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Abstract: Iron overload in beta transfusion-dependent thalassemia (β-TDT) may provoke oxidative
stress and reduction of the antioxidant defenses, with serious consequences for the disease course and
complications. The present study evaluated the oxidant/antioxidant status of β-TDT patients and its
correlation with demographic, clinical, laboratory, and instrumental biomarkers. The OXY-adsorbent
assay and the d-ROMs (Diacron, Grosseto, Italy) were evaluated in 58 β-TDT patients (mean age:
37.55 ± 7.83 years, 28 females) enrolled in the Extension-Myocardial Iron Overload in Thalassemia
Network. Iron overload was quantified with R2* magnetic resonance imaging. Mean OXY was
323.75 ± 113.19 µmol HClO/mL and 39 (67.2%) patients showed a decreased OXY-Adsorbent level
(<350 µmol HClO/mL), of whom 22 (37.9%) showed severely reduced levels. Mean d-ROMs was
305.12 ± 62.19 UA; 12 (20.7%) patients showed oxidative stress, and 4 (6.9%) elevated oxidative
stress. OXY showed a significant negative correlation with global and segmental cardiac iron levels.
D-ROMs levels significantly correlated with markers of cardiovascular risk (aging, glycemia, and
N-terminal pro-B-type natriuretic peptide). Antioxidant depletion is frequent in β-TDT patients,
where OXY might serve as additive biomarker to assess heart iron status, whereas the d-ROMs might
be helpful to assess the cardiovascular risk burden.

Keywords: thalassemia major; oxidative stress; magnetic resonance imaging; iron overload; OXY-
adsorbent assay; d-ROM test
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1. Introduction

Thalassemia is an inherited hemoglobinopathy responsible for the impaired produc-
tion of alpha (α-thalassemia) or beta (β-thalassemia) globin chains that results in non-
functional hemoglobin, damaged erythrocytes, ineffective erythropoiesis, and anemia [1–4].
According to the World Health Organization (WHO), 40,000 infants with thalassemia are
born annually worldwide, the majority of these having β-thalassemia [5]. Moreover, migra-
tion has increased the prevalence of the disease in areas where it was previously thought to
be rare [6,7], continuing to keep this disease a major serious sanitary issue.

Historically, depending on the severity of the disease phenotype and the involved
genetic mutations, β-thalassemia has been classified into three forms: minor, intermedia,
and major [4,8]. Thalassemia minor, also known as thalassemia trait, is the mildest form
of the disease, while β-thalassemia major (TM) is the most severe form, with affected
patients typically presenting early in life with severe anemia. Thalassemia intermedia
(TI) is a disease of intermediate severity. Transfusion therapy continues to be the primary
treatment for severe types of thalassemia, with frequency and amount of needed transfu-
sions providing an indirect measure of the severity of the underlying condition [9]. So,
today, for management purposes, the thalassemia patients are commonly grouped into
transfusion dependent (TDT) or non-transfusion-dependent (NTDT) [10]. The term (TDT)
is mainly applied to individuals with β-TM who are unable to produce sufficient amounts
of hemoglobin to survive without blood transfusions [11]. The other side of the coin is
that regular transfusions markedly increase the accumulation of iron in the body [12,13].
Consequently, patients with TDT must adhere to lifelong chelation therapy regimens to
mitigate the adverse effects associated with iron overload, thereby reducing the risk of
complications and mortality [14–16].

Despite the advancements in iron chelation, secondary iron overload is still a major
issue in β-TDT [17]. Consequently, β-TDT patients may incur in oxidative stress with
overproduction of reactive oxygen species (ROS), which can lead to growth lag, delayed
sexual development, and adverse consequences also for liver, heart, and endocrine system
functioning [18,19]. Moreover, an elevated oxidative stress, which results from a shift in
the balance between ROS and the antioxidant defense system, has been demonstrated as a
key determinant in the pathogenesis of different chronic-degenerative diseases related to
aging, including cardiovascular disease and Type 2 diabetes [20], which represent the more
frequent and critical complications in β-TDT patients [21–23]. This issue is of growing
importance also in view to the extended life expectancy of TDT patients, [24] with more
than half of them expected to survive beyond the age of 50.

This study aimed to assess the oxidative stress status in the serum of well-treated
β-TDT patients by evaluating the levels of the Diacron OXY-adsorbent assay (as an index
of the total antioxidant capacity) and of the reactive oxygen metabolites (as an index
of the oxidant counterpart), and to evaluate the relationship of these biomarkers with
demographic, clinical, laboratory, and instrumental parameters.

2. Materials and Methods
2.1. Study Population

The Extension-Myocardial Iron Overload in Thalassemia (E-MIOT) project is an Ital-
ian collaborative Network involving 66 thalassemia centers and 15 validated magnetic
resonance imaging (MRI) sites [25]. These centers are interconnected through a web-based
database, which serves as a centralized repository for gathering and managing a wide
range of clinical, anamnestic, laboratory, and instrumental data. The inclusion criteria of
the E-MIOT project are: (1) both males and females, spanning a wide range of age groups,
diagnosed with either thalassemia or sickle cell disease and necessitating the assessment of
organ iron levels through MRI; (2) written informed consent for participation in the study;
(3) written agreement for the utilization or disclosure of protected health information; and
(4) no contraindications to MRI scanning.
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In the years 2015 and 2016, as part of a pilot study aimed at assessing the relationship
between osteoporosis and cardiovascular diseases in thalassemia, all adult β-TDT patients
attending the reference MRI center of the E-MIOT Network (Fondazione G. Monasterio
CNR-Regione Toscana (FTGM), Pisa, Italy) were requested to undergo, on the same day of
the MRI scan, a blood test for the assessment of various parameters related to both bone
and cardiovascular health. In a small subgroup of patients participating to the project
(N = 58), the biochemical assessment of oxidative stress biomarkers was also performed.

The E-MIOT and the collateral projects received approval from the Ethics Committee
of Area Vasta Nord Ovest (CEAVNO). The study was conducted in accordance with the
principles outlined in the Declaration of Helsinki. Written informed consent was obtained
from all patients before enrollment.

2.2. Biochemical Analysis

Serum pre-transfusion hemoglobin, ferritin, aspartate aminotransferase (AST), alanine
aminotransferase (ALT), total triglycerides, total cholesterol, and high-density lipoprotein
(HDL) were determined at the thalassemia centers where the patients were treated using
commercially available kits. The assessments of hemoglobin, ferritin, and liver transami-
nases were performed at least four times per year, and for each patient, a single value was
obtained by averaging the multiple measurements.

To assess the disturbances of glucose metabolism, patients non already diagnosed
with diabetes performed an oral glucose tolerance test (OGTT) within three months from
the MRI. All patients were required to fast for the entire night, and a blood sample was
drawn to assess fasting glucose and insulin. Patients were given 1.75 g/kg (maximum dose
of 75 g) of glucose solution and glucose and insulin were measured at 60 and 120 min.

At FTGM, blood samples were collected after 8 h of fasting and were handled and ana-
lyzed in the Medicine Laboratory under strictly standardized conditions and in agreement
with the manufacturers’ recommendations.

Samples for N-terminal Pro–B-Type Natriuretic Peptide (NT-proBNP) assessment were
kept on ice, immediately centrifuged, and stored at −80 ◦C until analysis. NT-proBNP
was measured on the Cobas e411 analyzer (Roche Diagnostics, Basilea, Switzerland) using
the proBNP II kit, reported to have a limit of detection at 5 ng/L and a threshold value
of 125 ng/L (inter-assay coefficient of variation 4.2% at 44 ng/L, 2.4% at 126 ng/L, and
1.3% at 2410 ng/L).

The total antioxidant capacity was measured using a spectrophotometric assay (OXY-
adsorbent assay, Diacron, Grosseto, Italy) in blood samples. This method relies on the ability
of a high dose of hypochlorous acid (HClO) to oxidize physiological antioxidants present
in the serum sample, such as uric acid, glutathione, thiol groups, vitamins, glutathione per-
oxidase, superoxide dismutase, catalase, and others [26]. After 10 min incubation, residual
HClO undergoes a reaction with an alkyl-substituted aromatic amine (A-NH2, solubilized
in a chromogenic mixture); amine is oxidized by HClO, producing a colored product, which
is photometrically measured. The concentration of the colored complex formed is directly
proportional to the concentration of HClO in the sample and inversely proportional to the
antioxidant capacity. The results are typically expressed as the amount of HClO consumed
per milliliter of sample (µmol HClO/mL). Intra- and inter-assay coefficients of variation at
each level tested on 10 aliquots of fresh samples and on 10 aliquots of frozen samples were
always lower than 5.5% [27].

Reactive oxygen species were evaluated in serum using a kinetic spectrophotometric
assay (d-ROMs test, Diacron, Grosseto, Italy). This test exploits the ability of hydroperox-
ides to generate free radicals in the presence of transition metals, such as iron and copper,
acting as catalyzers [26,28,29]. When these free radicals interact with a properly buffered
chromogenic substance, they form a colored complex. This complex can be quantitatively
measured using photometric techniques, with the maximum peak absorbance typically
occurring at 505 nm. The intensity of the color is proportional to the peroxide concentra-
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tion. The test result is displayed as an arbitrary unit (1 UA corresponding to the color
development caused by a H2O2 solution at a concentration of 0.08%).

2.3. Magnetic Resonance Imaging

MRI scanning was performed within one week before a regularly scheduled blood
transfusion using a 1.5 T scanner (Signa Excite or Artist, GE Healthcare, Milwaukee, WI,
USA) and a 30-element cardiac phased-array receiver surface coil. All images were acquired
with breath-holding and ECG gating.

The T2* technique was used for iron overload assessment. A mid-transverse hepatic
slice, five or more axial slices including the whole pancreas, and three parallel short-axis
views (basal, medium, and distal) of the left ventricle (LV) were acquired using multi-
echo gradient echo sequences (10 echo times with an echo spacing of 2.26 ms). Image
analysis was conducted using a custom-written, previously validated software (HIPPO
MIOT® Version 1.0, Consiglio Nazionale delle Ricerche and Fondazione Toscana Gabriele
Monasterio, Pisa, Italy) designed to provide the T2* values for specific anatomical regions
of interest (ROIs). All pixels within the ROI were averaged together, and this averaged
decay curve was fit to an appropriate decay model (single exponential with a variable offset
model for liver and pancreas and single exponential with truncation for the heart). The
extracted T2* values were converted into R2* values, directly proportional to iron levels,
using the formula: R2* = 1000/T2* [30]. Hepatic R2* values were calculated in a ROI of
standard dimension drawn away from blood vessels and other sources of artifacts and
were converted into liver iron concentration (LIC) values [30]. Three small ROIs were
manually delineated over the pancreatic head, body, and tail, covering the parenchymal
tissue and staying away from blood vessels or ducts and areas affected by susceptibility
artifacts from intraluminal gas in the stomach or colon [31]. The global pancreatic R2* value
was determined by averaging the R2* values from the three regions. The myocardial R2*
distribution was mapped into a 16-segment LV model, in line with the American Heart
Association/American College of Cardiology standardized segmentation model [32]. The
global heart R2* value was the mean of all segmental R2* values.

For the assessment of the cardiac dimensions and function, balanced steady-state free
precession (SSFP) cine images in long axis (two-chamber, three-chamber, and four-chamber
views) and short axis orientations (8 mm slice thickness, without gaps) were acquired [33].
Thirty cardiac phases were obtained per heartbeat. Biventricular end systolic and end
diastolic volumes (ESV and EDV, respectively) and ejection fractions (EF) and the LV mass
index were quantitatively evaluated in a standard way from the short-axis stack. Left and
right atrial areas were measured from the 4-chamber view projection in the ventricular
end-systolic phase. Biventricular volumes, LV mass, and atrial areas were normalized for
the body surface area.

For the assessment of replacement/focal myocardial fibrosis, late gadolinium-enhancement
(LGE) short-axis, vertical, horizontal, and oblique long-axis images were collected 10–18 min
after the intravenous injection of Gadobutrol (Gadovist®; Bayer Schering Pharma, Berlin,
Germany) at the dose of 0.2 mmoL/kg of body weight, using a fast gradient-echo inver-
sion recovery sequence. LGE imaging was not performed in patients with a glomerular
filtration rate < 30 mL/min/1.73 m2 and in patients who declined the contrast medium
administration. The extent of LGE was determined semi-quantitatively by counting the
number of LV segments exhibiting visually determined LGE. Enhancement was considered
present when visualized in two different views [34].

2.4. Diagnostic Criteria

OXY-Adsorbent (OXY) serum levels higher than 350 µmol HClO/mL were considered
normal (manufacturer’s indications). The expected d-ROM levels in healthy individual are
between 250 and 320 AU, while higher values denote a surplus of peroxides indicative of a
systemic increase in ROS levels (manufacturer’s indications). The applied reference ranges
are reported in Table 1.



Antioxidants 2024, 13, 446 5 of 16

Table 1. Reference values of OXY-Adsorbent and d-ROMs levels.

OXY-Adsorbent Levels (µmol HClO/mL) Antioxidant Barrier

>350 Normal range

280–349 Reduction

<279 Severe reduction

d-ROMs Levels (AU) Oxidative Stress Levels

250–320 Normal range

321–400 Oxidative stress

>401 Elevated oxidative stress

A MRI LIC ≥ 3 mg/g dry weight (dw) indicated significant hepatic iron load [35]. The
highest threshold of normal global pancreas R2* value was 38 Hz [36]. The value of 50 Hz
(T2* = 20 ms) was used as a “conservative” normal value for segmental and global heart
R2* values [37].

Normal glucose tolerance (NGT) was defined as fasting plasma glucose (FPG) < 100 mg/dL
and 2 h glucose < 140 mg/dL. Impaired fasting glucose (IFG) was defined by FPG levels
between 100 and 126 mg/dL. Impaired glucose tolerance (IGT) was diagnosed when FPG
was less than 126 mg/dL, and 2 h plasma glucose ranged between 140 and 200 mg/dL. Dia-
betes mellitus (DM) was defined by FPG ≥ 126 mg/dL or 2 h plasma glucose ≥ 200 mg/dL
during an OGTT or a random plasma glucose ≥ 200 mg/dL with classic symptoms of
hyperglycaemia or hyperglycaemic crisis [38].

Cardiac involvement was defined as the presence of heart failure (HF) and arrhythmias.
Heart failure was diagnosed by expert cardiologists based on medical history, physical
examination, imaging findings, and laboratory test results, according to the AHA/ACC
guidelines [39]. Arrhythmias were diagnosed according to the manifestations of electrocar-
diogram (ECG) and Holter monitoring, and were classified according to the AHA/ACC
Guidelines [40].

Based on the agreement between the self-reported and prescribed chelation regimen,
compliance was defined excellent (>80%), good (60–80%), and insufficient (<60%).

2.5. Statistical Analysis

SPSS version 27.0 (IBM Corp, Armonk, NY, USA) and MedCalc version 19.8 (Med-
Calc Software Ltd., Ostend, Belgium) statistical packages were employed for statistical
data analysis.

Continuous variables were presented as mean ± standard deviation (SD), while
categorical variables were described using frequencies and percentages.

The Kolmogorov–Smirnov test was used to verify the normal distribution of quantita-
tive variables.

Correlation analysis was conducted employing Pearson’s or Spearman’s tests where
appropriate.

The comparison between two groups was carried out using the independent-samples
t-test for continuous variables that followed a normal distribution, the Wilcoxon’s signed rank
test for continuous values with non-normal distribution, and χ2 testing for categorical variables.

Analysis of covariance (ANCOVA) was employed to assess the influence of covariates
on group differences in continuous parameters. Covariates were included if proved signifi-
cantly different between groups and correlated with the outcome being assessed. When
necessary, outcomes were log-transformed to normalize the residual distributions and to
equalize the residual variance.

The level of statistical significance was set at a 2-tailed probability value ≤ 0.05.
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3. Results
3.1. Patient’s Characteristics

All the 58 β-TDT patients were white and had a mean age of 37.55 ± 7.83 years
(range: 18–55 years). Genders were well balanced, with 51.7% women and 48.3% men.
All patients received regular blood transfusions since early childhood to maintain a mean
pre-transfusion hemoglobin of 9–10 g/dL and were undergoing chelation therapy.

Demographic, clinical, laboratory, and instrumental characteristics of the β-TDT pa-
tients are summarized in Tables 2 and 3.

Table 2. Demographic, clinical, and biochemical correlates of oxidative stress markers.

OXY-Adsorbent d-ROMs

Categorical Variable

Frequency, N (%) Difference of Oxidative Stress Parameter between
Two Groups (Absent vs. Present)

Female sex 28 (48.3)
324.52 ± 110.99 vs.
322.93 ± 117.55 µmol HClO/mL
(p = 0.958)

293.21 ± 58.29 vs.
317.88 ± 64.75 AU
(p = 0.125)

Splenectomy 33 (56.9)
335.35 ± 132.26 vs.
314.97 ± 97.56 µmol HClO/mL
(p = 0.599)

299.18 ± 47.56 vs.
309.62 ± 71.74 AU
(p = 0.510)

Continuous Variables

Mean Value Correlation (R, p-Value) with Oxidative Stress Parameter

Age (years) 37.55 ± 7.83 years R = 0.053, p = 0.693 R = 0.343, p = 0.008

Age at start of regular transfusions 21.85 ± 14.71 months R = 0.097, p = 0.510 R = 0.184, p = 0.212

Chelation starting age 3.60 ± 2.45 years R = 0.150, p = 0.270 R = 0.139, p = 0.307

Pre-transfusion hemoglobin 9.59 ± 0.59 g/dL R = 0.080, p = 0.556 R = 0.138, p = 0.307

Mean ferritin 1313.17 ± 1562.05 ng/mL R = −0.089, p = 0.510 R = 0.041, p = 0.762

ALT 40.26 ± 34.79 U/L R = 0.010, p = 0.942 R = 0.182, p = 0.187

AST 36.21 ± 26.19 U/L R = 0.074, p = 0.594 R = 0.240, p = 0.078

Total cholesterol 116.90 ± 36.55 mg/dL R = 0.158, p = 0.274 R = 0.252, p = 0.077

Triglycerides 103.77 ± 43.68 mg/dL R = 0.213, p = 0.141 R = −0.077, p = 0.597

HDL cholesterol 40.79 ± 15.29 mg/dL R = −0.104, p = 0.529 R = 0.307, p = 0.057

Fasting glycemia 94.42 ± 20.11 mg/dL R = −0.185, p = 0.185 R = 0.302, p = 0.028

NT-proBNP 138.56 ± 166.78 pg/mL R = 0.046, p = 0.798 R = 0.480, p = 0.004

d-ROMs = derivatives-reactive oxygen metabolites; N = number; HDL = high-density lipoprotein;
NT-proBNP = N-terminal prohormone of brain natriuretic peptide. The significant results are in bold.

Table 3. MRI correlates of oxidative stress markers.

OXY-Adsorbent d-ROMs

Categorical Variable

Frequency, N (%) Difference of Oxidative Stress Parameter between
Two Groups (Absent vs. Present)

LGE 23/49 (46.9)
345.10 ± 112.46 vs.
322.47 ± 125.61 µmol HClO/mL
(p = 0.326)

287.02 ± 37.03 vs.
314.66 ± 70.87 AU
(p = 0.331)
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Table 3. Cont.

OXY-Adsorbent d-ROMs

Continuous Variables

Mean Value Correlation (R, p-value) with Oxidative Stress Parameter

MRI LIC 11.16 ± 17.83 mg/g dw R = −0.001, p = 0.993 R = 0.142, p = 0.288

Global pancreas R2* 182.64 ± 134.30 Hz R = −0.124, p = 0.352 R = 0.054, p = 0.689

Global heart R2* 35.54 ± 20.94 Hz R = −0.339, p = 0.009 R = −0.039, p = 0.769

Number of segments with R2* > 50 Hz 2.88 ± 5.48 R = −0.278, p = 0.034 R = 0.075, p = 0.573

LV end-diastolic volume index 88.86 ± 20.09 mL/m2 R = 0.074, p = 0.583 R = −0.184, p = 0.170

LV end-systolic volume index 32.44 ± 10.36 mL/m2 R = 0.044, p = 0.744 R = −0.088, p = 0.517

LV mass index 63.51 ± 14.53 g/m2 R = 0.010, p = 0.943 R = −0.030, p = 0.826

LV ejection fraction 63.96 ± 6.26% R = −0.035, p = 0.798 R = −0.034, p = 0.800

RV end-diastolic volume index 89.33 ± 20.79 mL/m2 R = 0.069, p = 0.610 R = −0.225, p = 0.092

RV end-systolic volume index 34.51 ± 11.74 mL/m2 R = 0.088, p = 0.517 R = −0.195, p = 0.145

RV ejection fraction 61.05 ± 6.16% R = −0.048, p = 0.723 R = 0.210, p = 0.117

Left atrial area index 14.25 ± 3.27 cm2/m2 R = −0.067, p = 0.631 R = 0.208, p = 0.131

Right atrial area index 12.79 ± 1.92 cm2/m2 R = 0.085, p = 0.541 R = −0.146, p = 0.292

d-ROMs = derivatives-reactive oxygen metabolites; N = number; LGE = late gadolinium enhancement;
MRI = magnetic resonance imaging; LIC = liver iron concentration; LV = left ventricular; RV = right ventric-
ular. The significant results are in bold.

The mean level of OXY in the whole patient population was 323.75 ± 113.19 µmol
HClO/mL. OXY levels were normal in 19 (32.8%) patients, reduced in 17 (29.3%) patients,
and severely reduced in 22 (37.9%) patients (Figure 1A).
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The mean level of d-ROMs in serum was 305.12 ± 62.19 AU. In total, 42 (72.4%)
patients showed normal d-ROMs values, 12 (20.7%) showed oxidative stress, and 4 (6.9%)
showed elevated oxidative stress (Figure 1B).

No association was detected between OXY and d-ROM levels (R = −0.014; p = 0.917).
In fact, the frequency of patients with increased d-ROM levels was comparable between
patients with normal and reduced OXY (21.1% vs. 30.8%; p = 0.541).

3.2. Correlation of Oxidative Stress-Related Biomarkers with Demographic, Clinical and
Biochemical Parameters

Table 2 shows the correlation of oxidative balance markers with demographic, clinical,
and biochemical parameters.

OXY levels showed no link with gender, age, age at start of regular transfusions,
chelation starting age, presence of splenectomy, and any biochemical parameter.

D-ROMs did not differ between β-TDT males and females or between splenectomized
and non-splenectomized patients, but showed a significant positive association with aging.
D-ROM levels were significantly correlated with fasting glycemia and NT-proBNP levels.
No further relationship among the biochemical parameters examined was observed.

3.3. Correlation of Oxidative Stress-Related Biomarkers with Cardiovascular Magnetic
Resonance Parameters

OXY levels were not associated with hepatic or pancreatic iron levels, but showed a
negative correlation with global heart R2* values and with the number of segments with
R2* > 50 Hz (Table 3). Patients with significant myocardial iron overload (10/58 = 17.2%)
had significant lower OXY levels than patients without significant myocardial iron overload
(259.42 ± 84.66 µmol HClO/mL vs. 337.16 ± 114.47 µmol HClO/mL; p = 0.047) (Figure 2).
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No association was detected between d-ROM levels and hepatic, pancreatic, and
cardiac iron levels (Table 3).

OXY levels and d-ROMs were comparable between β-TDT patients without and with
replacement myocardial fibrosis, and were uncorrelated with all biventricular function
parameters and with atrial dimensions.

3.4. Oxidative Status and Complications

Ten (17.2%) β-TDT patients had an altered glucose metabolism: two IFG, one IGT, and
seven DM. No difference between patients with normal and altered glucose metabolism was
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found in terms of OXY levels (327.25 ± 114.75 µmol HClO/mL vs. 306.97 ± 109.57 µmol
HClO/mL; p = 0.621), while patients with an altered glucose metabolism showed increased
d-ROMs levels (369.19 ± 107.05 AU vs. 291.77 ± 37.97 AU; p = 0.039) (Figure 3). The
difference in d-ROM levels remained significant after the correction for age (p = 0.010).
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Figure 3. Mean d-ROMs levels in patients with normal and altered glucose metabolism. The bars in
the boxes represent the SD.

Three (5.2%) patients had a cardiac complication: one HF with persevered ejection
fraction, and two arrhythmias (one atrial fibrillation and one hyperkinetic ventricular
arrhythmia). All three patients with a cardiac complication had a reduced OXY value, and
two of them had also in increased d-ROM level (Figure 4).
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3.5. Oxidative Status and Chelation Therapy

Five groups of patients were identified based on the chelation regimen: five (8.6%) pa-
tients treated with desferrioxamine (DFO), twelve (20.7%) with deferiprone (DFP), twenty-
nine (50.0%) with deferasirox (DFX), eight (13.8%) with combined DFO + DFP, and four
(6.9%) with sequential DFO/DFP.
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The mean administered dosages of the chelators were: (1) DFO in monotherapy
36.67 ± 15.28 mg/kg body weight via subcutaneous route on 6.50 ± 0.58 days/week;
(2) DFP in monotherapy 71.78 ± 11.72 mg/kg body weight with a frequency of 7 days/week;
(3) DFX 28.74 ± 7.03 mg/kg body weight with a frequency of 7 days/week; (4) DFO
in combined regimen 40.01 ± 6.46 mg/kg body weight per day with a frequency of
3.71 ± 1.11 days/week, and DFP in combined regimen 80.57 ± 16.55 mg/kg body weight
per day with a frequency of 7 days/week; and (5) DFO in sequential regimen 40.00 mg/kg
body weight per day with a frequency of 3 days/week, and DFP in sequential regimen
65.00 ± 13.23 mg/kg body weight per day with a frequency of 3.67 ± 0.58 days/week.
Almost all patients (57/58 = 98.3%) had a good/excellent compliance (correspondence
between taken and prescribed chelator ≥ 60%).

Figure 5 shows the mean OXY and d-ROM levels in the five treatment groups. Due to
the low number of patients in some treatment groups, no statistical comparison among the
five groups was performed.
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Compared to patients who received iron chelator in monotherapy (DFO or DFP or DFX;
N = 46), those who received two iron chelators simultaneously or on alternate days/week
(N = 12) had lower OXY levels (296.10 ± 61.10 µmol HClO/mL vs. 330.97 ± 122.72 µmol
HClO/mL; p = 0.420), higher d-ROMs levels (322.78 ± 53.21 AU vs. 300.51 ± 64.06 AU;
p = 0.084), higher MRI LIC values (15.68 ± 16.71 mg/g dw vs. 9.98 ± 18.10 mg/g dw;
p = 0.120), lower global pancreas T2* values (6.49 ± 5.81 ms vs. 10.99 ± 8.71 ms; p = 0.107),
and lower global heart T2* values (29.11 ± 13.01 ms vs. 35.24 ± 10.14 ms; p = 0.158), but no
difference was statistically significant.

4. Discussion

Repeated blood transfusions and hemolysis, which characterize TDT, induce iron over-
load, an oxidative stress status, and toxicity with multi-organ dysfunction in such patients.
Thus, oxidative stress retains a significant role in the pathogenesis and development of
the thalassemia disease and its complications. For the first time, we assessed OXY blood
values (sample antioxidant barrier to the oxidant milieu) in TDT patients, observing that
two-third of them showed reduced levels (more than one-third with severely lowered OXY).
The other main findings of our study were the significant and inverse correlation of OXY
levels with cardiac iron levels by MRI (global heart R2* and number of segments with
R2* > 50 Hz) and the significant relationship between d-ROM levels and cardiometabolic
risk factors, as aging, glycemia, and NT-proBNP.

Different studies have been conducted in order to evaluate the oxidant and antioxidant
status in TDT. For it concerns the antioxidant status, available results are quite conflicting,
as the estimation of the total antioxidant capacity using different methods (which are not
totally equivalent) or single antioxidants may be found increased in TDT, and as such con-
sidered as a compensatory response to an increased oxidant status, or effectively reduced
and restored (or partially restored) after antioxidant supplementation [41–46]. These con-
troversial data may depend by different reasons: the biomarker evaluated, the sample (e.g.,
erythrocytes, peripheral blood mononuclear cells, plasma or serum), or even proximity to
transfusion [47,48]. Moreover, mutual cooperation among the different antioxidants may
better face the oxidant attack, and thus the overall antioxidant capacity, reflecting the cumu-
lative effect of all antioxidants present in the blood, may likely give more relevant biological
information on the antioxidant barrier action compared to that obtained by the assessment
of an individual antioxidant component. Nonetheless, different total antioxidant assays
(e.g., Erel method; FRAP: Ferric Reducing Antioxidant Potential; TEAC: Trolox Equivalent
Antioxidant Capacity; TRAP: Total-radical Trapping Antioxidant Parameter) in serum do
not equally cover all antioxidant processes; in fact, they may poorly correlate with each
other, representing an additional value and complementary contributions in the assessment
of the overall antioxidant blood status [49]. In any case, a recent meta-analysis (a total of
1351 subjects: 770 thalassemic and 581 controls, 15 case–control studies), aiming to evaluate
the differences in the total antioxidant capacity between thalassemic patients and healthy
individuals, ultimately concluded that the total antioxidant capacity was decreased in
thalassemic patients versus healthy subjects, suggesting a depletion of the antioxidant
defenses due to exposition to elevated and chronic oxidative stress [48].

Our finding about the significant reduction of OXY levels among patients with my-
ocardial iron overload recalls a previous study where we observed that uric acid (a potent
antioxidant) was reduced according to increased oxidative stress and cardiac iron overload
in TDT patients [50]. Thus, the possibility of using circulating biomarkers as adjuvant tool
to estimate the cardiac iron and the oxidant status is very attractive. MRI represents the elec-
tive strategy to assess iron overload in different organs, including the heart [37,51–55], but
it is more demanding than a simple blood test and generally done annually or biannually.
Nonetheless, more confirmatory data are clearly needed to assess accuracy, reproducibility,
and reliability of these biomarkers in this clinical setting before they conquer a real clinical
utility, especially for OXY, which is not a routine laboratory parameter.
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Cardiac complications consequent to iron deposition are a major cause of death in TDT
patients [56] and the depletion of OXY in all the three patients with cardiac complications
was an interesting finding. So, levels of OXY merit to be further investigated in future
and larger studies to assess if this biomarker may help to determine the risk of individual
patients to develop cardiac complications.

Although we did not observe very high d-ROM levels in our patients, the association
of d-ROMs with the cardiovascular risk factors in our patients confirm previous data
obtained in other clinical settings. In fact, levels of d-ROMs are associated with aging in
the general population [57,58]. Moreover, d-ROMs are elevated in type 2 diabetes patients
respect to controls, and are correlated to trend of glycemia in type 2 diabetes [59,60].

One interesting result of the present study was the significant association between
levels of d-ROMs and NT-proBNP, which is an indicator of ventricular wall stress and
volume overload in heart failure and left ventricular dysfunction, and a gold standard
biomarker for diagnosis and prognosis of heart failure [61–63]. Previous data reported
that d-ROMs were related to presence, severity, and adverse prognosis in heart failure
patients [64,65]. These relationships remain to be further confirmed in the TDT population,
where d-ROMs might be helpful as an additive tool to stratify the cardiac risk level.

No clear relationship was observed between the oxidative stress-related biomarkers
(OXY and d-ROMs) and chelation therapy. However, those patients who received two
iron chelators simultaneously or on alternate days/weeks presented a trend towards lower
OXY levels and higher d-ROM values. This result may reflect the fact that the patients who
require a more aggressive chelation are those with greater tissue iron deposition, suggesting
a relationship between oxidative stress and severity of the disease in terms of heavier iron
burden rather than a real modulation of oxidative stress from chelating agents.

Limitations

This study has some limitations that need to be acknowledged.
Due to the low number of patients in some groups categorized according to chelation

regimens, the difference in the oxidative stress-related biomarkers between treatments was
not found to be significant, and no definitive conclusions can be drawn. Nonetheless, the
possibility of a relationship between chelation therapy and oxidative stress represents an
interesting study hypothesis that deserves to be further tested.

This was a cross-sectional study and, therefore, causal relationships could not be
determined. Further prospective studies involving a larger patient cohort should be
conducted to validate our findings.

The d-ROM test requires the presence of iron ions. So, anemia, iron overload, and
chelation therapy may potentially interfere with the measured levels [66].

Self-reported adherence may overestimate adherence attitude (lower sensitivity).

5. Conclusions

A reduced antioxidant status is frequent in TDT patients, where OXY might serve as
an additive biomarker to assess heart iron status, and its merits need to be further evaluated
to confirm its transversal and prospective relationship with cardiac complications. Instead,
d-ROM levels resulted associated with cardiovascular risk factors, thus they might be
helpful as additive simple and easily available biomarker to assess the cardiovascular
risk burden in these patients. To note, oxidative stress can be improved or restored with
antioxidant strategies that may act at various levels. Efforts can be done in future to further
verify the role of OXY and d-ROMs in TDT pathophysiology, assessing whether they can
serve as risk biomarkers and/or targets of interventions aimed to achieve an optimal redox
balance, improving quality of life and overall outcomes for patients.
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