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Abstract: In the past years, biomedical research has recognized hydrogen sulfide (H2S) not only as
an environmental pollutant but also, along with nitric oxide and carbon monoxide, as an important
biological gastransmitter with paramount roles in health and disease. Current research focuses on
several aspects of H2S biology such as the biochemical pathways that generate the compound and
its functions in human pathology or drug synthesis that block or stimulate its biosynthesis. The
present work addresses the knowledge we have to date on H2S production and its biological roles in
the general human environment with a special focus on the oral cavity and its involvement in the
initiation and development of periodontal diseases.
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1. Introduction

Hydrogen sulfide (H2S), traditionally recognized as a toxic gas with a rotten-egg smell [1], is
also a bacterial waste product eliminated in the subgingival pocket [2,3]. Periodontal disease has
been described as an immune-inflammatory condition characterized by connective tissue breakdown,
loss of attachment and alveolar bone resorption [4]. In periodontitis pathogenesis, inflammatory and
immune reactions play the main roles [5], but more and more authors consider also the link between
oxidative stress and periodontal problems. Due to H2S’s abilities in reducing oxidative stress [6–8]
or regulating inflammation [8,9], researchers have started studying H2S’s roles in the initiation and
progression of periodontal diseases. However, results are controversial.

Interestingly, H2S can be regarded as a double-faced molecule: on one side, at lower concentration
have antioxidant and cytoprotective activities, but at higher concentrations is cytotoxic and stimulates
oxidative stress (OS).

This paper reviews the most significant studies concerning H2S production, its biological roles
and implications in periodontitis development.

2. H2S—Production

In mammalian organisms, including the human body, endogenous H2S synthesis is generally
connected to three enzymes: 3-mercaptopyruvate sulfurtransferase (3MST), cystathionine β-synthase
(CBS) and cystathionine γ-lyase (CSE), all three taking part in the cysteine synthesis pathway [10–12]
(Figure 1).

It is important to note that the three enzymes are responsible for H2S homeostasis and regulate
H2S levels found in the bloodstream. Each of the enumerated enzymes is found at specific sites in
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the organism. Thus, 3MST has a mitochondrial location and is usually present in the brain and blood
vessels. The enzyme participates in a series of chemical reactions that starts with cysteine metabolism
transformed to 3-mercaptopyruvate by cysteine aminotransferase. Further 3-mercaptopyruvate is
reacted to pyruvate and, finally, to H2S by 3MST. CBS is encountered mostly in hepatic, cerebral
and nervous tissues. CBS produces H2S as a result of a reaction involving cystathionine generation
from cysteine and serine. Similarly, CSE, which resides in blood vessels and hepatic cells, produces
H2S starting from cysteine and generates pyruvate and ammonia. H2S catabolism involves several
oxidative steps that convert the gas to persulfide, thiosulfate and sulphate, in an organ specific process.
Further, H2S oxidation was shown to occur in virtually all cell types and tissues of the human body
including colon, kidney, liver, and brain or lung cells [13].
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Figure 1. Hydrogen sulfide production—Cysteine biosynthesis pathway is the main pathway
responsible for H2S production in mammalian organisms. It usually needs the help of three oral enzymes.

In the oral cavity, human periodontal ligament stem cells (PDLSCs) express H2S-synthesizing
enzymes CSE and (CBS) [14]. CBS may be the main source of endogenous H2S in PDLSCs [14]. H2S is
also caused by the metabolic products of oral sulfate-reducing bacteria [15] that degrade substrates
such as cysteine, arginine or tryptophan. Interestingly, gut bacteria produced H2S is considered a
pathogenic factor in bowel inflammatory diseases characterised by inflammatory mucosal lesions like
periodontal diseases lesions [16].

3. H2S Biological Roles

H2S is a gaseous mediator with multiple roles depending on the tissue or organ. Thus, H2S
is involved in blood vessels dilatation, inflammation, cardiac reaction to ischemic injuries [17],
nervous system regulation [18], insulin secretion, and resistance [1,19]. In the human body, increased



Antioxidants 2016, 5, 3 3 of 13

concentrations of H2S are associated with respiratory affections such as chronic bronchitis, emphysema,
pneumonia or diseases related to the cardiovascular system (e.g., hypertension) [17]. However, there
is also a rapidly expanding body of evidence for essential roles of H2S in the protection against
tissue injury, in reducing inflammation, and tissue repair [20]. H2S might be both beneficial and
harmful in cerebral ischemic injury depending on its concentration [21]. A recent study found that the
amino-oxyacetic acid (AOAA), an inhibitor of H2S synthesis, administered at a low dose has protective
effects; but it worsens the ischemic injury at higher concentrations [21].

Among the most studied molecular mechanisms of H2S cellular effects is the regulation of
intracellular redox homeostasis and post-translational modification of proteins through glutathione
(GSH) generation and S-sulfhydration [1]. Moreover, H2S exerts anti-oxidative, anti-inflammatory
and cytoprotective effects [22]. Sodium hydrosulfide (NaHS) (a H2S donor) had interesting effects in
the kidneys of uranium-intoxicated rats: it managed to lower malondialdehyde(MDA) accumulation,
and to restore GSH levels and anti-oxidative enzymes’ activities like superoxide dismutase (SOD),
glutathione peroxidase (GPx), catalase (CAT) and glutathione S-transferase (GST) [22]. Furthermore,
a mitochondrially targeted hydrogen sulfide donor exerts protective effects in renal epithelial cells
subjected to OS, as it might be related to the reduction of cellular OS [23]. Also, H2S can protect
neurons and cardiac muscle from OS and ischemia-reperfusion injury [24], as well as accelerating
wound healing in diabetic animals [8].

Likewise, other volatile sulfur compounds related to H2S (i.e., dimethyl sulfide) were shown to
be significantly elevated in patients with cerebrovascular pathology (for example, subarachnoid or
intracerebral hemorrhages), as well as increased cholesterol levels, asthma or hepatic affections like
cirrhosis [25] (Table 1).

Table 1. Hydrogen sulfide—systemic effects.

Biological Event H2S—Effect

Angiogenesis Increases blood flow Decreases the risk of tissue injury
Mitochondrial respiration Decreases the function Cytoprotection

Vasodilatation Regulates blood pressure
Leukocyte adhesion Anti-inflammatory effect

Apoptosis Decreases apoptosis—cytoprotective effect
Antioxidant Up-regulation of antioxidant molecules

Also, not surprisingly, several studies have focused on the H2S toxicity in the or alenvironment
(Tables 2 and 3).

Table 2. Biological effects of high physiological concentrations of H2S on different oral cell types
(50 ng/mL H2S).

Tissue Cells Origin Biological Event

Oral Epithelia

Normal keratinocytes Ca9-22 cell line Apoptosis—mitochondrial pathway activated; DNA damage

Keratinocyte stem cells Human skin cell line Apoptosis—mitochondrial pathway activated; DNA damage;
p53 and Bax activity increased

Keratinocyte stem cells Human oral mucosa
Apoptosis—mitochondrial pathway activated; DNA damage;
Activation of genes from p53 pathway connected with DNA
repair, cell cycle arrest

Keratinocyte cells Animal oral mucosa Increases the permeability of the epithelium

Oral Dermis
Fibroblasts Human oral mucosa Apoptosis—mitochondrial pathway activated; DNA damage

Collagen Fibers Extracellular matrix Increases collagen degradation/decreases collagen synthesis

Dental Pulp Dental pulp stem cells Human dental pulp Apoptosis—mitochondrial pathway activated; DNA damage

Bone Osteoblasts Mouse calvaria Apoptosis—mitochondrial and death ligand pathway
activated; DNA damage; Bone resorption
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Table 3. Biological effects of low physiological concentrations of H2S on different oral cell types
(1 ng/mL H2S).

Tissue/Cells Origin Biological Event

Dental Pulp Dental pulp cells Human pulp Differentiation to hepatic like cells

Dental pulp cells Human pulp Differentiation of pancreatic like cells

Bone Osteoclasts Mouse Osteoclast activation followed by bone resorption

4. Oxidative Stress and Periodontal Diseases

Reactive oxygen species (ROS) are products of normal oxygen metabolism and have beneficial
biological effects, in low levels and under normal conditions. Instead, higher concentrations present
harmful effects to the body. External environment (heat, UV light, X and gamma radiations, therapeutic
drugs), behavioural activities (smoking, chronic exercise) and inflammatory cells (such as activated
macrophages and neutrophils release various ROS (H2O2, NO, O2

´, HO and HOCl) [26–29]. Even
though ROS have extremely short half-lives, they can cause substantial damage to tissues and cellular
components. Recently, systemic OS was also associated with the suppression of bacterial-specific IgG
levels [30]. At the cellular level, ROS progression starts with membrane lipid peroxidation followed by
cytosolic proteins modification and ending with DNA oxidation [31]. Lipid peroxidation is initiated
by the hydroxyl radical, while its major final products are MDA and 4-hydroxyl-2-nonenal (HNE).
Therefore, MDA is one of the most used biomarkers to evaluate oxidative damage in both local and
systemic disorders [31].

Several amino acids (such as tyrosine) can also react with ROS, generating a wide range of
products, from modified and less active enzymes to denatured, non-functioning proteins. Furthermore,
mitochondrial DNA are also affected by the ROS attack. HO can react with all components of DNA
molecules, damaging both purine and pyrimidine [26–28,32–34].

There are many enzymatic antioxidant defence mechanisms in order to protect against ROS effects
in vivo [35]: SOD, GPx, CAT [35–37]. Saliva has its own fighting mechanisms: uric acid, ascorbate,
reduced glutathione and alpha tocopherol [38–42]. Urate, the most important salivary antioxidant, acts
as a scavenger for hydroxyl radical, singlet oxygen, or peroxynitrite, especially in presence of ascorbic
acid or thiols [43]. Other sources of antioxidants in the oral cavity are albumin, catalase-positive
commensal and fresh blood extravasated from injured capillaries [42]. More than that, SOD has been
localized in the human periodontal ligament, and it is a valuable defence enzyme within gingival
fibroblasts [35,44].

Tissue destruction in periodontal diseases is considered to be the result of an altered
inflammatory/immune response to microbial plaque and involves massive release of neutrophils, ROS
and enzymes [45–48]. Gingival epithelial cells form the first line of defence in the gingival crevice. So,
they have the key role as the protection mechanism of host oral structures from bacterial invasion.
Thus, gingival epithelial cells produce an adaptive immune responses [49] and release the chemotaxis
factor for neutrophils [50,51], antimicrobial peptides [52] and pro-inflammatory cytokines, such as
interleukin-8 (IL-8). Unfortunately, on the other hand, over-expression of these pro-inflammatory
cytokines causes collateral tissue damage. ROS produced by activated neutrophils in response to
periodontopathogenic bacteria cause serious periodontal tissue lesions, in the context of periodontal
disease [28,34,53].

Therefore, the balance between antioxidant mechanisms and ROS is of utter importance in
periodontal pathogenesis. Increased ROS and inhibited antioxidant mechanisms and/or decreased
antioxidant capacity might lead to problems of the periodontium. Several authors reported a
positive correlation between periodontal tissue damage and high levels of ROS [54–57]. Hypoxia
and inflammation induced higher expression of ROS in primary periodontal ligament fibroblasts [55].
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Besides, the exposure of periodontal ligament cells to hydrogen peroxide decreased their viability by
promoting apoptosis [58].

Furthermore, animals infected with periodontal pathogens presented a five-fold increase in the
OS index compared with controls [54]. Clinical studies also confirmed the link between ROS and
progression of periodontitis [57]. A meta-analysis of 31 articles concluded that higher amounts of MDA
and nitric oxide (NO) could be found in the peripheral blood of periodontal subjects [56]. Interestingly,
the authors of the meta-analysis stated that SOD levels between normal and affected adults did not
differ very much [56]. However, recent clinical studies encountered significantly lower levels of SOD
in the serum [4] and gingival fluid [59] of periodontally diseased subjects. Of main importance are
the results presenting higher amounts of total antioxidant capacity (TAC) [56,60] and CAT [61] in the
serum of healthy patients. CAT is an enzyme that protects cells from hydrogen peroxide [61] and its
decrease might be linked to failure of regulatory antioxidant mechanisms. Of real interest is also the
fact that TAC [61] and SOD [4] levels rose significantly after periodontal treatment in the serum of
periodontitis patients.

Researchers have also started to consider a possible relationship between periodontitis and
systemic diseases. Diabetes mellitus [60,62,63], metabolic syndrome [64] and periodontal disease are
all of related by a common factor known as OS. There was a major alteration of the local antioxidant
defence mechanism in the gum and/or bone tissues of type 2 diabetes mellitus patients, which
presented lower glutathione levels [62]. Interestingly, another clinical study concluded that adults
affected by both periodontitis and diabetes mellitus exhibited higher serum values of SOD [60].
The authors considered that this might have been an adaptive mechanism against ROS that were
developing in the tissues [60].

Further experiments demonstrated there is an increased amount of ROS not only in serum, but
also in the oral fluids of periodontally diseased subjects [59,65]. Gingival crevicular fluid (GCF) of
periodontitis sites exhibits a significantly greater total amount of GPx, lactoferrin, myeloperoxidase
and interleukin-1beta (IL-1β) than healthy sites [66]. Moreover, MDA showed to be significantly up
regulated in the GCF of adults with chronic and generalized aggressive periodontitis [59]. However,
most importantly, saliva of periodontal patients often includes higher expression of oxidative and
cellular energetic stress markers, increased purine degradation, GSH metabolism [65] and lower levels
of uric acid. The low salivary levels of uric acid in periodontitis patients could be due to elevated rates
of oral ROS in the context of chronic inflammatory reactions. Therefore, salivary uric acid might play
an essential protective role against ROS and could be regarded as a local ROS marker in the context of
chronic periodontitis [28,34,67].

New therapies are constantly being developed and could have future uses against OS present in
chronic periodontitis: protein transduction treatments [68], bone targeted antiresorptives(bis-enoxacin
and alendronate) [54] or antioxidants [57,58].

Ascorbic acid, an antioxidant, plays an important role in the maintenance of periodontal health in
the elderly [69]. Its use led to really promising results in vitro, being able to partially antagonize the
negative effects of hydrogen peroxide [58]. Furthermore, the administration of the antioxidant taurine
in adults with chronic periodontitis resulted in a significant reduction of ROS present in plasma and
gingival tissue, together with an improvement of periodontal status [57]. Other specific strategies
could include lactic acid bacteria with antioxidative activity [70] or lipophilic antioxidants [71].

5. H2S—Involvement in Periodontal Diseases

Considering periodontitis a polymicrobial anaerobe infection, researchers focus on the following
main mechanisms for explaining its pathogenesis: the production of certain waste products in the
proteolytic metabolism, an intense host–inflammatory response and increased OS [2,3,29].

H2S is a bacterial waste product eliminated in the subgingival pocket [2,3] which, due to
pro-inflammatory properties, might play an important role in the bacteria-induced inflammatory
response in the periodontal diseases [72–75]. Other studies consider that oral malodorous compounds
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including H2S are causative agents of periodontitis because the toxicities are similar to that
of cyanate [76]. However, H2S has also shown antioxidant properties, for example, in elevating
endogenous antioxidase, such as SOD [8,77,78].

So, H2S can be regarded as a double-faced molecule: on one side, it can promote an antioxidant
effect and becomes cytoprotective; while on the other side, it stimulates OS and is cytotoxic.

Reports show that H2S is directly linked to the initiation and development of periodontal diseases:
the compound inhibits the proliferation process of oral keratinocyte cells [79], decreases protein
synthesis in oral fibroblasts, and inhibits collagen synthesis or basal membrane synthesis [80].

There seems to be a direct relationship between the type of biological effect induced by H2S and
the H2S levels. Low physiological concentrations of H2S have been shown to induce dental pulp cells
differentiation towards hepatic or pancreatic cells [81] or to switch mouse osteoclasts from a passive
state to an active one that induces bone resorption [81]. Moreover, physiological levels of endogenous
H2S maintain the proliferation and differentiation of PDLSCs [14]. Blocking the endogenous H2S in
PDLSCs led to significant reduction in their proliferation rate, as well as decreased osteogenic and
adipogenic differentiation [14]. However, new H2S-releasing drugs had enhanced anti-inflammatory
effects and reduced side effects in tissues [20]. Recently, a H2S -releasing derivative of naproxen,
ATB-346, led to significant inhibition of alveolar bone loss and inflammation in periodontal rats [82].

High physiological concentrations of H2S are demonstrated to induce programmed cell death
through different molecular pathways in a number of cell types. These concentrations induced
apoptosis through inhibition of SOD in human gingival fibroblasts. This enzyme is paramount in
eliminating ROS and leads to damage of DNA structure. The same process was observed in normal
keratinocytes [83] and keratinocytes stem cells. DNA damage is shown to activate several molecular
pathways such as p53 pathway that can decide cellular fate through activation of DNA repair molecules,
cell cycle arrest or apoptosis.

Volatile sulfur compounds and especially H2S were shown to induce the apoptotic process in
several cell types belonging to oral structures. Generally, apoptosis follows well established pathways
such as: intrinsic mitochondrial pathway where the inner mitochondrial membrane is depolarized
followed by cytochrome c release into cytosol, assembly of the apoptosome that leads to activation of
initiator caspase 9 ultimately followed by executioner caspase 3 activation [84].

This pathway was activated in most studied cell types: oral fibroblasts, oral keratinocytes,
oral keratinocyte stem cells, and general keratinocyte stem cells. The extrinsic pathway, or
theligand-activated pathway was shown to be responsible for apoptosis induction only in cells isolated
from the alveolar bone, osteoblast cells. At the same time, after H2S-exposure, human oral keratinocyte
stem cells expressed key p53-related molecules associated with cell death, DNA repair and cell
cycle control.

Another clinical effect of H2S is its association in the development of physiological and
pathological halitosis [15,49]. Halitosis is the general term used to describe offensive smells detected
in human breath and is a characteristic symptom of periodontal disease [15].

Several studies reported bacterial H2S producing species like Fusobacteriumspp., Parvimonasmicra,
Tannerella forsythia or Filifactoralocis [2]. For example, Fusobacteriumspp. acts on substrates such as
cysteine [85], homocysteine [86] or GSH [87]. Likewise, a recent study examined the GSH metabolism
in Treponemadenticola [88].

Three steps has been proposed for the bacterial H2S production pathway. Glutamate or
glutamine and the dipeptide cysteinylglycine (Cys-Gly), are obtained from GSH. Cys-Gly degradation
results Gly and L-Cys. Pyruvate, ammonia, and H2S are the final products of L-Cys degradation.
In GSH metabolism are involved three enzymes γ-glutamyltransferase (GGT), cysteinylglycinase, and
L-cysteine desulfhydrase (cystalysin) [89,90], the last one cystalysin catalyzes the production of H2S,
in the presence of L-cysteine [90,91].



Antioxidants 2016, 5, 3 7 of 13

The H2S -producing capacity is commonly tested with gas chromatography [89], colorimetric
bismuth sulfide precipitation method [92], by using sensors [90] or by blackening of lead acetate
paper [91].

In present more research is needed to be done under various conditions both in vitro and in vivo
to detect the rate and amount of H2S produced by various species and strains.

In addition to H2S, Porphyromonas gingivalis, produces several other virulence factors such
as proteases (gingipains) [93], lipopolysaccharide (LPS) [94], and hemagglutinins [95]. A higher
level of H2S (650–1.150 µmol/L), produced by Porphyromonas gingivalis affect IL-8 production in
Phorbolmyristateacetat (PMA)-stimulated epithelial cells.

A lower concentration of H2S (less than 400 µmol/L), did not effect IL-8 production in
PMA-stimulated epithelial cells [75]. H2S present in blood at concentrations in the range of
30–100 µM [96], epithelial cells can accept H2S in concentrations lower than 400 µmol/L. Another
study observed that increased levels of H2S (800 or 1.600 µmol/L) did not stimulate IL-8 production in
epithelial cells in the absence of PMA [96].

This means that for H2S-mediated production of IL-8, the presence of a predisposed inflammatory
condition is very important [75]. This could explain the dual behavior of H2S.Additionally, a recent
study found that H2S synergistically up regulates Porphyromonas gingivalis LPS-induced expression
of IL-6 and IL-8 in gingival fibroblasts and PDLCs, which could further promote the development of
periodontitis [97]. Lower concentration of H2S inhibited LPS which induced synthesis of prostaglandin
E2 (PGE2), NO, IL-1β and IL-6 in LPS-treated murine macrophages [98,99]. However, higher
concentrations of NaHS, a H2S donor, promoted the synthesis of pro-inflammatory mediators [98,99].
An important function of IL-8 is chemo-attraction of neutrophils, which migrate to epithelial cells,
the site where IL-8 is released and promote bacteria phagocytosis [100]. Neutrophils promote ROS
production in order to kill bacteria cells but these ROS also seriously augment inflammation [101].

IL-8 production by epithelial cells is mediated by H2S, causes an enhancement of local
inflammation by recruiting excess numbers of neutrophils. Several studies made in vivo on pancreas,
liver and lung, observed that both endogenous H2S and exogenously supplied H2S increased
neutrophil migration to the inflammation sites [102,103].

These data support the premise that the periodontal bacteria released H2S could induce the
chemotaxis of neutrophils to the periodontal pocket, becoming this way, a real promoter of local
OS, indirectly.

Exogenous H2S toxic effects in periodontal tissue has been showed [75], but the role of endogenous
H2S in periodontal tissue physiologic function remains less understood. A recent study involving
43 subjects with moderate or severe periodontal breakdown could not correlate H2Sproduction to
periodontal disease severity or to a specific bacterial composition [92]. It was suggested that H2Smay
be a valuable clinical marker for degradation of proteins in the sub gingival pocket [92].

6. Conclusions

Altogether, data presented in recent studies suggests that the relationship between H2S, OS and
periodontal diseases is controversial, but should not be underestimated. Further research is needed
in order to elucidate the exact mechanisms and conditions which cause the H2S molecule to exhibit
antioxidant or cytotoxic proprieties in the oral cavity.

To date, there is no general consensus regarding H2S biochemistry and its functions in cell biology
(i.e., its pro- or anti-inflammatory effects). In this respect, the field can be further expanded together
with the development of tools that could correctly identify and quantify H2S synthesis and catabolism
in organs and tissues [13]. Another important issue would be the elucidation of endo- or exogenous
signals that initiate H2S production together with a better understanding of the chemical pathways
responsible for its removal. Overall, a more clear understanding of the biochemistry of H2S in relation
to its biological roles is greatly needed.
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