in the interaction between exercise intensity
and reactive oxygen species, shedding light on how they influence an athlete’s progress.
Oxidative stress functions as a signaling mechanism for adaptation and poses a challenge
to maintaining performance over time [30]. Amidst this evolving narrative, there is a
noticeable change in the dietary preferences of athletes, as they increasingly lean towards
plant-based nutrition [15]. This nutritional paradigm goes beyond health considerations
and can redefine performance boundaries [31]. The reasons driving athletes to choose
plant-based diets are varied, demonstrating a symbiotic relationship between plant-based
nutrition and the quest for peak athletic performance [32]. This article serves as a com-
prehensive reference for athletes, coaches, and nutrition enthusiasts who are exploring
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the complex fields of nutrition, oxidative stress, and the growing popularity of plant-
based diets. It seeks to provide valuable insights and information to help navigate the
always-changing world of sports science. The review aims to simplify the core principles
of nutritional strategies, understand the complexities of oxidative stress management, and
highlight the way to utilize the natural advantages of plant-based nutrition.

1.2. Objectives and Scope of the Study

This review’s main objective is to thoroughly investigate the complex relationship that
exists between sports, plants, and antioxidants in order to better understand the complex
dynamics that exist between these interconnected components. This involves a thorough
examination of several aspects, such as the physiological impacts of sports on oxidative
stress and potential functions of antioxidants in reducing cellular damage. By summarizing
the goals, we aim to provide a concise overview of the study’s purpose and scope, thereby
enhancing the review’s coherence and clarity.

This review goes beyond analyzing individual components and explores the synergies
and interactions that occur in the human body during and after physical activity. It aims
to develop a comprehensive understanding of sports’ overall impact on cellular health by
investigating physiological responses to exercise-induced stress and the associated need
for antioxidant defenses. Furthermore, the study investigates various types of antioxidants,
with a focus on those derived from plants. This involves a thorough examination of
the wide spectrum of phytochemicals present in various plants, revealing their potential
benefits and mechanisms of action. The emphasis on plant-based diets as the primary
concern demonstrates the commitment to researching alternative nutritional approaches
for athletes and individuals who engage in regular physical activity.

Several individuals, including researchers, sports scientists, dietitians, players, and
coaches, can seek significant relevance in the study. It aims to offer important insights into
the current knowledge base while presenting an in-depth look at the potential advantages of
incorporating plant-based, high-antioxidant meals into sports nutrition. Furthermore, the
practical recommendations offered aim to bridge the gap between scientific comprehension
and implementable tactics, making the information accessible and applicable to all athletes
and fitness enthusiasts. Furthermore, driving this research is basic science questions
aimed at elucidating the intricate relationships among antioxidants, plant-based diet,
and sports. It seeks to investigate the potential of plant-based diets to enhance athletic
performance, elucidate the role of antioxidants in reducing cellular damage, and investigate
the physiological impacts of different sports activities on oxidative stress. While a plant-
based diet is emphasized primarily, the study covers a wide range of activities, including
endurance, strength training, and high-intensity exercises. It also explores the role of
plant-based macro- and micronutrients, as well as the diverse array of antioxidants found
in plants, underscoring the importance of phytochemicals in enhancing overall health.

2. Antioxidants: An Overview
2.1. Definition and Types of Antioxidants

Antioxidants play a crucial role in sports and nutrition by protecting against oxidative
stress caused by intense physical activity [33]. Antioxidants are chemical substances that
combat oxidative stress, a condition that can damage cells. They play a crucial role in
maintaining cellular resilience [34,35]. Their crucial function is to counteract free radicals,
which are extremely reactive molecules that, if not controlled, can initiate a series of harmful
effects on cells [36,37]. As athletes strive to exceed their physical capabilities through intense
workouts, understanding the significance of antioxidants becomes crucial [38,39]. These
compounds function as molecular barriers, reducing the potential damage caused by free
radicals and preserving the cells integrity [40,41]. Various physiological processes can
be disrupted and oxidative stress, which is characterized by an imbalance between the
body’s capacity to neutralize free radicals and their production, can result in cellular injury.
Moreover, it contributes to the development of chronic diseases. Cellular components,
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including DNA, lipids, and proteins, are susceptible to damage from free radicals, which can
result in structural and functional impairments that undermine the health and functionality
of the cell [42,43]. Therefore, antioxidants provide an important role in maintaining cellular
resilience and improving overall health, especially in individuals involved in strenuous
exercise such as sports. To comprehend the complexities of oxidative protection in the
realm of sports and nutrition, it is crucial to have a clear understanding of the primary
categories of antioxidants (Table 1) [44].

Table 1. A comprehensive compilation of distinct antioxidants in commonly consumed plant-based
food.

Plant Food Category Specific Plant Foods Antioxidants Present References

Fruits
Berries (Blueberries, Strawberries,

Raspberries), Citrus fruits (Oranges,
Grapefruits, Lemons), Apples, Pears, Cherries

Anthocyanins, Vitamin C,
Quercetin, Flavonoids [45–47]

Vegetables
Leafy greens (Spinach, Kale, Swiss Chard),

Cruciferous vegetables (Broccoli, Cauliflower),
Bell peppers, Tomatoes, Carrots

Quercetin, Polyphenols, Lutein,
Zeaxanthin, Vitamin E,

Glucosinolates, Sulforaphane,
Indoles, Vitamin C, Vitamin A,

Lycopene, Beta-carotene,

[48,49]

Nuts and Seeds Almonds, Walnuts, Chia Seeds, Flaxseeds,
Sunflower seeds, Pumpkin seeds

Vitamin E, Omega-3 fatty acids,
Polyphenols, Selenium, Vitamin E [50,51]

Legumes Chickpeas, Lentils, Black beans, Peanuts, Pinto
beans, Kidney beans

Flavonoids, Resveratrol, Coenzyme
Q10, Isoflavones [52,53]

Whole Grains Quinoa, Brown rice, Oats, Barley, Whole wheat Vitamin E, Selenium, Polyphenols,
Ferulic Acid, Beta-glucans [54,55]

2.1.1. Vitamin C (Ascorbic Acid)

Source: Citrus fruits (such as oranges and lemons), strawberries, kiwi, and bell peppers
are rich in this nutrient [56,57].

Role: Vitamin C stands as a versatile water-soluble antioxidant [58]. In addition to its
function in neutralizing free radicals, it plays a crucial role in the production of collagen,
which is essential for preserving the structural integrity of the skin, connective tissues, and
blood vessels [59,60]. Its immunomodulatory characteristics render it essential for athletes
experiencing physical stress [61,62].

2.1.2. Vitamin E (Tocopherols and Tocotrienols)

Source: Present in nuts (almonds and sunflower seeds), as well as in vegetable oils
(sunflower oil and olive oil, etc.) [63,64].

Role: Lipid-soluble compounds, tocopherols and tocotrienols are present in cell mem-
branes, protecting them against oxidative damage [65]. Vitamin E enhances the overall
cellular health of athletes, strengthening immunological function and aiding in the recovery
process after strenuous workouts [66,67].

2.1.3. Beta-Carotene

Source: Beta-carotene is found in large quantities in orange and yellow vegetables such
as carrots and sweet potatoes, as well as in leafy greens like spinach and kale, etc. [68,69].

Role: Beta-carotene, a vivid pigment, acts as a precursor to vitamin A—an essential
nutrient for vision, immunological function, and skin health [70,71]. In addition to its func-
tion as a potent antioxidant, beta-carotene enhances the body’s defenses against oxidative
stress, making it a valuable component in the nutritional regimen of athletes [72,73].

2.1.4. Polyphenols

Sources: Polyphenols are present in a wide range of plant-based foods, such as fruits
(apples, berries), vegetables (onions, broccoli), tea, and red wine [74,75].
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Role: Polyphenols, a wide range of antioxidants, contribute to the vivid hues of fruits
and vegetables [76,77]. This classification includes flavonoids, phenolic acids, and other
subcategories, each providing distinct advantages for one’s health [78,79]. The antioxidant,
anti-inflammatory, and antibacterial properties of polyphenols help athletes maintain good
cardiovascular health and general wellness [67,80].

2.1.5. Selenium

Sources: Nuts (especially Brazil nuts), seeds, seafood, and whole grains are the most
common foods to acquire selenium [81,82].

Role: Glutathione peroxidase and other antioxidant enzymes rely on the trace element
selenium for proper activity [83,84]. Athletes receive benefit from selenium because of its
function in balancing oxidative processes by counteracting reactive oxygen species [85,86].

Athletes, coaches, and nutritionists can use this in-depth look into important antioxi-
dants as a starting point for making dietary selections that support optimal cellular health
and performance. A better grasp of nature’s intricate defense mechanisms is made possible
by the synergistic effects of these antioxidants, which aid athletes in their pursuit of peak
performance.

2.2. Importance of Antioxidants in Human Health

Often disregarded despite their critical importance, antioxidants play a pivotal role in
human health [87]. They are crucial to cellular health, resilience, and disease prevention,
and their significance extends far beyond basic biochemical events [88,89]. The maintenance
of the intricate equilibrium between oxidative stress and antioxidant defense mechanisms
within the human body is heavily reliant on the presence of antioxidants [90]. Oxidative
stress arises from a disparity between the production of reactive oxygen species (ROS) and
the body’s ability to counteract them, which can cause damage to cells, inflammation, and
the development of various diseases [8]. Antioxidants serve as protectors, counteracting
harmful free radicals and protecting cells against oxidative damage. Cellular resilience
is augmented through the facilitation of repair mechanisms, modulation of signaling
pathways implicated in inflammation and apoptosis, and preservation of cellular structural
integrity [91]. As we delve deeper into their importance, we see that antioxidants are
more than just dietary components; they are guardians that navigate the intricate paths
of human health [92,93]. Antioxidants promote overall wellness by assisting the body’s
capacity to adjust to stimuli and maintain functioning at its optimum level [94]. The
nuanced game begins with the body’s natural metabolic processes, which lead to the
ongoing production of free radicals. Antioxidants are important because they actively
seek for and neutralize free radicals, stopping the potential impact caused by oxidative
stress [95]. To keep the fine equilibrium needed for optimal cellular activity, antioxidants
function as molecular barriers by destroying free radicals [96,97]. Ensuring the safety of
biomolecules and cellular structures is the duty of a sentinel during this process, which
goes beyond a simple biochemical transaction.

The narrative gets trickier as we learn about the link between oxidative stress and
chronic health conditions. One of the main causes of many chronic diseases is oxidative
stress, which occurs when the body’s ability to produce free radicals is not proportional to
its capacity to neutralize them [34,98,99]. Heart disease, neurological diseases, and even
some cancers have this behavior as their root cause [100,101]. By disrupting this delicate
equilibrium, antioxidants offer protection against the progressive worsening of chronic dis-
eases [102]. We highlight the antioxidants’ inherent preventive capacity by investigating this
connection. When it comes to cellular health—the basis of overall wellness—antioxidants
play a pivotal role [103,104]. Beyond its ability to neutralize free radicals, antioxidants exert
a wider range of impacts. The intricate regulation of gene expression [105], cellular commu-
nication [106], and DNA repair mechanisms [107], all include their active participation. In
addition to coordinating and improving the functioning of cellular processes, their capacity
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to reduce oxidative stress is a key component of their multifaceted function. In this context,
the absence of disease is secondary to the vitality and robustness of individual cells.

2.3. Dietary Sources of Antioxidants

The nutritional aspect plays a crucial role in supporting human health through an-
tioxidants, serving as a fundamental element [108]. The aim is to explore and understand
the diverse array of foods that are abundant sources of these essential compounds. The
most powerful manifestation of antioxidants is not limited to laboratory formulations, but
rather can be found in a wide variety of fruits, vegetables, nuts, and seeds that are often
consumed [109,110]. By examining these food sources, we discover not only a compilation
of essential nutrients, but also a harmonious blend of culinary elements that promote
well health.

As we begin this exploration, it is crucial to acknowledge that antioxidants are not
difficult to find and are not limited to specialized superfoods. They are present in the
regular foods that make up a balanced diet [111]. Fruits, with their vivid colors, are true
repositories [112], berries, including blueberries, strawberries, and raspberries, are notable
not only for their pleasant flavor but also for their significant amounts of anthocyanins,
a powerful group of antioxidants recognized for their ability to protect against oxidative
stress (Figure 1) [113,114]. Vegetables, which are essential for a diet rich in nutrients, make
a substantial contribution to the collection of antioxidants [115]. Dark, leafy greens such
as spinach and kale contain significant amounts of vitamins A, C, and E, making them
powerful friends in the fight against free radicals [116]. Moreover, cruciferous vegetables
such as broccoli and brussels sprouts contain a significant amount of sulforaphane, a
chemical renowned for its antioxidant and anti-inflammatory properties [117,118].
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Nuts and seeds, renowned for their nutritious compositions, enhance the narrative
surrounding antioxidants [119]. Almonds, walnuts, and sunflower seeds are rich in vitamin
E, while brazil nuts are notable for their selenium concentration, which is an essential trace
mineral for the production of antioxidant enzymes [120,121]. The array of antioxidants goes
beyond the usual, demonstrating that having a diverse diet is not only enjoyable but also
a deliberate way to increase antioxidant consumption [122]. By incorporating foods rich
in antioxidants into our diet, it becomes clear that a balanced diet is not just a nutritional
recommendation, but also an effective method to increase antioxidant levels [123]. The



Antioxidants 2024, 13, 437 7 of 38

combination of several foods, each providing its distinct combination of antioxidants,
creates a comprehensive method to guarantee sufficient consumption [124]. It emphasizes
the significance of having a varied diet, encouraging consumers to explore the wide range
of natural foods in order to obtain the complete range of antioxidant benefits [125].

3. Sports and Oxidative Stress
3.1. Introduction to Oxidative Stress in Sports

Within the field of sports science, the dynamic relationship between physical activity
and oxidative stress is a captivating narrative that influences how players approach their
training, recovery, and overall performance [126]. The aim is to explain the notion of
oxidative stress in the context of sports, which acts as a physiological stimulus for adapta-
tion and a possible indicator of injury. In this investigation, we examine the complexities
of oxidative stress, analyzing its precise meaning, comprehending its occurrence during
physical activity, and acknowledging its ambivalent role as both an ally and adversary
in the realm of sports. The core of this investigation is around the understanding that
oxidative stress is not a detrimental outcome of physical exertion, but rather a fundamental
physiological response that is essential to the adaptive processes triggered by sports train-
ing [127]. Oxidative stress, in the context of athletics, refers to an imbalance between the
generation of reactive oxygen species (ROS) and the body’s capacity to counteract them
via antioxidant defenses (Figure 2) [128,129]. The delicate balance is greatly affected by the
intensity, duration, and nature of physical activity, which is essential knowledge for both
athletes and sports professionals [86,130].
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Oxidative stress occurs in sports when the formation of reactive oxygen species (ROS)
exceeds the body’s ability to counteract these molecules, potentially causing damage to
cellular structures [130,131]. During vigorous physical exercise, athletes experience an
elevation in oxygen consumption, which promotes the production of reactive oxygen
species (ROS) [132,133]. The increased level of oxidative stress becomes especially apparent
during activities that require substantial aerobic metabolism, underscoring the significance
of identifying the precise circumstances in which athletes may be more vulnerable to
oxidative stress [134,135].

Sports and exercise are inherently characterized by physical exertion, which serves as
a stimulant for the production of ROS [128,136]. The generation of free radicals is a result
of muscular contractions, heightened oxygen consumption, and metabolic activities that
occur during exercise [137]. Although it may be initially seen as a potential threat, it is
crucial to emphasize the dual function of oxidative stress in the field of athletics, which
goes beyond its reputation as a simple adversary. Oxidative stress, when examined with
a sophisticated perspective, unveils its complex and diverse characteristics. It serves as a
signaling system that prompts adaptive responses in the body, leading to enhancements
in endurance, strength, and overall performance [138]. However, if the body’s ability to
adapt is exceeded by oxidative stress, it can become a possible cause of damage. This
can lead to muscle fatigue, inflammation, and in the long run, it may compromise sports
well-being [139,140]. Achieving this delicate equilibrium requires a combination of skill
and knowledge for athletes and their support teams, emphasizing the importance of
customized plans that utilize the beneficial effects of oxidative stress while minimizing its
potential disadvantages.

3.2. Mechanisms of Oxidative Stress during Physical Activity

The physiological aspects of sports are greatly affected by oxidative stress, a process
that happens during physical exertion [141]. Oxidative stress during exercise is not just a
common side effect of exercise, it is a potent factor that determines the adaptive responses in
the human body (Figure 2). This inquiry aims to analyze the complex biological mechanisms
that generate it [142]. To better comprehend the molecular mechanisms, it is crucial to
grasp the origin of oxidative stress, which is closely linked to the generation of reactive
oxygen species (ROS) [143,144]. An elevated oxygen demand is associated with physical
activity, especially that which involves an increase in aerobic metabolism [145,146]. There
are pros and downsides to increasing oxygen consumption, as it results in more reactive
oxygen species (ROS) being produced [147,148]. These highly reactive molecules, including
free radicals such as superoxide anion and hydroxyl radical, are produced naturally as
byproducts of cellular respiration and metabolic activities during physical exercise [149].

The effect of oxidative stress varies significantly and is intimately influenced by the
three key factors of exercise: intensity, duration, and type [150]. High-intensity activities,
which are known for their demanding requirements on energy systems, frequently result
in an increased rate of reactive oxygen species (ROS) formation [151]. Engaging in long
periods of physical activity, particularly in endurance sports, increases the amount of
time that the body is exposed to oxidative stress, which might potentially amplify its
impact [152]. In addition, the specific type of exercise, whether it is aerobic or anaerobic,
creates unique metabolic requirements that affect the type and degree of oxidative stress
that athletes encounter [153,154].

Mitochondria, commonly recognized as the primary source of energy in cells, are
revealed to play a crucial role in the story of oxidative stress [155,156]. Although they
function as the principal locations for the formation of reactive oxygen species (ROS), they
are also equipped with complex defense mechanisms, including antioxidant enzymes,
to ensure cellular balance [157,158]. The intricate equilibrium between the production
of reactive oxygen species (ROS) in mitochondria and the protective mechanism against
oxidative damage plays a crucial role in influencing the adaptive responses triggered by
oxidative stress during physical exercise [159,160]. A potent combination of oxidative stress
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and inflammation, a normal response to tissue damage or stress, is created in the context of
exercise-induced physiological changes [135,161]. Chronic inflammation due to persistent
oxidative stress poses risks for athletes, even while minor inflammation is thought of
as a typical aspect of the body’s adaptive response [10,162]. The complex mechanisms
that control the body’s response to exercise can be better understood by delving into the
relationship between oxidative stress and inflammation [163,164].

3.3. Impact of Oxidative Stress on Athletic Performance

Athletes’ abilities are greatly affected by an association between exercise and oxidative
stress [165]. Starting with the biological foundations and progressing to the tangible
outcomes that influence the sports world, this discussion aims to explore the multiple ways
in which oxidative stress impacts an athlete’s performance (Figure 2). Athletes’ performance
is significantly impacted by oxidative stress, which is a normal response to intense physical
exertion [161,163,166,167]. The effects of this oxidative environment on muscle fatigue and
recovery are especially noticeable [168]. Athletes risk muscular fatigue due to the persistent
generation of reactive oxygen species (ROS) in their pursuit of peak performance. This
has an impact on both the short-term performance and the long-term training adaptations.
In order to improve performance, strength, and endurance, athletes have to understand
the delicate balancing act between oxidative stress and adaptive responses within muscle
fibers [169,170].

The narrative takes on new depths when we consider the intricate relationship between
oxidative stress and damage. The capacity of exercise to increase strength and resilience
is well-known. But the balance could shift in favor of susceptibility if oxidative stress
continues. Potential harm could be increased by oxidative damage to tissues along with the
subsequent inflammatory response [171,172]. Acknowledging this potential connection is
critical because it encourages athletes and their support staff to take a holistic approach that
targets both performance improvement and injury prevention using innovative techniques.
When considering the effects of oxidative stress on athletic performance, it becomes clear
that there is a requirement for efficient methods to control this physiological reaction [173].
Recognizing that oxidative stress is an inherent component of exercise, the attention turns
to utilizing its beneficial elements while minimizing potential disadvantages [174]. In order
to more effectively protect themselves against oxidative stress, athletes are encouraged to
follow specific dietary protocols that include consuming foods rich in antioxidants [175].
Optimizing training routines, ensuring sufficient recovery, and incorporating sophisticated
rest intervals are just as important as diet. A complete strategy that helps athletes per-
form well under conditions of high exertion and oxidative stress must take these into
account [72,162,176,177].

4. The Role of Plants in Sports Nutrition
4.1. Plant-Based Diets for Athletes

Plant-based diets have been a central focus in the constantly changing field of sports
nutrition. They are not only a food preference, but a holistic lifestyle approach for ath-
letes [178]. The aim is to explore the idea of plant-based nutrition in the context of sports,
which goes beyond conventional dietary boundaries and is increasingly popular among
athletes who are looking to achieve peak performance and overall well-being. The core
of this investigation revolves around the introduction of plant-based diets, which refer
to dietary patterns primarily focused on consuming plant-derived foods. The transition
towards a plant-based diet represents a deviation from traditional sports nutrition prac-
tices, which frequently give preference to protein sources originating from animals [179].
Athletes are encouraged to adopt a new way of thinking that involves embracing the wide
range of plant-based foods, such as fruits, vegetables, whole grains, legumes, nuts, and
seeds [180–183].

Plant-based diets include natural adaptability, allowing for the inclusion of diverse
dietary preferences and limits [183]. These variations encompass vegetarianism, which
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excludes animal products except for dairy and eggs, and veganism, which excludes all
animal products [184]. Within this range, athletes may choose to follow a flexitarian strategy,
which involves including plant-based meals while not completely eliminating animal
products [179]. Appreciating this variety is crucial for comprehending the intricate methods
by which athletes manage plant-based nutrition to achieve their distinct performance and
dietary objectives.

The popularity of plant-based diets among athletes has experienced significant mo-
mentum [14,185,186]. In addition to ethical concerns, athletes are attracted to plant-based
diets due to their alleged health advantages, environmental sustainability, and potential
to improve athletic performance [187]. Athletes from many sports have enthusiastically
adopted plant-based diets, highlighting the practicality and benefits of including more
plant-based foods in their conventional training routines [187–189]. The potential benefits
and drawbacks of athletes switching to plant-based diets are covered in this study. Improv-
ing cardiovascular health, speeding up recovery due to plant-based diets’ anti-inflammatory
properties, and perhaps better weight control are all benefits [190,191]. Sufficient protein
consumption, nutritional shortages, and managing the social and practical demands of a
plant-based lifestyle with hard training can be challenging [185].

4.2. Nutrient-Rich Plants for Sports Nutrition

Identifying nutrient-rich plants that are necessary for a balanced diet is a major focus
in the area of plant-based nutrition for athletes [186]. Researchers need to find plant-
based diets that are high in essential nutrients for peak performance on the field. This
aims to emphasize the need of strategic fueling that caters to the specific requirements
of sports. However, understanding the nutrient composition of non-plant-based sports
diets is equally essential in order to provide athletes with a complete understanding of
nutritional options. This comparison reference point may facilitate informed decision-
making regarding dietary choices for athletes, considering elements such as nutrient
adequacy, performance optimization, and overall health outcomes (Table 2) [192]. Central
to this investigation is the focus on particular nutrients acknowledged as crucial elements
for athletic performance. Protein, which is essential for the repair and growth of muscles,
is of utmost importance [193]. Legumes like lentils and chickpeas, nuts such as almonds
and walnuts, and soy products like tofu and tempeh are important sources of protein for
athletes [194,195]. This examination of protein obtained from plants not only questions
traditional beliefs but also emphasizes the wide range of protein-rich choices accessible to
anyone adopting a plant-based diet [196].

Iron, an essential element for the transportation and consumption of oxygen, becomes
another topic of emphasis [197]. Spinach, lentils, and fortified cereals are plant-based
sources of iron that can help athletes fulfill their iron requirements without depending
on conventional animal-derived sources [198]. The narrative transitions from perceived
constraints to the ample options that enable athletes to create meals rich in nutrients that
are in line with their training objectives.

Calcium, which is crucial for maintaining strong bones and proper muscle function, is
found in plant-based sources such as fortified plant milks, leafy greens like kale and bok
choy, and tofu made with calcium sulfate [199,200]. This investigation not only questions
the traditional story that links calcium solely with dairy, but also emphasizes the flexibility
and variability of plant-based sources.

Omega-3 fatty acids, known for their ability to reduce inflammation and promote
heart health, are the subject of attention [201,202]. Athletes can get appropriate omega-3
consumption without relying on fish-derived options by consuming plant-based sources
such as flaxseeds, chia seeds, hemp seeds, and walnuts [202–205]. This shift in perspective
emphasizes the nutritional knowledge inherent in plant-based diets and their ability to
meet the complex requirements of athletes.

The main message goes beyond listing nutrient-rich plants—it emphasizes the sig-
nificance of a well-balanced plant-based diet as a strategic approach to fulfill nutritional
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requirements. This nutritional approach not only debunks misconceptions about nutri-
ent inadequacies but also promotes the concept that a thoughtfully chosen assortment of
plant-based foods may provide athletes with a strong basis for achieving peak performance.

Table 2. Comparative nutrient composition in plant-based vs. non-plant-based sports diets for athletes.

Nutrient Plant-Based Sports Diet Non-Plant-Based Sports Diet References

Protein Legumes, Tofu, Tempeh, Seitan, Quinoa Chicken, Fish, Lean Meat, Eggs [206,207]

Omega-3 Fatty Acids Flaxseeds, Chia Seeds, Walnuts, Algal Oil Fatty Fish (Salmon, Mackerel), Fish Oil
Supplements [208,209]

Iron Lentils, Chickpeas, Spinach, Pumpkin
Seeds Red Meat, Poultry, Fish, Fortified Cereals [210,211]

Calcium Kale, Bok Choy, Tofu (Calcium-set),
Fortified Plant Milk

Dairy Products, Fortified Dairy
Alternatives [212,213]

Vitamin B12 Fortified Foods (Plant Milk, Breakfast
Cereals), B12 Supplements Animal Products (Meat, Dairy, Eggs) [214,215]

Zinc Lentils, Chickpeas, Pumpkin Seeds,
Cashews Meat, Shellfish, Dairy Products [216,217]

Vitamin D Fortified Plant Milk, Fortified Orange Juice,
Sun Exposure

Fatty Fish (Salmon, Tuna), Fortified Dairy
Products [218,219]

Fiber Whole Grains, Legumes, Nuts, Seeds,
Fruits, Vegetables Limited in Animal Products [220,221]

Antioxidants Berries, Dark Leafy Greens, Nuts, Seeds Not as Prominent in Traditional Sports
Diets [222,223]

Carbohydrates Whole Grains (Brown Rice, Quinoa), Sweet
Potatoes, Fruits Pasta, Bread, Rice (White) [224,225]

4.3. Plant Compounds and Their Potential Benefits in Sports

Further investigating the connection between plant-based nutrition and athletic per-
formance, the analysis extends to include the diverse range of bioactive chemicals naturally
found in plants [226]. The aim is to explore the potential advantages of plant compounds
for athletes, by shifting the attention from just the nutritional value to the complex net-
work of phytochemicals, antioxidants, and anti-inflammatory compounds. These elements
contribute to improved recovery and resilience in the field of sports. The main focus of
this investigation is the examination of phytochemicals, which are plant components that
provide health benefits beyond basic nutrients [227]. Athletes, in their pursuit of peak
performance, may discover valuable support in these bioactive substances [228]. Phyto-
chemicals, specifically flavonoids present in berries, citrus fruits, and tea, have been linked
to anti-inflammatory and antioxidant characteristics [180,229]. Berries like strawberries
and blueberries, for example, include flavonoids called anthocyanins and flavonols that
have been associated with potent antioxidant effects [230]. Similarly„ flavonoids found
in citrus fruits like oranges and lemons, such as hesperidin and naringenin, have anti-
inflammatory properties and contribute to overall health [231]. Furthermore, catechins like
epigallocatechin gallate (EGCG), which are well-known for their anti-inflammatory and
antioxidant properties, are rich in tea, especially green tea [232]. This discovery broadens
the range of tools available to athletes, going beyond traditional nutrition, and encour-
aging them to utilize the potential advantages of these substances produced from plants.
Antioxidants, highly regarded for their capacity to counteract free radicals and address
oxidative stress, are recognized as significant contributors in the discussion surrounding
plant compounds [233]. Athletes who are facing the challenges of rigorous training might
seek assistance from plant-based foods that are rich in antioxidants, such as vibrant fruits
and vegetables, as well as nuts and seeds [14,234]. The study goes beyond simply listing
antioxidants and delves into a detailed examination of how these substances can impact an
athlete’s physiological environment, perhaps improving recovery and strengthening the
body against the demands of training.
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The presence of anti-inflammatory substances in plant-based diets is crucial in the
field of sports nutrition [235]. The primary cause of the diet’s anti-inflammatory effects
is the presence of nutrients and bioactive compounds that alter the body’s inflammatory
pathways. For example, certain antioxidants found in plant-based diets, such as polyphe-
nols and flavonoids, can prevent the production of pro-inflammatory cytokines including
interleukin-6 (IL-6) and tumor necrosis factor-alpha (TNF-α) [236,237]. Furthermore, by
competing with omega-6 fatty acids for enzymatic conversion into pro-inflammatory
eicosanoids, omega-3 fatty acids—which are abundant in foods like flaxseeds, walnuts,
and fatty fish—execute anti-inflammatory effects [238]. Additionally, eating a diet high in
fiber, such as fruits, vegetables, and whole grains, encourages the growth of beneficial gut
bacteria which produce short-chain fatty acids that help regulate immune responses and
reduce inflammation [239]. The innate inflammatory response elicited by physical activity
is an integral aspect of adaptation, however, persistent inflammation presents hazards to
athletes [240]. The narrative emphasizes the presence of plant chemicals, such as curcumin
in turmeric, quercetin in onions and apples, and resveratrol in grapes, which are known
for their potential anti-inflammatory properties [241,242]. Athletes are encouraged to view
these substances not only as supplements, but also as essential elements of a comprehensive
strategy for reducing inflammation and enhancing recovery.

The narrative goes beyond the biochemical aspects to discuss the physiological conse-
quences that athletes should expect, using specific plant chemicals as examples [243,244].
Resveratrol, which is present in red grapes, has been linked to better cardiovascular health
and increased endurance [245]. The narrative presented here surpasses the reductionist
perspective, encouraging athletes to not only focus on the nutritional value, but also to
recognize the comprehensive advantages inherent in the wide range of plant chemicals. The
focal topic of this investigation is the examination of how plant chemicals can potentially
enhance recovery and resilience. The narrative invites athletes to consider plant-based nu-
trition as more than just a dietary choice, but as a comprehensive strategy that strengthens
the body against oxidative stress, promotes anti-inflammatory responses, and enhances
general resilience in the face of athletic obstacles.

5. Antioxidants in Plant-Based Foods
5.1. Overview of Antioxidants in Plants

The narrative that emerges from looking into the antioxidant content of plant-based
diets extends beyond the usual nutrition debates [74]. The goal is to get individuals to
pay attention to the wide variety of antioxidants that plants contain. Collectively, these
antioxidants enhance overall health like a symphony of defensive mechanisms (Figure 3).
The examination of antioxidants in plants offers a comprehensive exploration of the diverse
array of phytonutrients, each fulfilling a unique function in enhancing well-being [246].
Plants contain a variety of antioxidants, such as flavonoids in berries and carotenoids in
colorful vegetables, that go beyond the usual nutrient classifications [180,247,248]. In its
complex web of effects, plant-based diets involve a wide variety of chemicals, and this
study casts emphasis on the idea of a single antioxidant hero.

Highlighting the wide range of antioxidants present in plants is crucial for changing
the way we think about consuming antioxidants (Table 3) [249]. The conventional method
frequently focuses on a limited number of well-established antioxidants, but the plant-
based viewpoint expands the scope to include other lesser-known yet equally powerful
antioxidants [250]. This variety encourages athletes to explore a diverse and vibrant range
of plant-based foods, each providing its own combination of antioxidants to promote
overall health (Figure 3).
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This study explores and explains the differences in the functioning of antioxidants
obtained from plant sources compared to those obtained from other dietary sources [248].
Although antioxidants obtained from supplements or animal-derived sources have a role
to play, the distinct bioavailability and synergistic interactions shown in plant-based an-
tioxidants provide a strong argument [196]. Plant-derived bioactive compounds frequently
demonstrate a range of functions, such as anti-inflammatory and anti-cancer capabilities.
These chemicals provide athletes with a comprehensive approach to supporting their health,
which goes beyond the conventional antioxidant concept [251]. The core focus is on the
synergy between various antioxidants found in plant-based meals, highlighting that their
cumulative impact is more significant than the individual chemicals alone [252]. The study
goes beyond simplistic viewpoints, encouraging athletes to perceive their dietary choices
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not as separate decisions but as contributions to a balanced symphony of health-enhancing
chemicals [228,252]. This comprehensive approach encourages athletes to embrace the
combined advantages inherent in entire, plant-based meals, acknowledging that the total
effect is higher than the individual antioxidant components [175,178].

Table 3. Summary of scientific studies on sports, plant-based diets, and antioxidants: methodologies,
sample sizes, and findings.

Study Title Methodology Sample Size Main Findings Reference

The Effect of
Pomegranate Juice

Supplementation on
Strength and Soreness
after Eccentric Exercise

Randomized,
double-blind,

placebo-controlled
crossover trial

17 healthy, physically
active, resistance-trained

men

In resistance-trained
people, twice-daily
pomegranate juice

supplementation lowers
muscular soreness in the

elbow flexor but not in the
knee extensor muscles.

[253]

Effects of a single dose of
beetroot juice on cycling
time trial performance at

ventilatory thresholds
intensity in

male triathletes

Randomized,
double-blind,

placebo-controlled
crossover trial

12 well-trained, male
triathletes (aged 21-47 yr)

Acute BJ supplementation
does not support an
improvement in the
variables examined.

Higher doses are needed
for improving time trial

performance in male
triathletes during a cycle

ergometer test.

[254]

Influence of tart cherry
juice on indices of
recovery following
marathon running

Randomized,
double-blind,

placebo-controlled trial

20 volunteers, male (n = 13)
and female (n = 7).

Demonstrated that the
cherry juice reduced
oxidative stress and

inflammation and hence
increases the rate of

recovery.

[255]

Dietary antioxidant
restriction affects the

inflammatory response
in athletes

Observational study
17 healthy

endurance-trained male
adults aged 18–35 years

A diet rich in carotenoids
may be beneficial to

combat exercise-induced
oxidative stress in athletes

performing exercise.

[256]

Effect of blueberry
ingestion on natural

killer cell counts,
oxidative stress, and

inflammation prior to
and after 2.5 h of running

Randomized, controlled
trial 25 healthy adults

Daily blueberry
consumption for 6 weeks
increases NK cell counts,

and acute ingestion
reduces oxidative stress

and increases
anti-inflammatory

cytokines.

[257]

Effect of green tea extract
supplementation on

exercise-induced delayed
onset muscle soreness
and muscular damage

Randomized, triple-blind,
placebo-controlled trial 20 healthy, untrained men

The green tea extract
supplementation has

positive effects on muscle
recovery after strenuous

exercise.

[258]

Curcumin
supplementation likely

attenuates delayed onset
muscle soreness (DOMS)

Randomized,
double-blind, controlled

trial
17 healthy adults

Oral curcumin likely
reduces pain associated
with DOMS with some
evidence for enhanced

recovery of muscle
performance.

[259]
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Table 3. Cont.

Study Title Methodology Sample Size Main Findings Reference

A 12-Week Randomized
Double-Blind

Placebo-Controlled
Clinical Trial, Evaluating

the Effect of
Supplementation with a

Spinach Extract on
Skeletal Muscle Fitness in

Adults Older Than
50 Years of Age

Double-blind,
placebo-controlled
randomized trial

51 participants

In subjects,
moderate-intensity

strength training combined
with daily

supplementation for
12 weeks with a natural

extract of Spinacia oleracea L.
improved muscle-related

variables and muscle
quality

[260]

Effect of Exercise on
Oxidative Stress: A

12-Month Randomized,
Controlled Trial

12-months randomized
control trial (RCT) 173 overweight women

Aerobic exercise, when
accompanied by relatively

marked gains in aerobic
fitness, decreases oxidative

stress among previously
sedentary older women.

[261]

Antioxidant and
anti-nociceptive effects of

Phyllanthus amarus on
improving exercise

recovery in sedentary
men: a randomized

crossover (double-blind)
design.

Randomized,
double-blind, controlled

trial
12 participants

Acute Phyllanthus amarus
supplementation reduced

oxidative stress and muscle
soreness induced by

high-intensity exercise

[262]

Consumption of an
Anthocyanin-Rich

Extract Made from New
Zealand Blackcurrants
Prior to Exercise May
Assist Recovery from
Oxidative Stress and

Maintains Circulating
Neutrophil Function: A

Pilot Study

Experimental design 12 participants

Consumption of
blackcurrant

anthocyanin-rich extract
(BAE) 1 h prior to exercise
facilitated recovery from

exercise-induced oxidative
stress and preserved

circulating neutrophil
function.

[263]

A double-blind,
randomized,

placebo-controlled trial
on the effect of

Ashwagandha (Withania
somnifera dunal.) root
extract in improving

cardiorespiratory
endurance and recovery
in healthy athletic adults

Double-blind,
randomized,

placebo-controlled trial
50 endurance athletes

Ashwagandha root extract
can successfully enhance

cardiorespiratory
endurance and improve

the quality of life in healthy
athletic adults

[264]

Effects of Six-Week
Ginkgo biloba

Supplementation on
Aerobic Performance,

Blood Pro/Antioxidant
Balance, and Serum

Brain-Derived
Neurotrophic Factor in
Physically Active Men

Double-blind,
placebo-controlled Trial 18 active young men

Ginkgo biloba extract
provide improvements in
endurance performance
and blood antioxidant

capacity, and elicit
somewhat better

neuroprotection through
increased exercise-induced

production of BDNF.

[265]
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Table 3. Cont.

Study Title Methodology Sample Size Main Findings Reference

Evaluation of the Efficacy
of Supplementation with
Planox® Lemon verbena
Extract in Improving
Oxidative Stress and
Muscle Damage: A

Randomized
Double-Blind

Controlled Trial

Randomized
double-blind controlled

trial
30 males and 30 females

Lemon verbena extract is a
safe and edible natural
plant extract that can

reduce muscle damage and
soreness after exercise.

[266]

5.2. Specific Antioxidants Found in Common Plant Foods

In order to comprehend the vast array of health-promoting compounds contained
in staple plant foods including fruits, vegetables, grains, and legumes, it is necessary
to do in-depth research on the specific antioxidants present in these meals. We delve
into the complex understanding of antioxidants, their potential health benefits, and the
wide range of antioxidant profiles found in different plant-based sources, going beyond
just listing them. Within the domain of fruits, the array of antioxidants is extensive and
varied [112]. Vitamin C, which is plentiful in citrus fruits, strawberries, and kiwi, is
a powerful antioxidant that enhances the immune system [111,182]. Additionally, the
anthocyanins included in berries, such as blueberries and raspberries, provide both their
vivid colors and valuable properties that reduce inflammation and protect the nervous
system [267,268]. In addition to common antioxidants, the narrative delves into less well-
known compounds, including the apple quercetin and grape resveratrol, which each have
their own unique health benefits [269,270].

Vegetables, which are essential for a diet rich in nutrients, provide a wide variety of
antioxidants [181,271,272]. Carotenoids, such as beta-carotene found in carrots and sweet
potatoes, lutein present in spinach, and lycopene found in tomatoes, demonstrate the wide
range of antioxidants present in this food group [273,274]. These chemicals have multiple
benefits, including enhancing pigmentation and playing important roles in maintaining eye
health, protecting the skin, and promoting cardiovascular well-being [275]. Furthermore,
cruciferous vegetables, such as broccoli and brussels sprouts, provide sulforaphane to the
collection of antioxidants, which may provide anti-cancer advantages [276,277].

Grains, which are sometimes undervalued for their antioxidant content, offer a cap-
tivating variety of chemicals [278,279]. The phenolic acids present in whole grains, such
as oats and brown rice, have antioxidant and anti-inflammatory properties [278,280].
Flavonoids, commonly found in fruits, also have a positive impact on grains such as
buckwheat and quinoa, providing a wide range of health advantages [281,282]. This discov-
ery challenges the traditional belief that antioxidants are only found in colored fruits and
vegetables. It encourages athletes to recognize the nutritional value present in whole grains.

Legumes, which are known for their high protein content in plant-based diets, also
serve as sources of antioxidants [183,283]. Soybeans include isoflavones, which have both
hormonal balancing effects and antioxidant capabilities [284,285]. In addition, the polyphe-
nols found in lentils and chickpeas enhance the antioxidant activity in legumes, providing
a diverse and comprehensive approach to promoting health [286,287]. This narrative goes
beyond the protein-focused perspective on legumes, urging athletes to acknowledge the
comprehensive nutritional benefits of these plant-based sources of strength.

An essential aspect of our investigation involves providing detailed information about
the potential health advantages linked to each antioxidant. Vitamin E, present in nuts and
seeds, acts as an antioxidant and promotes skin health and immunological function [58,288].
The catechins included in green tea, which is made from the leaves of the Camellia sinensis
plant, contribute to antioxidant and anti-inflammatory actions, potentially improving
cardiovascular health [289,290]. Displaying the range of antioxidant compositions in
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various plant-based diets offers a visually engaging exploration of the wide spectrum
of nutritional variations. The colors of berries, leafy vegetables, and turmeric represent
different antioxidants, each with its own specific health benefits [1,31,190,228].

5.3. Synergistic Effects of Antioxidants in Plants

To better understand the intricate relationship between various plant antioxidants and
how they synergistically boost each other’s efficacy, research into plant-based nutrition
has focused on the concept of antioxidant synergy (Figure 4). Beyond the conventional
understanding of antioxidants in isolation, this study explores the complex interplay
between plant-based diets and antioxidants, to determine the latter’s role in athletic health
and performance. The idea of synergy among plant antioxidants is shown as a story that
goes beyond the combined effect of each individual antioxidant [291]. The complex network
of phytonutrients found in plant meals, each with its distinct antioxidant composition,
work together in a coordinated manner to enhance the total antioxidant impact [292].
This interdependent interaction challenges simplistic viewpoints, encouraging athletes to
perceive their food decisions not solely as suppliers of individual components, but rather
as coordinated arrangements that promote good health.
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The narrative is centered on explaining how antioxidants in plants can work together.
Vitamin C and flavonoids, which are present in many fruits and vegetables, have a syn-
ergistic effect when taken together. A number of flavonoids have their bioavailability
enhanced by vitamin C because of its tendency to increase absorption [293,294]. Beyond the
obvious nutritional benefits, there is an intricate network of processes that allows athletes
to get a variety of antioxidant benefits from plant-based diets. Illustrating instances of
antioxidant synergy in particular plant-based meals vividly demonstrates this principle
(Figure 4). When leafy greens, which are high in carotenoids, are combined with tomatoes,
which are rich in vitamin C and lycopene, the resulting meal visually demonstrates the
concept of antioxidant synergy [108,295]. The complex equilibrium present in this meal not
only provides a wide range of antioxidants but also likely enhances their combined effect.
Athletes are advised to carefully select meals that highlight this harmonious combination,
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acknowledging that the colors and flavors on their plate represent more than just visual
appeal—they represent a deliberate strategy to enhance health and performance [296].

The vital impact of antioxidant synergy on overall health and performance is the
primary foci of this study. It is recommended that athletes think about the quality as well as
the quantity of antioxidants in their meals [175]. A complete diet rich in plant-based foods
such fruits, vegetables, grains, and legumes is the best way to take advantage of antioxidants
in their whole form [196,297]. The narrative challenges the idea that antioxidants may
be easily substituted for one another and emphasizes the significance of recognizing the
intricacies present in plant-based meals for achieving overall health optimization [298].

6. Practical Applications for Athletes
6.1. Incorporating Plant-Based Foods into Athletes’ Diets

Athletes need an organized strategy to incorporate plant-based nutrition into their
meals [179]. The goal of these suggestions is to provide athletes with easy-to-implement
instructions that they may incorporate into their dietary plans. An increase in variety, a
focus on high nutritional content, and customization for different sports and training stages
are the main goals. Protein should come from a variety of sources, according to the plant-
based diet guidelines [178]. Diverse plant-based protein sources, such as edamame, lentils,
beans, and tofu, are recommended for athletes [186]. Ensuring a comprehensive amino
acid composition is the goal, as it maximizes the process of protein synthesis. Athletes
are encouraged to focus on plant-based options that are minimally processed, including
fruits, vegetables, whole grains, nuts, and seeds, by highlighting the importance of whole
foods. Optimal nutrition consumption and improved health are the goals of this approach,
which aims to reduce reliance on processed foods. It is the goal of meal planning strategies
to strike a balance between nutrient density and nutritional balance. For optimal energy
during training and recovery, athletes should aim to eat a balanced diet that includes
carbs, proteins, and fats (the “macros”) [299]. The aesthetic value of the dish is elevated,
and the variety of phytonutrients and antioxidants provided by the fruits and vegetables
is assured, by using a diversified selection of these ingredients [300]. Energy levels and
muscle recovery are affected by the timing of food intake, which is why this factor is given
special attention when discussing exercise sessions [301]. When thinking about different
sports and training times, specific dietary considerations come up [302]. Endurance athletes
should fuel their lengthy training sessions with carbohydrate-rich plant foods [2]. A diet
rich in iron and vitamin C is crucial for endurance athletes since their bodies need more iron
than the average person [303]. On the contrary, athletes who put an emphasis on strength
and power use plant-based protein sources to help with recovery and protein synthesis in
the muscles. Because omega-3 fatty acids may have strong anti-inflammatory effects, they
also highlight the need of eating foods high in these nutrients [304]. Nutrient intake should
be structured to coincide with different training stages, and calorie consumption should be
adjusted according to the quantity of training.

6.2. Developing Antioxidant-Rich Meal Plans for Training and Recovery

In order to help athletes in their training and recovery, this section provides cus-
tomized meal plans (Table 4) that are high in antioxidants and made to fit their nutritional
demands. Primarily, the content is devoted to offering sample antioxidant-rich meal
plans that are designed for pre-training, post-training, and recovery phases. In addition,
taking into account the different needs of athletes, the factors also include adjusting to
changes based on personal dietary preferences and limitations. Recognizing the pivotal
role that time and composition play in achieving optimal results, the study emphasizes
their critical importance.

During the pre-training period, it is advised to follow a meal plan that focuses on
providing a well-balanced combination of macronutrients to provide a consistent supply
of energy during the impending physical activity [305,306]. A deliberate integration of
intricate carbs, lean proteins, and nourishing fats is tactically implemented. Athletes
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can derive advantages from ingesting foods that are rich in antioxidants, such as berries,
almonds, and leafy greens, during this phase. This helps to promote cellular health and
establish a solid nutritional base for the impending activity [234,307].

Post-training meal regimens prioritize effective recovery by focusing on replenishing
glycogen stores and promoting muscle regeneration [308]. The focus here is on maintaining
a balanced consumption of carbs and proteins, with a significant role being played by
components that are rich in antioxidants [309]. Consuming fruits that are rich in vitamin C,
such as citrus fruits or kiwi, might help decrease oxidative stress [310,311]. Additionally,
including plant-based protein sources like beans or tofu in diet guarantees a well-rounded
dietary profile that supports recovery [312].

The recovery phase highlights the need of restoring energy reserves and promoting
muscle restoration [313]. The meal plan suggests incorporating a blend of carbohydrates
and proteins, while also emphasizing the use of anti-inflammatory foods [314,315]. Adding
vibrant vegetables such as bell peppers and tomatoes, which are recognized for their
antioxidant capabilities, is crucial in reducing inflammation caused by exercise [316]. Cus-
tomizing these regimens to suit individual nutritional preferences guarantees that athletes
may follow the guidelines while meeting their distinct likes and limitations.

Within these suggestions, the study continuously highlights the crucial elements of
timing and composition. Consuming these meals rich in antioxidants at the appropriate
time corresponds to the distinct requirements of each phase, be it preparing the body for
physical activity, aiding in recuperation, or enhancing cellular health during periods of
rest [309]. The meal plans are carefully designed to incorporate a balanced combination
of macronutrients and micronutrients, acknowledging that the interaction between these
components enhances the overall efficacy of the dietary approach [317].

Table 4. Recommended antioxidant-rich plant-based foods for athletes: a concise guide.

Food Group Food Options Key Antioxidants Benefits for
Athletes

Additional
Nutrients Reference

Protein Powerhouses

Lentils Phenolic acids,
Flavonoids

Muscle repair,
satiety, sustained

energy
Fiber, Iron, Folate [194,318]

Tempeh Isoflavones,
Lunasin

Muscle building,
immune function

Iron, Calcium,
Prebiotics [319,320]

Quinoa Quercetin,
Kaempferol

Reduced
inflammation,

improved recovery

Fiber, Magnesium,
Iron [224,321]

Tofu Genistein,
Daidzein

Bone health,
muscle

preservation

Calcium, Iron,
Manganese [322,323]

Nuts and Seeds
(almonds, chia,

hemp)

Vitamin E,
Selenium

Reduced oxidative
stress, cell
protection

Healthy fats, Fiber,
Minerals [324,325]

Fuel for Performance
(high in complex carbs)

Brown rice Anthocyanins,
Phenolic acids

Sustained energy
release, blood
sugar control

Fiber, Manganese,
B vitamins [326,327]

Sweet potatoes Beta-carotene,
Chlorogenic acid

Improved blood
flow, muscle
endurance

Vitamin A,
Potassium, Fiber [328,329]

Oats Avenanthramides,
Ferulic acid

Reduced
inflammation,

improved recovery

Fiber, beta-glucan,
Magnesium [330,331]
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Table 4. Cont.

Food Group Food Options Key Antioxidants Benefits for
Athletes

Additional
Nutrients Reference

Vitamin & Mineral
Champions

Berries
(blueberries,
strawberries)

Anthocyanins,
Ellagic acid

Improved
cognitive function,

reduced muscle
soreness

Vitamin C, Fiber,
Potassium [332–334]

Leafy greens (kale,
spinach) Vitamin C, Lutein

Bone health,
immune function,

eye health

Vitamin K, Folate,
Calcium [335,336]

Cruciferous
vegetables
(broccoli,

cauliflower)

Glucosinolates,
Sulforaphane

Detoxification,
cancer prevention

Fiber, Vitamin C,
Potassium [337,338]

Fortified plant
milks (calcium,

vitamin D)

Calcium, Vitamin
D

Bone health,
immune function

Vitamin B12,
Riboflavin [339,340]

Omega-3 Superstars

Chia seeds Alpha-linolenic
acid (ALA)

Brain health,
reduced

inflammation

Fiber, Protein,
Calcium [341,342]

Algae oil
(DHA/EPA

supplements)

Docosahexaenoic
acid (DHA),

Eicosapentaenoic
acid (EPA)

Cognitive function,
muscle recovery,

anti-inflammatory
properties

Vitamin E [343,344]

Natural healer Turmeric Curcumin Anti-inflammatory
properties Flavonoids [345,346]

6.3. Considerations for Different Types of Sports

The primary objective is to address the unique needs of various sports disciplines
by offering specialized insights and concerns regarding plant-based nutrition. Realizing
that different types of athletes have different nutritional needs and challenges, this section
delves into the nuances of plant-based nutrition for strength athletes, endurance athletes,
and team sports participants. Table 5 demonstrates the instructions on how to include
plant-based nourishment in different types of sports. Endurance athletes, who engage
in lengthy periods of sustained effort during training and competition, need to focus on
fueling methods that prioritize plant-based diets rich in carbohydrates [179]. The meal
plan may include whole grains, fruits, and vegetables to ensure a consistent and sustained
release of energy [347]. To cater to the distinct dietary requirements of endurance athletes,
it is important to focus on obtaining adequate amounts of iron and vitamin C, the nutrients
that are crucial for meeting the increased demands of endurance exercise, especially in
situations when iron absorption may be affected [303].

Table 5. Practical guidelines for optimal antioxidant intake through plant-based foods in sports
nutrition.

Food Group Antioxidant-Rich
Examples

Serving
Recommendations Benefits References

Fruits (5 servings per day)

Berries (blueberries,
strawberries, raspberries),

citrus fruits (oranges,
grapefruits, kiwis),

pomegranates, pineapple,
mangoes, apples, pears

1–2 servings per meal,
snack on fruits in

between

Rich in vitamin C,
flavonoids, anthocyanins;
boost immunity, reduce
inflammation, protect

against muscle damage

[348,349]
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Table 5. Cont.

Food Group Antioxidant-Rich
Examples

Serving
Recommendations Benefits References

Vegetables (5 servings
per day)

Cruciferous vegetables
(broccoli, kale, Brussels
sprouts), leafy greens
(spinach, swiss chard,
collard greens), bell

peppers, sweet potatoes,
carrots, onions, tomatoes

1–2 servings per meal,
incorporate vegetables

into snacks

Abundant in carotenoids,
vitamin C, and other

phytonutrients; enhance
cell health, improve

antioxidant defenses,
support recovery

[348,350]

Legumes (2–3 servings
per week)

Lentils, black beans,
chickpeas, kidney beans,

soybeans

1/2 cup cooked
legumes per meal,

incorporate into salads,
soups, and dips

Excellent source of
plant-based protein, fiber,
and various antioxidants;

contribute to muscle
building, satiety, and

overall wellbeing

[351,352]

Nuts and seeds
(1–2 servings per day)

Walnuts, almonds, chia
seeds, flaxseeds, hemp

seeds

1/4 cup nuts or
2 tablespoons seeds per
day, sprinkle on yogurt,

salads, or add to
smoothies

High in polyunsaturated
fats, vitamin E, and
minerals; provide
sustained energy,

promote cell health, aid
in recovery

[351,353]

Whole grains (3–5 servings
per day)

Quinoa, brown rice,
whole-wheat bread, oats,

barley

1/2 cup cooked grains
per meal, choose

whole-grain bread and
cereals

Rich in fiber, vitamin E,
and B vitamins; support

gut health, regulate
blood sugar, improve

energy levels

[354,355]

Spices and herbs (daily)
Turmeric, ginger, garlic,

cinnamon, parsley,
rosemary, oregano

Add to cooking,
sprinkle on meals, use
in teas and infusions

Contain powerful
antioxidants and

anti-inflammatory
compounds; enhance

flavor, boost digestion,
and provide additional

health benefits

[356,357]

Strength athletes, whose focus are muscular development and strength, derive ad-
vantages from a plant-based nutrition strategy that emphasizes protein-rich sources [178].
Suggestions may involve incorporating plant-based proteins such as lentils, tofu, and seitan
to enhance muscle protein synthesis [358,359]. Furthermore, incorporating foods that are
abundant in omega-3 fatty acids, such as flaxseeds and chia seeds, can be beneficial due to
their possible anti-inflammatory properties, which aid in the process of healing and promote
general muscular well-being [360,361]. Team sports pose distinctive challenges and require-
ments, necessitating athletes to participate in sporadic episodes of vigorous exertion [362].
Plant-based nutrition considerations for team sports entail the delicate equilibrium between
energy demands and the need for rapid bursts of strength and agility [14,363]. It is essential
to create meal plans that include a combination of carbohydrates, proteins, and nutritious
fats [364]. To address the requirement for quick recuperation between periods of physical
activity, it may be necessary to strategically consume foods that are rich in antioxidants in
order to alleviate oxidative stress [365,366].

Given the acknowledgement that a single approach is not suitable for everyone, it
becomes crucial to provide practical guidance on how to adjust plant-based nutrition
to various sports situations [367]. Athletes are advised to explore various plant-based
sources, modify macronutrient ratios according to different training phases, and take into
account individual preferences and tolerances [189]. The adaptability of the guidelines
guarantees that they are in line with the specific requirements of each sport and the distinct
physiological reactions of individual athletes [367].
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7. Challenges and Limitations

Examining the nuances of plant-based diets in sports reveals significant benefits as well
as challenges for athletes considering adopting this nutritional approach. The primary areas
of concern for athletes aiming for peak performance—maintaining energy balance, protein
consumption, and dietary deficiencies—are discussed in relation to the possible downsides.
Because of misconceptions regarding its availability in plant sources, protein—which is
frequently emphasized for its vital role in muscle growth and recovery—poses a problem
to those following plant-based diets. However, research shows that when included in a
diversified and well-planned diet, plant-based proteins like those found in beans, quinoa,
and soy products are sufficient to meet the protein requirements of athletes. Another issue
covered in the study is nutritional deficits, specifically in the areas of vitamins B12, iron,
calcium, and omega-3 fatty acids. It recommends a varied plant-based diet and fortified
meals and supplements as practical ways to make sure athletes are not compromising on
vital nutrients. Achieving the right energy intake is also essential, particularly in light of the
high calorie requirements of sports training and competition. Incorporating foods high in
energy from plants and carefully planning meal compositions to support nutrient balance
and energy requirements are two strategies for overcoming these challenges.

Challenges with antioxidant supplements in sports nutrition are also explored in
the story (Figure 5). Although antioxidants play a crucial role in preventing oxidative
stress caused by strenuous exercise, there are risks associated with using supplements
rather than obtaining them from whole foods, such as overconsumption and nutritional
imbalances. A diet rich in fruits, vegetables, nuts, and seeds is the most effective way to
absorb antioxidants, according to the report, because they work synergistically and are more
bioavailable. In addition to addressing the limitations and potential risks of supplement
reliance, this approach promotes the idea that athletes should prioritize the complexity of
dietary matrices above the use of isolated nutritional supplements. Although the study
highlights the value of whole foods in providing a balanced array of antioxidants and other
micronutrients necessary for optimal health and athletic performance, the ongoing debate
over the effectiveness of antioxidant supplements in improving performance and recovery
adds another layer of complexity to the matter.
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The discussion emphasizes the need for more scientific studies to address current gaps
in the field of sports nutrition, plant-based diets, and antioxidants. Although progress
has been made in recognizing the advantages of plant-based nutrition for athletes, there
are still unexplored areas, such as the specific mechanisms by which plant chemicals
affect performance and the lasting impacts of these diets in various sports. The narrative
suggests that future study should investigate the precise effects of phytochemicals and
antioxidants found in plant-based meals on athletic performance and recovery. Future
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research should prioritize customized nutritional approaches that take into account the
varied requirements of different sports, training levels, and individual athlete needs. The
goal is to improve plant-based nutrition strategies to help athletes reach their performance
goals and preserve their health and well-being. In sum, plant-based diets can be a beneficial
nutritional approach for athletes, but it is crucial to address the problems related to protein
consumption, vitamin shortages, and energy equilibrium. Prioritizing whole foods for
antioxidants and advocating for more research to address knowledge gaps highlights a
sophisticated approach to sports nutrition that focuses on evidence-based dietary planning.

8. Future Directions and Research Opportunities

The future of sports nutrition is found in the intersection of athletics, plant-based
diets, and antioxidants (Figure 6). This junction requires more research to understand
the intricate connections and possible advantages for athletic performance and public
health. This investigation requires a multidisciplinary strategy that incorporates new
technologies such as metabolomics and nutrigenomics to customize nutrition, recognizing
individual differences in how they respond to plant chemicals. This research intends to
enhance athletes’ performance with personalized dietary methods and also has the potential
to reduce chronic health problems in the general population by promoting plant-based,
antioxidant-rich diets. Advancements in food technology, such as precise fermentation
and novel plant-based protein sources, are expected to transform sports nutrition by
improving nutrient absorption and recovery mechanisms, ultimately promoting muscle
health and overall well-being. Personalized nutrition plans utilizing advanced research and
technology provide specific dietary advice tailored to individual athletes, maximizing the
synergy of sports, plants, and antioxidants. Personalized nutrition, coupled with advanced
technologies, might offer practical, data-based advice for improving diets, marking the
beginning of a new phase in sports nutrition that is tailored and based on scientific research.
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Beyond athletic performance, the shift towards plant-based nutrition has important
public health implications since it has the potential to reduce chronic diseases and enhance
overall well-being. This change necessitates a focused approach in education and policy
development to promote healthy eating habits among the general public, emphasizing
the importance of antioxidants and plant-based diets in enhancing quality of life and
lowering healthcare costs. Collaboration among researchers, policymakers, and educators
to promote these nutritional strategies could lead to a societal shift towards healthier
lifestyles, emphasizing the crucial role of nutrition in sports performance, public health,
and overall quality of life (Figure 6).
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9. Conclusions

The present study explores the complicated interactions among sports, plant-based
diets, and antioxidants, revealing how they affect athletic performance and recovery. We
have shown that plant-based diet plays a crucial role in improving athletic performance,
especially by utilizing antioxidants to reduce oxidative stress. The complex interaction
among different plant compounds and the personalized potential of dietary approaches
were highlighted as significant subjects, expanding our knowledge of sports nutrition.
Research on oxidative stress has shown that it can serve as a stimulus for adaptability and
also as a possible cause of harm, providing a balanced view of the issues athletes encounter.
The increasing popularity and acknowledged advantages of plant-based diets in sports,
as well as the challenges of implementing such dietary regimens, have shed light on the
complicated connection between sports nutrition and plant-based diets (Figure 7).
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Based on the gained insights, athletes should prioritize including antioxidant-rich
plant-based foods into their diets to promote cellular health and improve recovery. The
recommendations emphasize the importance of personalized dietary strategies tailored
to each athlete’s individual physiological characteristics and nutritional requirements,
advocating for dietary customization to maximize the benefits of plant-based nutrition
and antioxidants in sports. This investigation emphasizes the transforming power of
comprehending the interaction among sports, plants, and antioxidants. It functions as
both an academic study and a useful manual for athletes, researchers, and professionals
dealing with the changing field of sports nutrition. This change in perspective encourages a
reassessment of the importance of nutrition in athletic performance and health, indicating a
trend towards a more comprehensive, plant-focused, and personalized approach to sports
nutrition. This evolution demonstrates how food choices are evolving and emphasizes
nutrition as a dynamic force that can greatly improve physical performance in different
fields. This review summarizes the current knowledge and suggests a direction for future
study and practical use, representing a significant moment in the development of sports
nutrition. All stakeholders are encouraged to engage in this ongoing discussion about the
intersection of sports, plants, and antioxidants, which aims to serve as a comprehensive
guide for athletes seeking to enhance their performance, recovery, and overall well-being.
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