Health-Promoting Properties of Pectin–Polyphenol Complex Extracted from Olive Oil By-Product Alperujo: Antioxidant, Antiproliferative, and Anti-Inflammatory Activities
Abstract
:1. Introduction
2. Materials and Methods
2.1. Material
2.2. Raw Material
2.3. Pectin–Polyphenol Extracts
2.4. Characterization of Pectin–Polyphenol Extract
2.5. Antioxidant Activity
2.5.1. Oxygen Radical Absorbance Capacity (ORAC) Assay
2.5.2. Antiradical Activity: 2,2-Diphenyl-1-picrylhydrazyl (DPPH)
2.6. Caco-2 Cell Culture
2.6.1. Treatment of Caco-2 Cell Lines with Extract
2.6.2. Caco-2 Cell Line Proliferation Assays
2.7. Isolation and Culture of Murine Macrophage Cells
2.7.1. Murine Peritoneal Macrophages Cell Viability
2.7.2. Intracellular Reactive Oxygen Species Detection (DCFDA)
2.7.3. Evaluation of Anti-Inflammatory Activities
2.7.4. Enzime-Linked Immunosorbent Assay (ELISA)
2.8. Statistical Analysis
3. Results and Discussion
3.1. Preparation of the Pectin–Polyphenol Complex Extracted from Alperujo, Chemical Composition, and Antioxidant Activity
3.2. Antiproliferative Activity Studies in Caco-2 Cell Lines
Cell Viability Assays in Caco-2 Cell Lines
3.3. Studies of Anti-Inflammatory Activity in Murine Macrophages
3.3.1. Effects of Extract on Cell Viability in Murine Macrophages
3.3.2. Extract Downregulated Intracellular ROS and Nitrite Production in LPS-Stimulated Murine Peritoneal Macrophages
3.3.3. Effects of Extract on Cytokines Secretion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Layeka, B.; Mandal, S. Natural polysaccharides for controlled delivery of oral therapeutics: A recent update. Carbohydr. Polym. 2020, 230, 115617. [Google Scholar] [CrossRef]
- Mudgil, D.; Barak, S. Composition, properties and health benefits of indigestible carbohydrate polymers as dietary fiber: A review. Int. J. Biol. Macromol. 2013, 61, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Ren, T.; Liu, F.; Wang, D.; Li, B.; Jiang, P.; Li, J.; Li, H.; Chen, C.; Wu, W.; Jiao, L. Rhamnogalacturonan-I enriched pectin from steamed ginseng ameliorates lipid metabolism in type 2 diabetic rats via gut microbiota and AMPK pathway. J. Ethnopharmacol. 2023, 301, 115862. [Google Scholar] [CrossRef]
- Morris, V.J.; Belshaw, N.J.; Waldron, K.W.; Maxwell, E.G. The bioactivity of modified pectin fragments. Bioact. Carbohydrates Diet. Fibre 2013, 1, 21–37. [Google Scholar] [CrossRef]
- do Prado, S.B.R.; Shiga, T.M.; Harazono, Y.; Hogan, V.A.; Raz, A.; Carpita, N.C.; Fabi, J.P. Migration and proliferation of cancer cells in culture are differentially affected by molecular size of modified citrus pectin. Carbohydr. Polym. 2019, 211, 141–151. [Google Scholar] [CrossRef] [PubMed]
- Samuelsson, L.M.; Young, W.N.; Fraser, K.; Tannock, G.W.; Lee, J.; Roy, N.C. Digestive-resistant carbohydrates affect lipid metabolism in rats. Metabolomics 2016, 12, 141–151. [Google Scholar] [CrossRef]
- Popov, S.V.; Markov, P.A.; Popova, G.Y.; Nikitina, I.R.; Efimova, L.; Ovodov, Y.S. Anti-inflammatory activity of low- and high-methoxylated citrus pectins. Biomed. Prev. Nutr. 2013, 3, 59–63. [Google Scholar] [CrossRef]
- Saura-Calixto, F. Dietary fiber as a carrier of dietary antioxidants: An essential physiological function. J. Agric. Food Chem. 2011, 59, 43. [Google Scholar] [CrossRef]
- Singh, V.; Yeoh, S.Y.; Golonka, R.M.; Vijay-Kumar, M. Dietary pectin alleviates chronic colitis by promoting NLRC4-mediated lL-1ra production. Gastroenterology. 2019, 156, S93–S94. [Google Scholar] [CrossRef]
- Vogt, L.M.; Sahasrabudhe, N.M.; Ramasamy, U.; Meyer, D.; Pullens, G.; Faas, M.M.; Venema, K.; Schols, H.A.; de Vos, P. The impact of lemon pectin characteristics on TLR activation and T84 intestinal epithelial cell barrier function. J. Funct. Foods 2016, 22, 398–407. [Google Scholar] [CrossRef]
- Coimbra, M.A.; Cardoso, S.M.; Lopes-Da-Silva, J.A. Olive Pomace, a Source for Valuable Arabinan-Rich Pectic Polysaccharides. Top. Curr. Chem. 2010, 294, 129–141. [Google Scholar]
- Skaltsounis, A.-L.; Argyropoulou, A.; Aligiannis, N.; Xynos, N. Recovery of High Added Value Compounds from Olive Tree Products and Olive Processing Byproducts; En Elsevier eBooks: Amsterdam, The Netherlands, 2015; pp. 333–356. [Google Scholar] [CrossRef]
- Bermúdez-Oria, A.; Rodríguez-Gutiérrez, G.; Alaiz, M.; Vioque, J.; Girón-Calle, J.; Fernández-Bolaños, J. Pectin-rich extracts from olives inhibit proliferation of Caco-2 and THP-1 cells. Food Funct. 2019, 10, 4844–4853. [Google Scholar] [CrossRef] [PubMed]
- Bhullar, K.S.; Rupasinghe, H.P. Polyphenols: Multipotent Therapeutic Agents in Neurodegenerative Diseases. Oxid. Med. Cell Longev. 2013, 2013, 891748. [Google Scholar] [CrossRef]
- Bermúdez-Oria, A.; Rodríguez-Juan, E.; Rodríguez-Gutiérrez, G.; Fernández-Prior, Á.; Fernández-Bolaños, J. Effect of the olive oil extraction process on the formation of complex pectin–polyphenols and their antioxidant and antiproliferative activities. Antioxidants 2021, 10, 1858. [Google Scholar] [CrossRef] [PubMed]
- Bermúdez-Oria, A.; Rodríguez-Gutiérrez, G.; Alaiz, M.; Vioque, J.; Girón-Calle, J.; Fernández-Bolaños, J. Polyphenols associated to pectic polysaccharides account for most of the antiproliferative and antioxidant activities in olive extracts. J. Funct. Foods 2019, 62, 103530. [Google Scholar] [CrossRef]
- Bermúdez-Oria, A.; Rodríguez-Gutiérrez, G.; Rubio-Senent, F.; Sánchez-Carbayo, M.; Fernández-Bolaños, J. Olive extract rich in polyphenols and polysaccharides with antioxidant and antiproliferative activity on bladder cancer cells. J. Med. Food 2020, 23, 719–727. [Google Scholar]
- Bermúdez-Oria, A.; Fernández-Prior, A.; Castejón, M.L.; Rodríguez-Gutiérrez, G.; Fernández-Bolaños, J. Extraction of polyphenols associated with pectin from olive waste (alperujo) with choline chloride. Food Chem. 2023, 419, 136073. [Google Scholar] [CrossRef]
- Ruiz-Baca, E.; Pérez-Torres, A.; Romo-Lozano, Y.; Cervantes-García, D.; Alba-Fierro, C.A.; Ventura-Juárez, J.; Torriello, C. The Role of Macrophages in the Host’s Defense against Sporothrix schenckii. Pathogens 2021, 10, 905. [Google Scholar] [CrossRef]
- Blumenkrantz, N.; Asboe-Hansen, G. New method for quantitative determination of uronic acids. Anal. Biochem. 1973, 54, 484–489. [Google Scholar] [CrossRef]
- Englyst, H.N.; Cummings, J.H. Simplified method for the measurement of total non-starch polysaccharides by gas-liquid chromatography of constituent sugars as alditol acetates. Analyst 1984, 109, 937–942. [Google Scholar] [CrossRef]
- Lama-Muñoz, A.; Rodríguez-Gutiérrez, G.; Rubio-Senent, F.; Fernández-Bolaños, J. Production, characterization and isolation of neutral and pectic ligosaccharides with low molecular weights from olive by-products thermally treated. Food Hydrocoll. 2012, 28, 92–104. [Google Scholar] [CrossRef]
- Singleton, V.L.; Rossi, J.A. Colorimetry of Total Phenolics with Phosphomolybdic-Phosphotungstic Acid Reagents. Am. J. Enol. Vitic. 1965, 16, 144–158. [Google Scholar] [CrossRef]
- Ou, B.; Hampsch-Woodill, M.; Prior, R.L. Development and Validation of an Improved Oxygen Radical Absorbance Capacity Assay Using Fluorescein as the Fluorescent Probe. J. Agric. Food Chem. 2001, 49, 4619–4626. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez, R.; Jaramillo, S.; Rodríguez, G.; Espejo, J.A.; Guillén, R.; Fernández-Bolaños, J.; Heredia, A.; Jiménez, A. Antioxidant activity of ethanolic extracts from several asparagus cultivars. J. Agric. Food Chem. 2005, 53, 5212–5217. [Google Scholar] [CrossRef]
- Borenfreund, E.; Puerner, J.A. Toxicity determined in vitro by morphological alterations and neutral red absorption. Toxicol. Lett. 1985, 24, 119–124. [Google Scholar] [CrossRef]
- Castejón, M.L.; Montoya, T.; Ortega-Vidal, J.; Altarejos, J.; Alarcón-de-la-Lastra, C. Ligstroside aglycon, an extra virgin olive oil secoiridoid, prevents inflammation by regulation of MAPKs, JAK/STAT, NF-κB, Nrf2/HO-1, and NLRP3 inflammasome signaling pathways in LPS-stimulated murine peritoneal macrophages. Food Funct. 2022, 13, 10200–10209. [Google Scholar] [CrossRef]
- Castejón, M.L.; Sánchez-Hidalgo, M.; Aparicio-Soto, M.; González Benjumea, A.; Fernandez-Bolaños-Guzman, J.M.; Alarcon De La Lastra-Romero, C. Olive secoiridoid oleuropein and its semisynthetic acetyl induced inflammatory response in murine peritoneal macrophages via JA. J. Funct. Foods 2019, 58, 95–104. [Google Scholar] [CrossRef]
- Giron-Calle, J.; Vioque, J.; del Mar Yust, M.; Pedroche, J.; Alaiz, M.; Millan, F. Effect of chickpea aqueous extracts, organic extracts, and protein concentrates on cell proliferation. J. Med. Food 2004, 7, 122–129. [Google Scholar] [CrossRef]
- Sánchez-Vioque, R.; Santana-Méridas, O.; Polissiou, M.; Vioque, J.; Astraka, K.; Alaiz, M.; Herraiz-Peñalver, D.; Tarantilis, P.A.; Girón-Calle, J. Polyphenol composition and in vitro antiproliferative effect of corm, tepal and leaf from Crocus sativus L. on human colon adenocarcinoma cells (Caco-2). J. Funct. Foods 2016, 24, 18–25. [Google Scholar] [CrossRef]
- Girón-Calle, J.; Alaiz, M.; Vioque, J. Effect of chickpea protein hydrolysates on cell proliferation and in vitro bioavailability. Food Res. Int. 2010, 43, 1365–1370. [Google Scholar] [CrossRef]
- Montoya, T.; Castejón, M.L.; Sánchez-Hidalgo, M.; González-Benjumea, A.; Fernández-Bolaños, J.G.; De-La-Lastra, C.A. Oleocanthal Modulates LPS-Induced Murine Peritoneal Macrophages Activation via Regulation of Inflammasome, Nrf-2/HO-1, and MAPKs Signaling Pathways. J. Agric. Food Chem. 2019, 67, 5552–5559. [Google Scholar] [CrossRef] [PubMed]
- Boukhers, I.; Morel, S.; Kongolo, J.; Domingo, R.; Servent, A.; Ollier, L.; Kodja, H.; Petit, T.; Poucheret, P. Immunomodulatory and Antioxidant Properties of Ipomoea batatas Flour and Extracts Obtained by Green Extraction. Curr. Issues Mol. Biol. 2023, 45, 6967–6985. [Google Scholar] [CrossRef] [PubMed]
- Aparicio-Soto, M.; Sánchez-Fidalgo, S.; González-Benjumea, A.; Maya, I.; Fernández-Bolaños, J.G.; Alarcón-de-la-Lastra, C.J. Naturally occurring hydroxytyrosol derivatives: Hydroxytyrosyl acetate and 3,4-dihydroxyphenylglycol modulate inflammatory response in murine peritoneal macrophages. Potential utility as new dietary supplements. Agric. Food Chem. 2015, 63, 836–846. [Google Scholar] [CrossRef]
- Xiong, B.; Zhang, W.; ZeyuWu Liu, R.; Yang, R.; Hui, A.; Huang, X.; Xian, Z. Preparation, characterization, antioxidant and anti-inflammatory activities of acid-soluble pectin from okra (Abelmoschus esculentus L.). Int. J. Biol. Macromol. 2021, 181, 824–834. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Wang, Z.; Huang, W.; Suo, J.; Chen, X.; Ding, K.; Sun, Q.; Zhang, H. Antioxidant and anti-inflammatory activities of an anti-diabetic polysaccharide extracted from Gynostemma pentaphyllum herb. Int. J. Biol. Macromols 2020, 145, 484–491. [Google Scholar] [CrossRef] [PubMed]
- Song, X.; Ren, Z.; Wang, X.; Jia, L.; Zhang, C. Antioxidant, anti-inflammatory and renoprotective effects of acidic-hydrolytic polysaccharides by spent mushroom compost (Lentinula edodes) on LPS-induced kidney injury. Int. J. Biol. Macromol. 2020, 151, 1267–1276. [Google Scholar] [CrossRef]
- Liu, X.; Pang, H.; Gao, Z.; Zhao, H.; Zhang, J.; Jia, L. Antioxidant and hepatoprotective activities of residue polysaccharides by Pleurotus citrinipileatus. Int. J. Biol. Macromol. 2019, 131, 315–322. [Google Scholar] [CrossRef]
- Wang, T.; Tao, Y.; Lai, C.; Huang, C.; Ling, Z.; Yong, Q. Influence of glycosyl composition on the immunological activity of pectin and pectin-derived oligosaccharide. Int. J. Biol. Macromol. 2022, 222, 671–679. [Google Scholar] [CrossRef]
- Tanno, D.; Akahori, Y.; Toyama, M.; Sato, K.; Kudo, D.; Abe, Y.; Miyasaka, T.; Yamamoto, H.; Ishii, K.; Kanno, E.; et al. Involvement of Gr-1 dull+ Cells in the Production of TNF-α and IL-17 and Exacerbated Systemic Inflammatory Response Caused by Lipopolysaccharide. Inflammation 2013, 37, 186–195. [Google Scholar] [CrossRef]
- Hirano, T. IL-6 in inflammation, autoimmunity and cancer. Int. Immunol. 2020, 33, 127–148. [Google Scholar] [CrossRef]
- Rodríguez-Yoldi, M.J. Anti-Inflammatory and Antioxidant Properties of Plant Extracts. Antioxidants 2021, 10, 921. [Google Scholar] [CrossRef] [PubMed]
- Merheb, R.; Abdel-Massih, R.M.; Karam, M.C. Immunomodulatory effect of natural and modified Citrus pectin on cytokine levels in the spleen of BALB/c mice. Int. J. Biol. Macromol. 2019, 121, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Guo, H.; Du, Y.; Gao, H.; Liao, Y.; Liu, H.; Wu, D.; Gan, R.; Gao, H. Isolation, purification, degradation of citrus pectin and correlation between molecular weight and their biological properties. Lebensm. Wiss. Technol. 2024, 196, 115837. [Google Scholar] [CrossRef]
- Ren, K.; Torres, R. Role of interleukin-1β during pain and inflammation. Brain Res. Rev. 2009, 60, 57–64. [Google Scholar] [CrossRef] [PubMed]
g/100 g Extract | |
---|---|
Uronic acid | 16 ± 1.2 |
Phenols | 7.9 ± 0.19 |
Neutral sugars | 34 ± 0.91 |
Ash | 9.1 ± 1.6 |
% molar | |
Rhamnose | 0.91 |
Fucose | 0.14 |
Arabinose | 33 |
Xylose | 4.9 |
Mannose | 4.3 |
Galactose | 20 |
Glucose | 5.3 |
Uronic acid | 32 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bermúdez-Oria, A.; Castejón, M.L.; Rubio-Senent, F.; Rodríguez-Gutiérrez, G.; Fernández-Bolaños, J. Health-Promoting Properties of Pectin–Polyphenol Complex Extracted from Olive Oil By-Product Alperujo: Antioxidant, Antiproliferative, and Anti-Inflammatory Activities. Antioxidants 2024, 13, 1066. https://doi.org/10.3390/antiox13091066
Bermúdez-Oria A, Castejón ML, Rubio-Senent F, Rodríguez-Gutiérrez G, Fernández-Bolaños J. Health-Promoting Properties of Pectin–Polyphenol Complex Extracted from Olive Oil By-Product Alperujo: Antioxidant, Antiproliferative, and Anti-Inflammatory Activities. Antioxidants. 2024; 13(9):1066. https://doi.org/10.3390/antiox13091066
Chicago/Turabian StyleBermúdez-Oria, Alejandra, María Luisa Castejón, Fátima Rubio-Senent, Guillermo Rodríguez-Gutiérrez, and Juan Fernández-Bolaños. 2024. "Health-Promoting Properties of Pectin–Polyphenol Complex Extracted from Olive Oil By-Product Alperujo: Antioxidant, Antiproliferative, and Anti-Inflammatory Activities" Antioxidants 13, no. 9: 1066. https://doi.org/10.3390/antiox13091066
APA StyleBermúdez-Oria, A., Castejón, M. L., Rubio-Senent, F., Rodríguez-Gutiérrez, G., & Fernández-Bolaños, J. (2024). Health-Promoting Properties of Pectin–Polyphenol Complex Extracted from Olive Oil By-Product Alperujo: Antioxidant, Antiproliferative, and Anti-Inflammatory Activities. Antioxidants, 13(9), 1066. https://doi.org/10.3390/antiox13091066