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Abstract: Persea americana, commonly known as avocado, has recently gained substantial popularity
and is often marketed as a “superfood” because of its unique nutritional composition, antioxidant
content, and biochemical profile. However, the term “superfood” can be vague and misleading, as
it is often associated with unrealistic health claims. This review draws a comprehensive summary
and assessment of research performed in the last few decades to understand the nutritional and
therapeutic properties of avocado and its bioactive compounds. In particular, studies reporting
the major metabolites of avocado, their antioxidant as well as bioavailability and pharmacokinetic
properties, are summarized and assessed. Furthermore, the potential of avocado in novel drug
discovery for the prevention and treatment of cancer, microbial, inflammatory, diabetes, and
cardiovascular diseases is highlighted. This review also proposes several interesting future directions
for avocado research.

Keywords: avocado; Persea americana; metabolites; antioxidants; anticancer; antimicrobial;
anti-inflammatory; diabetes; cardiovascular diseases (CVD); bioavailability and pharmacokinetic

1. Introduction

Persea americana (commonly known as avocado, avocado pear, or alligator pear) is native to Mexico
and Central America, and a member of the flowering plant family Lauraceae [1,2]. Botanically, avocado
fruit is a berry with a single large seed [3]. Mexico is the leading producer of avocados worldwide [2].
The term “superfood” refers to foods that are beneficial to human health due to their high levels
of nutrients and/or bioactive phytochemicals such as antioxidants [4]. In particular, avocado has
recently gained dramatic popularity [5] and is often referred to as a “superfood” because of its unique
nutritional and phytochemical composition compared to other fruits. This has led to an exponential
increase in avocado consumption from 2.23 pounds per capita in 2000 to 7.1 pounds per capita in 2016
in the United States [6]. However, the term “superfood” has been used ambiguously in popular media,
and often marketed with misleading health claims of preventing and curing ailments. Considering
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their immense popularity and diverse biochemical content, avocados have also been extensively used
in the food, nutraceutical, pharmaceutical, and cosmetic industries. In addition, their health-benefiting
properties have been investigated in a number of preclinical and clinical studies in the last few decades.
The present review article is focused on the comprehensive summary and assessment of research
performed to understand the role of avocado and its bioactive compounds in the prevention and
treatment of various ailments, including cancer, microbial, inflammatory, diabetes and cardiovascular
diseases. The studies emphasizing the nutritional composition of avocado, its major metabolites,
and their pharmacokinetic properties are also reviewed and summarized. Furthermore, this review
highlights several interesting aspects for future research on avocado.

1.1. The Vast Array of Secondary Metabolites of Avocado and Their Biological Significance

Using “Avocado” and “Persea” as search descriptors with a focus for pharmacologically active
metabolites, various avocado metabolites were retrieved from Combined Chemical Dictionary v23.1
(CCD) [7] and The Human Metabolite Database (HMDB) [8]. In addition to the P. americana, the search
strategy also covered other Persea species such as P. mexicana, P. indica, P. gratissima, P. obovatifolia, and
P. borbonia (Table 1). As per the literature, most bioactive compounds were isolated predominantly
from P. americana. Other synonyms of P. americana are P. gratissima, Laurus persea, P. drymifolia, and
P. nubigena [9]. The metabolite arsenal can be classified chemically into eight main classes, including
fatty alcohols, furan derivatives, carotenoids, carbohydrate, diterpenoids, lignan derivatives, and
miscellaneous compounds, as shown in Figures 1–8, and Table 1. In brief, fatty alcohols isolated
from avocado showed different degrees of unsaturation and alkyl chain length with several levels of
hydroxylation and subsequent acetylation (Figure 1). These fatty alcohols have been reported to exhibit
antiviral, cytotoxic, antifungal, trypanocidal, and antioxidant activity [10–21]. Phenolic compounds
(Figure 2, and Table 1) of different chemical classes from simple organic acids such as gallic acid to
larger flavonoids, anthocyanidins, and tocopherols were isolated from Persea species with significant
antioxidant, neuroprotective and cardioprotective activities [22–28]. The antioxidant properties of
avocado were also ascribed to their carotenoid content in many studies [24,28–30] (Figure 3). Moreover,
sugar alcohol and ketoses with variable carbon chain length were isolated from avocado (Figure 4).
Notable insecticidal, cytotoxic, and antifungal activities were also reported for the furan and furanone
derivatives isolated from Persea species [18,31–37] (Figure 5), where the saturation of the furan ring
was detrimental for the insecticidal activity [38]. The insecticidal activity of the furan derivatives was
augmented by the diterpenoids compounds [39–43], especially in P. indica (Figure 6). Overall, avocado
contains a vast array of secondary metabolites of different chemical classes which may attribute to its
diverse biological activities.
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Table 1. Metabolites isolated from Persea species.

Compound Name and Synonyms Source Extracts of Different Parts
Used Biological Significance Reference

Fatty alcohols

(2R,4R)-1,2,4-trihydroxyheptadec-16-yne [Avocadyne]
1,2,4-trihydroxyheptadec-16-ene

2,4-methylene-dioxyheptadec-16-ene-1-ol
1-acetoxy-2,4-dihydroxyheptadec-16-yne

(2R,4R)1,2,4-Nonadecanetriol.
(2R,4R,6E)-6-Nonadecene-1,2,4-triol

(2R,4R,16E)-16-Nonadecene-1,2,4-triol [Avocadenol D]

P. americana Pulp and seeds
Inhibition of the dengue virus replication.
Cytotoxic, insecticidal, antimycobacterial,

and trypanocidal activity.
[10–13,21]

(Z,Z)-1-Acetoxy-2-hydroxy-4-oxo-heneicosa-12,15-triene
(Z,Z,E)-1-Acetoxy-2-hydroxy-4-oxo-heneicosa-5,12,15-triene

1,2,4-trihydroxyheptadec-16-ene
P. americana Idioblast cells of pulp Antifungal activity [14]

(2R,4R)16-Heptadecene-1,2,4-triol
and the following derivatives:

1,2, or 4 acetate
(1,2), (1,4) or (2,4) di acetate

1-hexadecanolyl derivative (Avocadoin)

P. americana Peel, idioblast cell, and leaves Antifungal, cytotoxic, and insecticidal
activity. [11,14,15]

2-(isopropyl)-(2E,4E)-16-Heptadecene-1,2,4-triol
2-(isopropyl),

1,4-di-acetyl-(2E,4E)-16-Heptadecene-1,2,4-triol
P. gratissima Leaves - [7]

(2E,5E,12Z,15Z)
1-Hydroxy-2,5,12,15-heneicosatetraen-4-one

1-Hydroxy-2,12,15-heneicosatrien-4-one
P. americana - - [7]

Acetyl-2-nonanol P. gratissima Leaves - [7]

Persin
Tetrahydropersin

Isopersin
Tetrahydropersin

P. americana Idioblast oil cells Surfactant and emulsifier, nutrient,
membrane stabilizer, energy source, and

energy storage.

[8,16,17]

1-Acetoxy-2-hydroxy-16-heptadecen-4-one P. americana Pulp [18]

Persenone A and B P. americana Pulp Nitric oxide and superoxide generation
inhibitors. [19]

Secosubamolide P. americana Bark Cytotoxic activity [20]
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Table 1. Cont.

Compound Name and Synonyms Source Extracts of Different Parts
Used Biological Significance Reference

Phenolics

Gallic acid
3,4-Dihydroxyphenylacetic acid

4-Hydroxybenzoic acid
Vanillic acid

p-Coumaric acid
Ferulic acid
Quercetin

P. americana Pulp oil and varied by ripening
and peeling Antioxidant activity [28]

(+)-Catechin
(−)-Epicatechin

Neochlorogenic acid
procyanidins

P. americana By-products Antioxidant and neuroprotective activity. [22]

Proanthocyanidins B1, B2 and A-type trimer P. americana Seeds Cytotoxic to HaCat cells. [23]
Tocopherols (Vitamin E)

α-tocopherol
γ-tocopherol

P. americana Pulp and pulp oil varied by
ripening and peeling Antioxidant activity [24,28]

(E)-Chlorogenic acid (Caffeylquinic acid, Caffetannic acid,
Helianthic acid, Igasuric acid) P. americana -

Antioxidant, antimicrobial (antibacterial
and antiviral) hepatoprotective,

cardioprotective, anti-hypertension,
anti-obesity, anti-inflammatory,

antipyretic, neuroprotective, central
nervous system stimulator.

[7,25]

Scopoletin P. americana - Anti-oncogenic and antioxidant activity. [7,26]

4-Hydroxycinnamoylputrescine (4-Coumaroylputresine) P. gratissima - Nutrient, promotes cell multiplication of
tobacco explants. [7,27]

Carotenoids

Lutein
zeaxanthin

β-cryptoxanthin
α-carotene

β-carotene (pro-vitamin A, retinol)

P. americana Pulp and pulp oil varied by
ripening and peeling

Cytotoxic to prostate cancer cell lines,
antioxidant, reduces the photosensitivity

reactions in erythropoietic
protoporphyria patients.

[24,28]

10’,11’-Didehydro-5,8,11’,12’-tetrahydro-10’-apo-β-carotene-3,5,8-triol
5,8-Epoxy-5,8-dihydro-10’-apo-β,ψ-carotene-3,10’-diol P. americana Pulp Surfactant and emulsifier, nutrient,

membrane stabilizer, energy source and
energy storage.

[8,29]

α-Citraurin (3-Hydroxy-8’-apo-ε-caroten-8’-al) P. americana Pulp [30]
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Table 1. Cont.

Compound Name and Synonyms Source Extracts of Different Parts
Used Biological Significance Reference

Carbohydrates

Perseulose P. gratissima Leaves, fruit, and seeds

Nutrient, membrane stabilizer, energy
source and energy storage.

[44]

d-erythro-l-galacto-Nonulose P. americana Pulp [45]
d-erythro-l-gluco-Nonulose P. americana Pulp [46]

d-erythro-d-galacto-Octitol P. gratissima Pulp [47]

d-manno-2-Heptulose P. gratissima
P. americana Pulp [7,47]

d-glycero-d-manno-2-Octulose P. gratissima Pulp [47]

Furan derivatives

Avocadofuran B (2-Heptadecylfuran)
P. americana Pulp Insecticidal activity [31,32]

Avocadofuran A (2-Pentadecylfuran) P. americana Idioblast oil cells

Avocadienofuran
P. americana

P. indica

Seed oil pulp

-

[33,34]Perseafuran [(E)-2-(1-Pentadecenyl) furan]

Isoavocadienofuran Seeds

Avocadenofuran P. americana Pulp [18]

Avocadynofuran P. americana and P. indica Pulp [18,33]

Furanone derivatives

Obtusilactone A (Borbonol) P. americana, P. borbonia and
other Persea spp. Idioblast oil cells Antifungal and anticancer activity. [35,36]

Isoobtusilactone A (Borbonol 2) Persea spp Idioblast cell oil of pulp Antifungal and anticancer activity. [35,37]

Majorynolide P. major - Cytotoxic, weak antimycobacterial
activity.

[33]
16,17-Dihydro-Majorynolide P. major and P. indica -
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Table 1. Cont.

Compound Name and Synonyms Source Extracts of Different Parts
Used Biological Significance Reference

Diterpenoids

Perseanol
Vignaticol

Indicol P. indica Branches
Insecticidal and antifeedant activity. [39,40]

Ryanodol
2,3-DidehydrocinnzeylanoneAnhydrocinnzeylanoneGarajonone Insecticidal and toxic to mice. [41–43]

Norlignans/Neolignans/Lignans

Perseal A
((7’R,8’S)4’,7’-Dihydroxy-3,3’-dimethoxy-8,9-dinor-4,8’-oxylignan-7-al)

Perseal B ((7’S,8’S)
4’,7’-Dihydroxy-3,3’-dimethoxy-8,9-dinor-4,8’-oxylignan-7-al)

Obovatinal
Perseal C
Perseal D

Perseal E ((7’S,8’S)
4,7’-Epoxy-3’,4’-dihydroxy-5,5’-dimethoxy-8,9-dinor-3,8’-lignan-7-al)

ObovatenObovatifol

P. obovatifolia Branches Cytotoxic activity [48–52]

Lingueresinol P. lingue Bark - [53]

Miscellaneous

(6S,7E,9Z) Abscisic acid-13-Hydroxy,
13-O-β-D-glucopyranoside P. americana Seeds

Derivative of abscisic acid (plant
hormone involved in seed and bud

dormancy).
[7]

Dimethyl sciadinonate P. americana - Growth inhibitor of silkworm larvae. [7,54]

(3β,5α,24R) Stigmast-7-en-3-ol;
(Schottenol, 22-Dihydrochondrillasterol,

22,23-Dihydro-α-spinasterol, Poriferast-7-en-3-ol)
P. americana Pulp oil Protective role by cholesterol metabolism

modulation (liver x receptor agonist). [55]

Perseapicroside A P. mexicana - - [56]

Glutathione P. americana - Anticancer and antioxidant activity. [57–59]

12-Tridecenal P. bombycina Essential oil - [60]
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Figure 1. Fatty alcohols isolated from avocado.
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1.2. Nutritional Composition of P. americana

Avocados have been recognized for their high nutritional value and therapeutic importance for
centuries. The nutritional composition of avocado is shown in Table 2 according to the United States
Department of Agriculture (USDA) [61]. A whole avocado is reported to contain 140 to 228 kcal
(~585–1000 kJ) of energy depending on the size and variety [62]. The variety, grade of ripening, climate,
the composition of the soil, and fertilizers are the major factors that largely influence the nutritional
profiles of avocados [63].

Table 2. Pulp composition of Persea americana (avocado) [61].

Nutritional Composition Unit Value Per 100 g 1 Fruit 136 g 1 Serving 30 g

1. Proximate
Water g 72.3 98.4 21.7

Energy kcal 167 227 50
Energy (insoluble fiber

adjusted) kcal 148 201 44

Protein g 1.96 2.67 0.59
Total lipid (fat) g 15.41 21 4.62

Ash g 1.66 2.26 0.5
Carbohydrate g 8.64 11.8 2.59

Fiber g 6.8 9.2 2
Sugars g 0.3 0.41 0.09
Starch g 0.11 0.15 0.03

2. Minerals
Calcium mg 13 18 4

Iron mg 0.61 0.83 0.18
Magnesium mg 29 39 9
Phosphorus mg 54 73 16
Potassium mg 507 690 152

Sodium mg 8 11 2
Zinc mg 0.68 0.92 0.2

Copper mg 0.17 0.23 0.05
Manganese mg 0.15 0.2 0.05
Selenium ug 0.4 0.5 0.1

3. Vitamins and Phytochemicals
Vitamin C mg 8.8 12 2.6
Thiamine mg 0.08 0.1 0.02
Riboflavin mg 0.14 0.19 0.04

Niacin mg 1.91 2.6 0.57
Pantothenic acid mg 1.46 2 0.44

Vitamin B-6 mg 0.29 0.39 0.09
Folate, dietary folate

equivalents µg 89 121 27

Choline total mg 14.2 19.3 4.3
Betaine mg 0.7 1 0.2

Vitamin B-12 µg 0 0 0
Vitamin A µg 7 10 2
β-Carotene µg 63 86 19
α-Carotene µg 24 33 7

β-Cryptoxanthin µg 27 37 8
Lutein + zeaxanthin µg 271 369 81

Vitamin E (α-tocopherol) mg 1.97 2.68 0.59
Tocopherol β mg 0.04 0.05 0.01
Tocopherol γ mg 0.32 0.44 0.1
Tocopherol δ mg 0.02 0.03 0.01

Vitamin K1 (phylloquinone) µg 21 28.6 6.3
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Table 2. Cont.

Nutritional Composition Unit Value Per 100 g 1 Fruit 136 g 1 Serving 30 g

4. Lipids
Fatty acids, total

monounsaturated g 9.799 13.3 2.94

16:1 g 0.698
17:1 g 0.01
18:1 g 9.066
20:1 g 0.025

Fatty acids, total saturated g 2.126 2.9 0.64
8:0 g 0.001
16:0 g 2.075
18:0 g 0.049

Fatty acids, total
polyunsaturated g 1.816 2.47 0.55

18:2 g 1.674
18:3 g 0.125

18:3 n-3 c,c,c (ALA) g 0.111
18:3 n-6 c,c,c g 0.015

20:3 g 0.016
Cholesterol mg 0 0 0
Stigmasterol mg 2 3 1
Campesterol mg 5 7 2
β-sitosterol mg 76 103 23

Fiber constitutes most of its carbohydrate content (~9 g of fiber and 12 g of carbohydrate per
avocado) (Table 2) and can reach up to 13.5 g in larger avocados. Higher quantities of insoluble and
soluble fibers (70% and 30%, respectively) are found in the pulp [3]. A single serving can provide
about 2 g protein and 2 g of fiber with a glycemic index of 1 ± 1 [64]. A high-fiber diet is often linked
with a healthy digestive system. Moreover, it may help lower blood cholesterol levels and prevent
constipation by improving bowel movement. In particular, avocados have been shown to improve the
microflora of the intestines by working as a prebiotic [65]. In addition to fat, avocados are rich in protein
(highest among fruits), sugars including sucrose and 7-carbon carbohydrates (d-mannoheptulose),
antioxidants, pigments, tannins, and phytoestrogens [66].

Fat contributes to most of the calories in an avocado. A 1000-kJ portion of avocado contains about
25 g of fat, most of which are healthier monounsaturated fatty acids (MUFA) [64]. The lipid content in
avocados is higher than in other fruits. Most lipids found in avocados are polar lipids (glycolipids and
phospholipids), which play a fundamental role in various cellular processes such as the functioning
of the cell membranes as second messengers [67]. These lipids are also used to make emulsions of
water and lipids, and have a wide variety of applications in food, pharmaceuticals, and cosmetics
industries [68]. Compared to other vegetable oils, avocado oils are high in MUFA (oleic and palmitoleic
acids) and low in polyunsaturated fatty acids (linoleic acid and linolenic acid) [3]. Oleic acid is the
principal fatty acid in avocado, comprising 45% of its total fatty acids [69], and during the ripening
process, palmitic acid content decreases and oleic acid content increases [70]. In terms of its total fat
content and fatty acid composition, avocado oil is considered to be similar to olive oil [71]. Other fatty
acids present include palmitic and palmitoleic acids with smaller [64] amounts of myristic, stearic,
cinolenic, and arachidonic acids [62]. However, the compositions of these fatty acids largely depend
on the cultivars, stage of maturity, and part of the fruit and geographic location of plant growth [62].
Avocado spread instead of other fatty alternatives such as butter, cream cheese, and mayonnaise on
sandwiches can help significantly reduce the intake of calories, saturated fat, sodium, and cholesterol.

Avocados are notable for their potassium content (>500 mg/100 g of fresh weight), and it provides
60% more than an equal serving of banana [72]. Potassium intake helps to maintain cardiovascular
health and muscle function by regulating the blood pressure through the modulation of liquid retention
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in the body [65]. In addition, potassium regulates the electrolyte balance in the body, which is important
for the conduction of electrical signals in the heart (i.e., a steady, healthy heart rate) [65]. The high
potassium and low sodium contents in the diet are shown to protect against cardiovascular diseases [3].
Moreover, avocados contain a number of other minerals, including phosphorus, magnesium, calcium,
sodium, iron, and zinc (<1 mg/g of fresh weight) [73].

Vitamins such as β-carotene, tocopherol, retinol, ascorbic acid, thiamine, riboflavin, niacin,
pyridoxine, and folic acid are also abundantly found in avocado, which are of great importance
for overall health and well-being (Table 2) [62,74]. Carotenoids, including lutein, zeaxanthin, and
α- and β-carotene found in the pulp of the avocado are potent free radical scavengers [65,74]. The
lutein content of avocado is higher than any other fruit, which comprises about 70% of its total
carotenoid content [65]. The color of avocado pulp is predominantly attributed to the higher content of
xanthophylls (lutein and zeaxanthin). Seasonal variations in the phytochemical profile of avocado
especially carotenoids, tocopherol, and fatty acid content have also been reported [65]. Due to their
fat-soluble nature, these bioactive compounds have been shown to promote vascular health [65].
Xanthophylls suppress the damage of blood vessels by decreasing the amount of oxidized low-density
lipoproteins (LDL) [75]. Additionally, lutein and zeaxanthin have been reported to slow down
the progression of age-related macular degeneration, cataracts, and cartilage deterioration [74,76].
Carotenoids in general were demonstrated to protect the skin from ultraviolet radiation-associated
oxidation and inflammation [62]. Furthermore, a 68 g serving of Hass avocado contains about 57 mg
of phytosterols, which is significantly higher compared to other fruits (about 3 mg per serving) [65].
Avocado phytosterols have been reported to reduce the risks of coronary heart disease [65]. The
American Heart Association recommends the consumption of 2–3 g of sterols and stanols per day to
promote heart health [65,77]. They are the plant analogues of cholesterol and can be classified into
three major groups consisting of β-sitosterol, campesterol, and stigmasterol [78]. The most abundant
phytosterol present in avocado is β-sitosterol (76.4 mg/100 g), followed by campesterol (5.1 mg/100
g) and stigmasterol (<3 mg/100 g) [79]. In addition to its cholesterol-lowering activity, β-sitosterol
has been demonstrated to inhibit the production of carcinogenic compounds, alleviate symptoms
associated with benign prostatic hyperplasia, and strengthen the immune system [79]. In summary,
these compounds have been hypothesized to work in conjunction in the prevention of oxidative stress
and age-related degenerative diseases [80].

1.3. Antioxidant Properties of P. americana

Considering the health risks associated with synthetic antioxidants, the extraction, isolation, and
identification of antioxidants from natural sources have become primary research focuses of the food,
nutraceutical, and pharmaceutical industries in the recent years [81–83]. Annually, over three million
tons of avocados are produced worldwide, with only the pulp being used, while the seeds and peel
are discarded [2]. Waste utilization by exploiting the phytochemical content of avocado by-products
such as seeds and peel will add more value to the avocado industry and may lead to novel product
development [84]. Table 3 represents the studies currently available in the literature emphasizing the role
of P. Americana plant as the source of potent antioxidants. Different parts of the plant, including the leaf,
fruit pulp, peel, and seed have been widely studied for their antioxidant properties using conventional
spectroscopic assays such as 2,2′-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid diammonium
salt (ABTS), 2,2-diphenyl-1-picrylhydrazyl (DPPH), oxygen radical absorbance capacity (ORAC),
cupric-reducing antioxidant capacity (CUPRAC), and ferric-reducing ability of plasma (FRAP) as well
as more sensitive analytical techniques including high-performance liquid chromatography (HPLC),
high-performance liquid chromatography-mass spectrometry (HPLC-MS), gas chromatography-mass
spectrometry (GC-MS) and gas chromatography-flame ionization detector (GC-FID). Hass is the most
explored avocado variety in terms of its antioxidant properties, which can perhaps be attributed to
the popularity and easier availability of this variety. It is evident from the studies performed so far
that phenolic compounds (including phenolic and hydroxycinnamic acids, flavonoids, and condensed
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tannins), carotenoids, α, β, γ, and δ-tocopherols, acetogenins, monounsaturated and polyunsaturated
fatty acids are the key antioxidants found in avocado. Moreover, most of these studies have reported
significant positive correlations between the phenolic compounds and antioxidant capacity of avocado
extracts [84–88]. Phenolic compounds found in avocado were shown to reduce oxidation, inflammation,
and platelet aggregation [65]. Several studies have reported that different parts of the avocado plants
contain potent phenolic antioxidants such as chlorogenic-, quinic-, succinic-, pantothenic-, abscisic-,
ferulic-, gallic-, sinapinic-, p-coumaric-, gentisic-, protocatechuic-, 4-hydroxybenzoic-, and benzoic-
acids, quercetin, quercetin-3-glucoside, quercetin-3-rhamnoside, vanillin, p-coumaroyl-D-glucose,
catechins, (−)-epicatechin, and procyanidins (Table 3) [2,28,84,89–97]. Among the different parts of
avocado investigated in several studies, leaf, peel, and seed extracts have shown consistently greater
antioxidant capacity compared to that of the pulp [84,91,94,96–106]. Due to the presence of higher
catechin, epicatechin, leucoanthocyanidin, triterpenes, furoic acid, and proanthocyanidin contents,
avocado seed extracts have been reported to display greater antioxidant capacity [62,74]. Additionally,
the ripening process was also shown to influence the phenolic contents of different parts of the avocado
plant [96,107,108]. For example, a study by López-Cobo et al. [96] found a higher content of phenolics
in the pulp and seed extracts of overripe avocados compared to their optimally ripe counterparts. It
was hypothesized that the increase in the total phenolic content in the overripe fruit was mediated
by higher phenylalanine ammonia-lyase activity associated with the ripening process [96]. They also
observed an increased concentration of procyanidins in the overripe parts of the avocado, which
was probably a result of the hydrolysis of complex tannins after ripening. Avocado peel, seed, and
leaf, as the major by-products of the avocado industry, have been demonstrated as rich sources of
polyphenolics and antioxidants. More studies developing robust, green, and economical extraction
techniques are fundamental to obtain greater yields of potent antioxidants. In vivo and clinical studies
to understand the bioavailability of these antioxidants and their potential toxicity are also crucial.



Antioxidants 2019, 8, 426 17 of 53

Table 3. Antioxidant properties of Persea Americana (avocado).

Variety Part Studied Types of Extract Detection Assays Major Findings Type of Antioxidants References

Hass Pulp and peel + pulp Expeller pressed oils ABTS and HPLC-PDA

Higher antioxidant capacity,
α-tocopherol and β-carotene
content were observed in oils

from the unpeeled
microwave-dried pulp of ripe

and unripe avocado.

Oils from the pulp of ripe
unpeeled microwave-dried
avocado had significantly
greater phenolic acid and

quercetin contents.

[28]

Hass Peel
50% (v/v) ethanol
using accelerated
solvent extraction

HPLC coupled to
ultra-high-definition
accurate-mass-QTOF

Sixty-one compounds
belonging to 11 families were

identified.

Procyanidins, flavonols,
hydroxybenzoic, and

hydroxycinnamic acids.
[90]

Hass Seeds and seed coat Accelerated solvent
extraction

DPPH, TEAC, ORAC,
HPLC-DAD-ESI-QTOF-MS

Significant antioxidant activity
was observed in both seed and
seed coat extracts. A total of 84

compounds were identified,
among which 45 were phenolic

compounds.

Condensed tannins, phenolic
acids, and flavonoids. [91]

Hass Pulp Oil extracted with or
without ultrasound HPLC

Similar quantities of α, β, γ,
and δ-tocopherols and phenolic
compounds were detected both
with and without ultrasound

extractions.

Tocopherols and phenols. [109]

Hass Seeds Methanol and 50%
(v/v) ethanol

HPLC, ABTS, FRAP, ORAC
and methoxy radical

scavenging activity by EPR

50% (v/v) ethanol extract
displayed greater antioxidant
capacity in the ORAC, FRAP,

and ABTS assays.

Chlorogenic acid,
(−)-epicatechin, catechins and

procyanidins.
[2]

Hass Peel and seeds Aqueous extract ORAC
Peel extract showed higher

antioxidant capacity than seed
extract.

Epicatechin and chlorogenic
acid were found in both

extracts.
[101]

Hass Pulp, peel, and seeds

Hexane to eliminate
lipids and 80%

methanol for phenolic
extraction

HPLC-DAD-ESI-QTOF-MS

Higher concentrations of
phenolic compounds were

detected in the pulp and seed
extract of overripe than in pulp
and seed of optimally ripe fruit.

The concentration of
procyanidins increased after

ripening.

Nine compounds in pulp, three
in peel and three in seed.
Procyanidins to degree of

polymerization 2 to 6, and 13
were identified and quantified.

[96]
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Table 3. Cont.

Variety Part Studied Types of Extract Detection Assays Major Findings Type of Antioxidants References

Hass Peel, pulp, and seeds Ultrasonic extraction
with 80% (v/v) ethanol DPPH, and ABTS

Seed and peel extracts
exhibited greater antioxidant
values and phenolic content

than the pulp extract.

- [102]

Hass Peel, pulp, and seeds Different solvents for
different assays DPPH and spectroscopic

All extracts exhibited
significant antioxidant capacity.

The seed extract had the
greatest antioxidant activity,
total phenolic content, and

flavonoids compared to that of
peel and pulp.

Carotenoids, phenolic
compounds, flavonoids,

vitamin c and tocopheryl
acetate were detected in all

extracts.

[106]

Hass Pulp Aqueous and
ethanolic FRAP and DPPH Harvesting seasons affected the

antioxidant capacity.

Positive correlations between
FRAP and total phenolics,
DPPH and total phenolics

[85]

Hass Pulp Hydrophilic and
lipophilic extracts DPPH, TEAC and ORAC

Higher antioxidant capacity
values were obtained from

lipophilic extracts compared to
hydrophilic extracts.

A positive correlation was
observed between

DPPH/TEAC assays with
palmitoleic, oleic, linoleic,

α-linolenic acids.

[108]

Hass Pulp

Acetone with
2,6-ditert-butyl-4-methylphenol,

sodium carbonate,
and sodium sulfate

HPLC-PDA
Seasonal variations in

carotenoid were observed and
α-tocopherol was detected.

Carotenoid such as:
All-trans-neoxanthin;
all-trans-violaxanthin;
all-transneochrome;

9-cis-neoxanthin;
all-trans-lutein-5,6-epoxide;

chrysanthemaxanthin; lutein;
zeaxanthin; β-cryptoxanthin;
α-carotene; β-carotene were

identified along with
α-tocopherol.

[110]

Hass Pulp Tetrahydrofuran DPPH Low antioxidant activity. A slight positive correlation
against stearic acid content. [111]

Hass Leaves, pulp, peel,
and seeds Freeze-dried samples

FRAP,
4-dinitrophenylhydrazine and

HPLC

The leaf, peel, and seed extracts
had greater antioxidant

capacity than that the pulp
extracts. C7 sugars such as

mannoheptulose and perseitol
contributed to the antioxidant

capacity of the pulp.

Vitamin C, anthocyanin, and
C7 sugars. [100]
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Table 3. Cont.

Variety Part Studied Types of Extract Detection Assays Major Findings Type of Antioxidants References

Hass and
Fuerte Peel and seeds 80% (v/v) ethanol with

ultrasonic extraction
ABTS, DPPH, FRAP, and

HPLC-ABTS

Peel extracts of both varieties
displayed higher antioxidant

capacity in the ABTS and FRAP
assays compared to their seed
extracts, whereas in the DPPH

assay, seed extracts showed
greater antioxidant activity.

Peel: procyanidin B2 and
epicatechin

Seed:
trans-5-O-caffeoyl-D-quinic

acid, procyanidin B1, catechin,
and epicatechin.

[97]

Hass and
Fuerte Pulp, peel, and seeds

Ethyl acetate, 70%
(v/v) acetone, and 70%

(v/v) methanol
CUPRAC, DPPH, and ABTS

Acetone (70% v/v) was found to
be the most effective solvent for

extracting antioxidants. Peel
and seed extracts exhibited

greater antioxidant values in all
three assays compared to pulp.

Peels and seeds: catechins,
procyanidins, and

hydroxycinnamic acids
Pulp: hydroxybenzoic and
hydroxycinnamic acids and

procyanidin.

[104]

Hass and
Shepard Seeds and peel 80% (v/v) methanol HPLC-PAD, HPLC-ESI-MS,

DPPH, ABTS and ORAC

The peel extracts displayed a
higher total phenolic

compound content and
antioxidant activity in

comparison to the seed extracts.
Hass variety had a higher

antioxidant capacity, which
might be attributed to its
procyanidin dimers and

catechins than the Shepard
variety.

Seed and peel extracts
contained flavanol monomers,

proanthocyanidins, and
hydroxycinnamic acids. In

addition, flavonol glycosides
were detected in seed extracts.

[94]

Hass,
Lamb-Hass,
and Rugoro

Pulp
Methanol, ethanol,

acetone,
and ethyl acetate

HPLC-DAD-ESI-TOF

Seventeen compounds were
identified using standards.

Twenty-five compounds were
tentatively identified.

Quinic acid, succinic acid,
pantothenic acid,

p-coumaroyl-D-glucose,
abscisic acid, pentadecylfuran,
avocado furan, and oleic acid

were the most common
compounds among the three

avocado varieties.

[92]

Hass,
Quintal,

Margarida,
and Fortuna

Peel, pulp, and seeds Ethanol ABTS, DPPH, FRAP

Peel extract of the Quintal
variety showed the highest

antioxidant capacity in all three
assays. A similar trend was
observed in terms of total

phenolic and flavonoid
contents.

Phenolics and flavonoids
might contribute to the

antioxidant capacity.
[99]
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Table 3. Cont.

Variety Part Studied Types of Extract Detection Assays Major Findings Type of Antioxidants References

Hass, Bacon,
Fuerte,

Pinkerton,
Rincon, and

Orotawa

Pulp Methanol UHPLC-HE-MS

Pulp extracts had 19 individual
phenolic compounds. A

decrease in concentration of
epicatechin concentration was
observed with fruit ripening.

Gallic acid, sinapinic acid,
vanillin, p-coumaric acid,

gentisic acid, protocatechuic
acid, 4-hydroxybenzoic acid,

chlorogenic acid, and benzoic
acid.

[89]

Hass, Hass
Motril,

ColinV 33,
Gem,

Harvest,
Jiménez 1,
Jiménez 2,

Lamb Hass,
Marvel,
Nobel,

Pinkerton,
Sir Prize and
Tacambaro

Pulp Methanol GC coupled to APCI-TOF MS
and FID

Twenty-seven compounds
were quantified by

GC-APCI-MS. Seven
compounds are quantified by
GC-FID. The concentration of
organic acids, flavonoids, and
vitamins decreased, whereas

phenolic acids, ferulic acids, or
p-coumaric acids increased

with the ripening
process.

Quinic, ferulic, chlorogenic and
p-coumaric acids, epicatechin,

and quercetin.
[93]

Booth 7 Pulp Sodium acetate ABTS

Total antioxidant capacity
gradually increased with the
ripening process. Treatment

with aqueous
1-methylcyclopropene (1-MCP)

significantly delayed the
accumulation of total soluble

phenolics, flavonoids, and total
antioxidant capacity.

- [112]

Collinson Pulp 80% methanol and
acetone ABTS, DPPH, and FRAP

Lipophilic extracts displayed
greater antioxidant capacity in

the ABTS and DPPH assays
compared to hydrophilic

extracts. The opposite trend
was observed in the FRAP

assay.

- [113]



Antioxidants 2019, 8, 426 21 of 53

Table 3. Cont.

Variety Part Studied Types of Extract Detection Assays Major Findings Type of Antioxidants References

Fortuna Fresh and dried seeds

Water, 70% (v/v)
ethanol, 70% (v/v)

methanol, and
partition with

n-hexane
chloroform, ethyl

acetate, and n-butanol

Spectroscopic and HPLC

Ethanol extract of dried seed
showed

50, 38, and 24 mg/g of dry
matter of total phenol,

condensed tannins, and
flavonoid contents,

respectively. HPLC study
revealed epicatechin (4.7

µg/mL), rutin (2.8 µg/mL), and
chlorogenic acid (1.4 µg/mL)
and quercetin in the extract.

Epicatechin, rutin, chlorogenic
acid, quercetin. [114]

Fortuna Pulp
Oil extracted with

SCO2 and
compressed LPG

DPPH

The SCO2-extracted oil
displayed higher antioxidant

activity in the range of
17.4–82.5% compared to

LPG-compressed oil.

- [115]

Fortuna Pulp Lyophilized and cold
pressed oil GC-FID and GC-MS

A greater concentration of
α-tocopherol and squalene

were achieved with cold
pressing.

α-tocopherol and squalene. [116]

Fuerte Pulp Different solvents FRAP, SOD and HPLC

Increase in the total antioxidant
activity, SOD activity, and
α-tocopherol content was

observed in the presence of
1-MCP and low O2.

- [117]

Lula Pulp
Oil extracted with

water at high
temperatures

HPLC and spectroscopic assays

Greater quantity of
α-tocopherol was detected

compared to β, γ, and
δ-tocopherols. In addition,

sterols and carotenoids were
also reported.

Tocopherols, sterols, and
carotenoids were potent

antioxidants.
[118]

Mexican
landrace Peel Methanol DPPH

Antioxidant values in the range
of 53.31–307.33 mmol trolox

equivalents/fresh weight were
reported.

Activity can be attributed to
anthocyanins. [119]
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Table 3. Cont.

Variety Part Studied Types of Extract Detection Assays Major Findings Type of Antioxidants References

Slimcado,
Booth 7,
Booth 8,

Choquette,
Loretta,

Simmonds,
and Tonnage

Pulp, peel, and seeds Acetone, water, acetic
acid HPLC-MS, ORAC and DPPH

Seed extracts exerted the
highest antioxidant activity,

phenolic content, and
procyanidins followed by peel

and pulp. Significant
correlations were observed

among antioxidant capacities,
phenolic contents, and

procyanidins. Antioxidant
activity can be attributed to the

procyanidin content.

Catechin, epicatechin, A- and
B-type dimers, A- and B-type
trimers, tetramers, pentamers
and hexamers were identified

in peels and seeds.

[84]

- Pulp Supercritical CO2/
ethanol extracts HPLC

Supercritical CO2 + ethanol at
200 bar and at 40 ◦C and 60 ◦C

yielded significantly higher
α-tocopherol content.

α-tocopherol [120]

- Seeds and pulp Lipid ABTS and DPPH

Seed extracts exhibited
significantly greater

antioxidant activity in both
assays. Dose-dependent
antioxidant activity was

observed for both extracts.

- [98]

- Pulp Oil extracted with
mechanical pressing DPPH

Greater antioxidant values
were observed when the

avocado pulp was dried at 60
◦C under ventilation, and

mechanical pressing was used
for the oil extraction compared

to vacuum oven and Soxhlet
extraction.

α-tocopherol, phenolic
compounds, carotenoids. [121]

- Seeds Ultrasonic extraction
with water ORAC

Total antioxidant capacity
increased with an increase in

ultrasonic power. Positive
correlation was observed

between total polyphenolic
content and antioxidant

capacity.

- [86]
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Table 3. Cont.

Variety Part Studied Types of Extract Detection Assays Major Findings Type of Antioxidants References

- Pulp Acetone and its
fractions ORAC, HPLC-PDA/MS-TOF

Fractions with lipophilic
acetogenins exhibited the

highest antioxidant capacity.

1-acetoxy-2,4-dihydroxy-n-
heptadeca-16-ene; Persediene;

Persenone-C; Persenone-A;
Persenone-B; Persin, and

1-acetoxy-2,4-dihydroxy-heneicosa-
12,15-diene.

[122]

- Leaves 50% ethanol extract Spectroscopic, LC–ESI-MS,
LCMS-IT-TOF

Glycosylated flavonoids were
detected.

Quercetin-3-glucoside and
quercetin-3-rhamnoside. [95]

- Seeds
Different

concentrations of
ethanol

ORAC

The antioxidant values
increased with temperature.
However, it was negatively

impacted by ethanol
concentration.

- [123]

- Leaves, pulp, peel,
and seeds

1M HCL and
methanol DPPH and FRAP

Greater DPPH radical
scavenging activity, total

phenol and flavonoid content
were observed in leaf extracts.
The peel extract showed the

greatest FRAP value.

- [103]

- Pulp and seeds 50% (v/v) ethanol DPPH and FRAP

Seeds extracts showed
significantly greater

antioxidant values compared
to that of pulp in both assays.

Similar trend was observed for
total phenolic content.

- [105]

- Peel
Different

concentrations of
ethanol

DPPH

Maximum antioxidant activity
when extraction was

performed with 48% (v/v)
ethanol under agitation for 20

min at 70 ◦C and
solvent-to-solid ratio (v/w) 20.

Positive correlation was
observed between total
phenolic content and

antioxidants.

[88]

- Seeds
Different

concentrations of
ethanol

DPPH

Extraction for 60 min with 30%
(v/v) ethanol at 70 ◦C with a

solvent to-solid material ratio
of 8 yielded the maximum

antioxidant capacity.

Positive correlation was
observed between total
phenolic content and

antioxidants.

[87]
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Table 3. Cont.

Variety Part Studied Types of Extract Detection Assays Major Findings Type of Antioxidants References

- Leaves Methanol, ethanol,
cold and hot water

DPPH, FRAP, and hydroxyl
radical scavenging ability

Significant antioxidant activity
was observed in all three

assays.

Antioxidant activity might be
contributed by the phenolics

and flavonoids.
[124]

- Pulp

Oils extracted using
Soxhlet, subcritical

CO2 (SCO2) and
ultrasound

ABTS, FRAP, and β-carotene
bleaching

SCO2-extracted oil displayed
significantly greater (p < 0.05)

antioxidant capacity in all three
assays compared to Soxhlet or

ultrasound-extracted oils.

Strong positive correlations
(p < 0.01) were found between
α and γ tocopherols and

antioxidant activity.

[125]

- Leaves Powdered leaves Spectroscopic
Vitamin C, tannins, alkaloids

and phenolic content were
reported.

- [126]

- Pulp Lipid-soluble
bioactive

DPPH, reducing power, metal
chelating, nitric oxide

scavenging, hydrogen peroxide
scavenging,

hemoglobin-induced linoleic
acid system

Exhibited lower antioxidant
properties compared to

vitamin C.
- [127]

- Pulp Methanol + water ABTS and TBARS
Lower antioxidant activity was

reported compared to other
fruits tested in the study.

- [128]

- Leaves and seeds Water

DPPH, NO radical scavenging
activity, inhibition of

degradation of deoxyribose, Fe
(II) chelating ability

Higher phenolic content and
radical scavenging activity

were observed in leaf extract.
However, it showed lower iron
chelation activity compared to

the seed extract.

- [129]

- Seeds Different solvents and
fractions DPPH One fraction exhibited a radical

scavenging activity of 81.6%. - [130]
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ABTS: 2,2′-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt.
TEAC: Trolox equivalent antioxidant capacity.
DPPH: 2,2-Diphenyl-1-picrylhydrazyl.
ORAC: Oxygen radical absorbance capacity.
HPLC-PDA: High-performance liquid chromatography–photodiode array.
HPLC-DAD-ESI-QTOF-MS: High-performance liquid chromatography–diode array detector–electrospray ionization–quadrupole time-of-flight mass spectrometry.
HPLC-ESI-QTOF-MS: High-performance liquid chromatography–electrospray ionization–quadrupole time-of-flight mass spectrometry.
FRAP: Ferric reducing ability of plasma.
CUPRAC: Cupric reducing antioxidant capacity.
SOD: Superoxide dismutase.
HPLC-MS: High-performance liquid chromatography mass spectrometry.
HPLC-ESI-MS: High-performance liquid chromatography–electrospray ionization–mass spectrometry.
LC–ESI-MS: Liquid chromatography–electrospray ionization–mass spectrometry.
UHPLC-HE-MS: Ultra high-performance liquid chromatography–heated electrospray–mass spectrometry.
TBARS: Thiobarbituric acid reactive substances.
HPLC-DAD-ESI-TOF: High performance liquid chromatography–diode array detector–electrospray ionization–time of flight.
GC-APCI-TOF-MS: Gas chromatography–atmospheric pressure chemical ionization–time-of-flight mass spectrometry.
GC-APCI-TOF-FID: Gas chromatography–atmospheric pressure chemical ionization–time-of-flight–flame ionization detector.
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1.4. Anticancer Properties of P. americana

Cancer causes more deaths than acquired immune deficiency syndrome, tuberculosis, malaria, and
diabetes combined [131]. The greatest challenges of anticancer regimens are attributed to the complex
mutational landscapes of cancer, late diagnoses, expensive therapeutic options, and the development
of resistance to chemo and radiation therapies [132,133]. Chemotherapy-associated side effects and
toxicity also make cancer one of the most challenging diseases to treat [133]. Natural products or their
derivatives comprised over 45% of the FDA-approved anticancer drugs between 1981–2010 [134]. In the
United States, several plant-derived products, either alone or in conjunction with mainstream chemo
and radiation therapies are used by approximately 50–60% of cancer patients [132,135]. Therefore, the
search for safer alternatives to be used either as mono or adjunct therapy with the standard drugs is
becoming a priority in anticancer research [136]. The in vitro cytotoxic properties of avocado against
different types of cancer cell lines including breast, colon, liver, lungs, larynx, leukemia, oesophageal,
oral, ovary, and prostate have been extensively reported in the literature (Table 4). These properties have
also been investigated in preclinical animal models. Interestingly, these in vitro and in vivo studies
have not only explored the pulp, the most edible part of the fruit, but also the leaves, peel, and seeds of
avocado. Table 4 depicts the major preclinical and clinical studies currently found in the literature
emphasizing the potential anticancer activity of avocados. The chemical profiles of different parts of
avocado vary among the varieties [84,137]. Therefore, rationally, depending on the chemical profiles, the
bioactivities also vary accordingly. Many studies assessing the anti-proliferative activity of avocado did
not report the varieties used. However, based on the limited studies that reported the varieties tested,
Hass is perhaps the most explored cultivar for its anticancer properties. Molecular mechanistic studies
in various cancer cell lines have reported the regulation of different signal transduction pathways,
especially the induction of caspase-mediated apoptosis and the involvement of cell cycle arrest by
different avocado extracts, their fractions, and isolated compounds (Figure 9, Table 4) [24,26,138–145].
For instance, Dabas et al. [140] recently found out that the methanol extract of Hass avocado seeds
induced caspase 3-mediated apoptosis, poly (ADP-ribose) polymerase (PARP) cleavage, and cell cycle
arrest at G0/G1, as well as reduced the nuclear translocation of nuclear factor kappa-B (NF-κB) and
downregulated the cyclin D1 and E2 in lymph node carcinoma of the prostate (LNCaP) cells. Parallel
observations were made earlier by Lee et al. [144] in MDA-MB-231 (MD Anderson metastasis breast
cancer) cells using methanol extracts of avocado seeds and peel. They observed the activation of
caspase-3 and its target protein- PARP, in MDA-MB-231 cells. Bonilla-Porras et al. [138] found out that
ethanol extracts of avocado endocarp, seeds, whole seeds, and leaves activated transcription factor
p53, caspase-3, apoptosis-inducing factor, and oxidative stress-dependent apoptosis via mitochondrial
membrane depolarization in Jurkat lymphoblastic leukaemia cells. The acetone extract of avocado pulp
rich in lutein, zeaxanthin, β-cryptoxanthin, α-carotene, β-carotene, α-tocopherol, and γ-tocopherol
was shown to arrest the PC-3 prostate cancer cells at the G2/M phase and increase the expression of p27
protein [24]. The cytotoxic properties of different classes of compounds contribute to the cumulative
anticancer activity of avocado. For example, the anticancer effects of the fatty alcohols, carotenoids,
and phenolics were further augmented by the potential anticancer effect of norlignans/neolignans
(Figure 7) from P. obovatifolia [48–53].
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Figure 9. Effect of Persea americana (avocado) and its components on different cellular signal transduction pathways. The molecular targets highlighted in yellow play 
key roles in the proliferation, survival, migration/invasion, and apoptosis of cancer cells. Purple stars indicate the molecular targets involved in inflammatory 
response. 

Figure 9. Effect of Persea americana (avocado) and its components on different cellular signal transduction
pathways. The molecular targets highlighted in yellow play key roles in the proliferation, survival,
migration/invasion, and apoptosis of cancer cells. Purple stars indicate the molecular targets involved
in inflammatory response.

Scopoletin, a plant coumarin and phytoalexin found in avocado, reduced the carcinogens-induced
toxicity and the size of skin papilloma in vivo [26]. Further mechanistic study revealed the modulation of
various key cell cycle, apoptotic and tumor invasion markers by scopoletin. Notably, the downregulation
of AhR (aryl hydrocarbon receptor), CYP1A1 (cytochrome P450 1A1), PCNA (proliferating cell
nuclear antigen), stat-3 (signal transducer and activator of transcription 3), survivin, MMP-2 (matrix
metalloproteinase-2), cyclin D1 and c-myc (avian myelocytomatosis virus oncogene cellular homolog);
and the upregulation of p53, caspase-3 and TIMP-2 (tissue inhibitor of metalloproteinases-2) by
scopoletin were demonstrated [26]. Of note, the expression of p53 and its target genes (~500) regulate
a wide range of cellular processes, including apoptosis, cell cycle arrest, and DNA repair [146].
Additionally, the upregulation of TIMP-2 inhibits MMP-2 expression, which consecutively leads to the
reduction of cellular migration and invasion (metastasis) [147,148]. Therefore, MMP-2 upregulation has
been correlated with poor prognosis and relapse in cancer patients [147]. Another study by Roberts et
al. [149] also indicated synergistic interaction between the breast cancer standard drug—tamoxifen—and
persin isolated from avocado leaves against MCF-7 (Michigan cancer foundation-7), T-47D, and SK-Br3
breast cancer cells in vitro. The authors reported a significant reduction of tamoxifen IC50 values when
it was combined with avocado persin. The synergistic interaction was Bim-dependent and mediated
by the modulation of ceramide metabolism [149]. Bim is a member of the Bcl-2 (B-cell lymphoma 2)
family of proteins that play a key role in the intrinsic (mitochondrial) pathway of apoptosis [150,151].
In particular, Bim is linked with microtubule-stabilizing properties, which mediate the formation of
microtubule bundles with subsequent mitotic arrest and apoptosis [139,152].
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Chemical synthesis of the most potent anticancer compounds found in avocado has also been
carried out in a number of studies [143,145,153,154]. Similar to avocado crude extracts, chemically
synthesized avocado peptide PaDef defensin was recently found to induce apoptosis via caspase
7, 8, and 9 expressions in K562 chronic myeloid leukaemia and MCF-7 breast cancer cells in two
studies by the same research group [143,153]. Moreover, PaDef defensin was previously demonstrated
to have antimicrobial properties [155,156]. The induction of apoptosis and abrogation of the cell
cycle were also observed earlier in the human breast, lung, ovarian, and colorectal cancer cells when
treated with chemically synthesized avocado β-hydroxy-α,β-unsaturated ketones by Leon et al. [145].
Although many preclinical studies were performed to elucidate the cytotoxicity of extracts derived
from different parts of the avocado plant and their components, very few of them have investigated
their molecular mechanisms of action. Interestingly, contradicting information regarding avocado
extract-induced genotoxicity is also available. For instance, Kulkarn et al. [157] found out that avocado
fruit and leaf extracts can induce chromosomal aberrations in human peripheral lymphocytes, with leaf
extract being more genotoxic. The same research group later reported that avocado fruit extract can
reduce cyclophosphamide-mediated chromosomal aberrations in human lymphocytes [158], which
was perhaps due to the antagonistic effects of the extract on cyclophosphamide.

Traditionally, an avocado leaf decoction is used for the treatment of tumors and tumor-related
diseases in Nigeria [159]. Despite their health benefits highlighted in numerous reports, clinical studies
examining the direct correlation between avocado consumption and the prevention and treatment
of cancer are scarce. Only one case-control study involving 243 men with prostate cancer and 273
controls in Jamaica demonstrated that MUFA from avocado may reduce the risk of prostate cancer [160].
However, it should be noted that bioactive compounds that are also commonly found in avocados
such as α-carotene, β-cryptoxanthin, lycopene, lutein, and zeaxanthin were found to have inverse
associations with cancers of the mouth, larynx, pharynx, and breast in few clinical trials, as highlighted
in Table 5 [161–163]. According to the USDA, avocados contain a significantly higher amount of
glutathione per average serving compared to other fruits [61]. Glutathione is a potent tripeptide
antioxidant that plays a major role in detoxification pathways and the reduction of oxidative stress
and risk of cancer [62,65]. Notably, it has been linked with the reduction of chemotherapy-associated
toxicity and risks of oral cancer in a few clinical studies [57–59,164]. Nonetheless, the molecular
mechanism of how glutathione reduces the side effects of chemotherapeutic regimens remains largely
speculative. In order to precisely understand the anticancer mechanisms of action of avocado extracts
and their bioactive compounds, more in vitro and in vivo studies are warranted. As very few studies
have identified the solitary bioactive compounds responsible for the growth inhibition of different
cancer cells, more research should be undertaken to gain a comprehensive understanding of the
chemical profiles of the active extracts. Notably, bioassay-guided fractionation and the subsequent
isolation and characterization of biologically active compounds from different parts of the avocado
plant may lead to the identification of many novel anticancer compounds. Randomized controlled
trials should be designed to evaluate the efficacy of bioactive compounds derived from avocado in the
prevention and treatment of different cancer types. Furthermore, the chemoprotective properties of
avocado and the possibility of using its bioactive compounds as an adjunct therapy for cancer should
also be explored.
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Table 4. Preclinical and clinical studies highlighting the anticancer properties of Persea americana (avocado).

Preclinical Studies

Variety Parts Type of Extracts Bioactive Compounds Type of Cell Lines Major Findings and Molecular
Mechanisms of Action References

Hass Seeds Methanol -

MCF-7
breast, H1299 lung,

HT29 colon, and
LNCaP prostate

cancer cells

Dose-dependent inhibition of all cells
with IC50 values 19–132 µg/mL after 48 h
of treatment. In LNCaP prostate cancer

cells, the induction of caspase
3-mediated apoptosis, PARP cleavage,

downregulation of cyclin D1 and E2, cell
cycle arrest at G0/G1 phase and

reduction of nuclear translocation of
nuclear factor kappa B (NF-κB) were

observed.

[140]

Hass Seeds

High-speed
countercurrent

chromatographic
fraction of

methanol-water
partition (M7)

Proanthocyanidins B1, B2 and A-type
trimer. Traces of abscisic acid glucosides.

HaCaT immortalized
nontumorigenic

human epidermal
cells

Significant inhibition of cell
proliferation, increased LDH activity.
Molecular mechanisms of action were

not investigated.

[23]

Hass Pulp Chloroform-soluble

Two aliphatic
acetogenins-

(2S,4S)-2,4-dihydroxyheptadec
16-enyl acetate] and 2

[(2S,4S)-2,4-dihydroxyheptadec-16-ynyl
acetate.

83–01-82CA human
oral cancer cell line,

MEK overexpressing
cell line

83–01-82CA/MEKCA

The two aliphatic acetogenins targeted
the EGFR/RAS/RAF/MEK/ERK1/2 cancer

pathway by synergistically inhibiting
c-RAF (Ser338) and ERK1/2

(Thr202/Tyr204) phosphorylation.

[165]

Hass Pulp Chloroform -

83-01-82CA human
oral cancer and

TE1177
normal epithelial cell

lines

In the oral cancer cells, the extract
induced apoptosis by increasing the
levels of reactive oxygen species by

twofold to threefold. Apoptosis was not
induced in the normal cell line.

[141,142]

Hass Pulp Acetone

Lutein, zeaxanthin,
β-cryptoxanthin, α-carotene, and
β-carotene, α-tocopherol and

γ-tocopherol.

LNCaP
androgen-dependent

and PC-3
androgen-independent

prostate cancer cell
lines

Inhibited the growth of both the prostate
cancer cell lines. Arrested PC-3 cells at

the G2/M phase and increased the
expression of p27 protein.

[24]
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Table 4. Cont.

Preclinical Studies

Variety Parts Type of Extracts Bioactive Compounds Type of Cell Lines Major Findings and Molecular
Mechanisms of Action References

Lulu Unripe fruit
pulp

95% (v/v) ethanol
extracts and its

fractions

1,2,4-Trihydroxynonadecane,
1,2,4-Trihydroxyheptadec-16-ene and

1,2,4-Trihydroxyheptadec-16-yne.

A-549 human lung,
MCF-7 human breast,
HT-29 human colon,

A-498 human
Kidney, MIA PaCa-2

human pancreatic
carcinoma, PC-3
human prostate

cancer cells

All three compounds were active against
six human tumor cell lines and exhibited
selectivity against PC-3 cells. Molecular

mechanisms were not studied.

[21]

- Seeds

Ethanol extract and
its hexane and

dichloromethane
fractions

-
Lung A549 and

gastric BGC823 cancer
cells

Growth inhibition at 200 µg/mL. The
IC50 values and molecular mechanisms

of action were not investigated.
[166]

- Pulp and
seed extracts Lipids Fatty acids, hydrocarbon, and sterols.

HCT116 colon and
HePG2

liver cancer cell lines

Seed extract showed greater activity
against HCT116 (IC50 < 4 µg/mL) and

HePG2 (IC50 < 20 µg/mL) cell lines
compared to the pulp extract. Molecular

mechanisms of action were not
investigated.

[98]

- Seeds

Chloroform extracts
and its soluble

methanol fraction
(FML) and

non-soluble methanol
fraction (FTML).

- MCF-7 breast cancer
cell line

Chloroform extract, FML, and FTML
inhibited cell growth in a

dose-dependent manner and displayed
IC50 values of 94.87, 34.52, and 66.03
µg/mL, respectively. FML induced
apoptosis and arrested cells at the

subG1/G0 phase.

[167]

- Leaves Silver nanoparticles
MCF-7 breast and

HeLa cervical cancer
cells

Dose-dependent cytotoxicity was
observed at concentrations above 50 µM

in MCF-7 but not in HeLa cells.
Downregulation of p53 expression was

observed in both cell lines.

[168]
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Table 4. Cont.

Preclinical Studies

Variety Parts Type of Extracts Bioactive Compounds Type of Cell Lines Major Findings and Molecular
Mechanisms of Action References

- Leaves Aqueous-ethanol (5%
v/v) - Larynx cancer tissue

Significant increase in adenosine
deaminase activity in cancerous tissues

derived from 13 patients who
underwent surgery for larynx cancer
(median age of 57 years) compared to

noncancerous (r = 0.60, p = 0.029) tissues.

[169]

- Seeds Fraction of ethanol
extract Triterpenoid

MCF-7 breast and
HepG2 liver cancer

cells

Inhibited MCF-7 (IC50 = 62 µg/mL) and
HepG2 (IC50 = 12 µg/mL) cells with no
activity against normal cells. Molecular

mechanisms of action were not
investigated.

[170]

- Pulp
Ethanol, chloroform,

ethyl acetate, and
petroleum.

-

Esophageal
squamous cell

carcinoma and colon
adenocarcinoma cell

line

Moderate activity. The IC50 values and
molecular mechanisms of action were

not investigated.
[171]

- Pulp Aqueous -

A549 lung, HepG-2
liver, HT-29 colon,
and MCF-7 breast

cancer cells.

Exhibited LC50 values in the range of
13.3–54.5 µg/mL against the tested cell
lines. Molecular mechanisms of action

were not investigated.

[172]

- Root bark Methanol extract and
its fractions.

4-hydroxy-5-methylene-3-
undecyclidenedihydrofuran-2 (3H)-

one

MCF-7 breast cancer
cell line

Antiproliferative activity with an IC50
value of 20.48 µg/mL with induction of

apoptosis.
[36]

-

Endocarp,
whole seed,

seed and
leaves

Ethanol -
Jurkat

lymphoblastic
leukemia cells

Induced significant oxidative
stress-dependent apoptosis via

mitochondrial membrane
depolarization. Activated transcription

factor p53, protease caspase-3, and
apoptosis-inducing factor (APAF).

[138]

- Pulp 50% (v/v) Methanol - Human lymphocyte
cells

Chemoprotective against
cyclophosphamide-induced

chromosomal aberrations at 200 mg/kg
body weight.

[158]
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Table 4. Cont.

Preclinical Studies

Variety Parts Type of Extracts Bioactive Compounds Type of Cell Lines Major Findings and Molecular
Mechanisms of Action References

- Seeds and
peel Methanol - MDA-MB-231 breast

cancer cells
Apoptosis due to activation of caspase-3

and its target protein, PARP. [144]

- Leaves - Persin

In vitro:
MDA-MB-231,

MCF-7, and T-47D
breast cancer cells

In vivo:
Quackenbush
lactating mice

In vitro: Persin selectively arrested cells
at the G2/M phase and induced
caspase-dependent apoptosis.

Apoptosis was dependent on the
expression of Bim protein, which also
indicated the microtubule-stabilizing

properties of persin. Overall, MCF-7 and
T-47D cells were more sensitive to persin

compared to MDA-MB-231.
In vivo: Persin exerted cytotoxicity in
the lactating mammary epithelium.

[139]

MCF-7, T-47D, and
SK-Br3 breast cancer

and MCF-10A human
mammary epithelial

cells.

Synergistic interaction between
tamoxifen and persin against the tested

breast cancer cells was observed.
Significant reduction of IC50 values of
tamoxifen when combined with 13.8
µmol/L of persin. The synergistic

cytotoxicity was Bim-dependent and
mediated by the modulation of ceramide

metabolism.

[149]

- Fruit - Persenone A

In vitro: RAW 264.7
mouse macrophage

cells
In vivo: Female ICR
mice (7 weeks old)

Downregulated the expression of
iNOS/COX-2 (nitric oxide

synthase/cyclooxygenase-2) in
macrophage cells. When applied

topically, reduced the generation of
H2O2 in mouse skin.

[173]

- Fruit -
(2R)-(12Z,15Z)-2-hydroxy-4-oxoheneicosa-

12,15-dien-1-yl acetate (1),
persenone A (2) and B (3)

HL-60 acute
promyelocytic

leukemia and RAW
264.7 mouse

macrophage cells.

Suppressed the growth of HL-60 cells
(compound 1, IC50 = 33.7; compound 2,
IC50 = 1.4; compound 33, IC50 = 1.8 µM).

Inhibited nitric oxide generation
induced by lipopolysaccharide in

combination with interferon-γ in RAW
264.7 cells.

[19]
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Table 4. Cont.

Preclinical Studies

Variety Parts Type of Extracts Bioactive Compounds Type of Cell Lines Major Findings and Molecular
Mechanisms of Action References

- - - Scopoletin

In vivo: Skin
papilloma in mice

induced by
7,12-dimethylbenz(a)

anthracene and
croton oil

Reduced carcinogen-induced toxicity
and led to decrease in the size of skin

papilloma. Downregulated AhR,
CYP1A1, PCNA, stat-3, survivin,

MMP-2, cyclin D1, and c-myc, and
upregulated p53, caspase-3, and TIMP-2.

[26]

Chemical synthesis Type of cell lines Major findings and molecular
mechanisms of action References

Antimicrobial peptide-PaDef defensin

K562 chronic myeloid leukemia cells
Cytotoxic with an IC50 value of 97.3

µg/mL. Activated caspase-8 and induced
the expression of TNF-α.

[153]

MCF-7 breast cancer cell line

Inhibited the growth in a
concentration-dependent manner (IC50
= 141.62 µg/mL). Induced cytochrome c,

APAF-1, and the caspase 7 and 9
expressions, loss of mitochondrial ∆ψm
and enhanced the phosphorylation of

MAPK p38.

[143]

Persin and tetrahydropersin

Breast cancer: MCF-7, T-47D,
MDA-MB-468, MDA-MB-157, SkBr3, Hs578T, MDA-MB-231 cells,

normal mammary epithelial MCF-10A cells,
Ovarian cancer: OVCAR3 and IGROV-1 cells

Prostate cancer: PC-3 and LNCaP cells

Persin was more potent compared to
tetrahydropersin against most of the

tested cancer cell lines with IC50 values
in the range 15.1 ± 1.3 to more than 39
µM. Molecular mechanisms of action

was not studied.

[154]

β-Hydroxy-α,β-unsaturated ketones A2780 human ovarian, SW1573 lung, HBL-100 human breast,
T-47D human breast and WiDr colorectal cancer cells.

GI50 values in the range of 0.5–3.9 µM.
Induced apoptosis and dose-dependent
cell cycle arrest in the S and G2/M phase.

[145]

Case-control studies

Type of cancer Major findings References

Prostate cancer A study involving 243 men with prostate cancer and 273 controls in Jamaica reported that monounsaturated
fat from avocado was associated with reduced risk of prostate cancer. [160]
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Table 5. Clinical studies demonstrating the anticancer activity of bioactive compounds that are also commonly found in Persea americana (avocado).

Bioactive Compounds Type of Cancer Type of Study Major Findings References

Carotenoids- α-carotene,
β-cryptoxanthin, lycopene, and

lutein/zeaxanthin

Breast cancer

A nested case-control study in women
consisting of 604 breast cancer cases

and 626 controls.

In women with high mammographic
density, plasma levels of carotenoids

reduced breast cancer risk significantly
(40–50% reduction, p < 0.05).

[162]

An ancillary study involving 207
women ages 18 to 70 years who had

been successfully treated for early-stage
breast cancer.

An inverse association between total
plasma carotenoid concentrations and
the oxidative stress biomarkers (urinary

8-hydroxy-2′-deoxyguanosine and
8-isoprostaglandin-F2α) was observed.

[163]

Larynx, pharynx and oral
cancers

The study population involving 52
patients curatively treated for

early-stage larynx, pharynx or oral
cavity during 1997–2001.

An inverse association was observed
between individual/grouped

xanthophylls and urinary
F2-isoprostanes (F2-IsoPs), a biomarker

of oxidative stress. However,
individual/grouped carotenes did not
show such association with F2-IsoPs.

[161]

Glutathione

Advanced colorectal carcinoma A randomized, double blind,
placebo-controlled trial in 52 patients.

Prevented of oxaliplatin-induced
neuropathy without reducing the

clinical efficacy of oxaliplatin.
[57]

Ovarian cancer
A multicenter, randomized,

double-blind, parallel group design
with 51 women.

Reduced the cisplatin-associated
toxicity and improved the quality of

life.
[58]

Oral cancer

A population-based case-control study
involving 1830 Caucasian participants
(855 cases and 975 controls) in during

1984–1985 in the United States.

Reduced oral cancer risk was
associated with glutathione when fruit

and vegetable were commonly
consumed raw.

[59]
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1.5. Antimicrobial Properties of P. americana

Currently, there is a growing interest in finding alternatives to the synthetic antimicrobial agents
that are commonly used in the food and pharmaceutical industries. This is due to the concerns of the
consumers regarding the safety of products containing synthetic chemicals and their associated health
risks [174]. Seeds (endocarp) and peels (exocarp) being the by-products of the avocado industry are
generally disposed of as wastes [175] and have been investigated for their antimicrobial properties.
Most of the studies conducted thus far have noted the antimicrobial activity of the extracts derived from
different avocado varieties [104,176–178], while only a few have reported insignificant antimicrobial
activity [101,179]. The antimicrobial activity of avocado extracts might be influenced by (i) the variety of
the avocado, (ii) the parts used for investigation (i.e., exocarp, endocarp, or mesocarp), (iii) the solvent
type used for extraction, and iv) the bacterial species examined [104,176]. Raymond and Dykes [176]
investigated the antimicrobial activity of ethanolic and aqueous extracts of seeds and peels of three
different avocado varieties (Table 6). The authors reported that ethanolic extracts had antibacterial
activity against both Gram-positive and Gram-negative bacteria (except for Escherichia coli) ranging
from 104.2 to 416.7 µg/mL, while aqueous extracts exhibited activity against Listeria monocytogenes
and Staphylococcus epidermidis. Rodriguez-Carpena et al. [104] investigated the antibacterial activity
of the extracts derived from different avocado parts (peel, seed, and pulp) of a number of varieties
against Bacillus cereus, S. aureus, L. monocytogenes, E. coli, Pseudomonas spp., and Yarrowia lipolytica.
The highest inhibitory activity against the Gram-positive bacteria- B. cereus and L. monocytogenes
was observed, while E. coli was the most sensitive among the tested Gram-negative bacterial species.
The authors mentioned that all avocado parts had antimicrobial properties, with pulp (mesocarp)
showing the highest activity. In addition, authors reported that the Gram-positive bacteria were more
sensitive in comparison to the Gram-negative bacteria [104]. The Gram-negative bacteria have an
extra protective outer membrane, which makes them more resistant to antibacterial agents compared
to the Gram-positive bacteria [104,180]. β-sitosterol in avocados was also shown to play a key role
in strengthening the immune system and the suppression of human immunodeficiency virus and
other infections [181]. In particular, it has been found to enhance the proliferation of lymphocytes and
natural killer cell activity for invading pathogens [181]. Salinas-Salazar et al. [177] investigated the
antimicrobial activity of seed extracts of avocado enriched with acetogenin against L. monocytogenes
and reported growth inhibition at 37 ◦C and 4 ◦C with MIC (minimum inhibitory concentration)
values of 15.6 and 7.8 mg/L, respectively. Acetogenins of avocados are fatty acid derivatives with a
long unsaturated aliphatic chain (C19–C23) [182,183]. Owing to the structural similarities between
acetogenins and fatty acids, authors hypothesized that acetogenins may penetrate the cell membranes
of bacteria and physically disrupt their functionality [177]. Indeed, several compounds might be
associated in the antimicrobial activity of avocado extracts. Polyphenols have been previously reported
for their antimicrobial properties [184]. However, the contribution of the phenolic compounds toward
the antimicrobial activity of avocado extracts needs to be investigated. Rodriguez-Carpena et al. [104]
found that avocado pulp extract had a higher antimicrobial activity than peel and seed extracts, despite
having lower polyphenol content. Future studies should be conducted to isolate individual phenolic
compounds from different parts of avocado and investigate their antimicrobial properties.
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Table 6. Summary of studies that have been conducted that investigated the antimicrobial activity of
Persea americana (avocado).

Variety/ies Bacteria Highlights Reference

Hass Shepard Fuerte

Listeria monocytogenes
Staphylococcus epidermidis

Staphylococcus aureus
Enterococcus faecalis

Escherichia coli
Salmonella Enteritidis

Citrobacter freundii
Pseudomonas aeruginosa
Salmonella Typhimurium

Enterobacter aerogenes

The antimicrobial activity of peel
and seed extracts was evaluated.

Ethanol extracts showed
antimicrobial activity against both
Gram-positive and Gram-negative

bacteria (except E. coli).
Aqueous extracts had

antimicrobial activity against L.
monocytogenes and S. epidermidis.

[176]

Hass
Fuerte

Bacillus cereus
S. aureus

L. monocytogenes
E. coli

Pseudomonas spp.
Yarrowia lipolytica

All avocado parts had
antimicrobial activities.

Pulp showed the highest
antimicrobial activity.

Gram-positive bacteria were
found to be more sensitive than

Gram-negative bacteria.

[104]

Hass L. monocytogenes

The antilisterial properties of an
enriched acetogenin extract from
avocado seed were determined.

Seeds had higher acetogenin
content than pulp.

The antimicrobial effect was
probably caused by increased

membrane permeability.

[177]

Lorena Hass S. aureus
E. coli

Extracts did not have
antimicrobial activity against S.
aureus ATCC 29213 and E. coli

ATCC 25922

[179]

Hass

Listeria innocua
E. coli

Lactobacillus sakei
Weissella viridescens

Leuconostoc mesenteroides

Peel and seed extracts did not
present antimicrobial activity
against any bacteria analyzed.

[101]

1.6. Anti-Inflammatory Properties of P. americana

Several studies have investigated the anti-inflammatory properties of avocado via modulation
of inflammatory responses (Figure 9, Table 7). The aqueous extract of avocado leaves showed
an anti-inflammatory effect in vivo by inhibiting carrageenan-induced rat paw oedema [185].
Persenone A, an active constituent of avocado, reduced inducible nitric oxide synthase (iNOS)
and cyclooxygenase-2 (COX-2) in murine macrophages [173]. Similarly, (2R)-(12Z,15Z)-2-hydroxy-4-
oxoheneicosa-12,15-dien-1-yl acetate, persenone A and B isolated from the avocado fruit, decreased the
generation of nitric oxide in mouse macrophages [19]. Avocado oil contains a high amount of oleic acid
and essential fatty acids. A study by [186] highlighted the wound-healing properties of avocado fruit
oil by increasing collagen synthesis and decreasing inflammation in Wistar rats. They also reported
that oleic acid was the predominant unsaturated fatty acid (47.20%) present in the fruit oil [186].

Inflammation in joints causes damage to the joint cartilage due to degenerative changes leading
to a loss of joint function and stability [187]. Even though osteoarthritis (OA) is considered a
non-inflammatory disease, recent studies have shown that inflammation is a leading cause for the
initiation and continuation of the disease process [188]. Non-pharmacological agents that modulate
the expression of pro-inflammatory mediators are highly promising as safe and effective ways to treat
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OA [189]. Avocado–soybean unsaponifiable (ASU) combination represents one of the most commonly
used treatments for symptomatic OA [190]. ASU is a combination of avocado oil and soybean oil,
which has been accepted as a medication/food supplement in many countries [191]. Three ratios of
avocado (A) and soybean (S) unsaponifiable combinations (A:S = 1:2, 2:1, and 1:1) were studied for their
anti-inflammatory properties on chondrocyte cells [192]. All the ratios showed significant inhibition
compared to the individual extracts on collagenase, stromelysin, interleukin 6 (IL-6), interleukin 8 (IL-8),
and prostaglandin E2 (PGE2) release. In particular, 1:2 was found to be the most effective combination
that exhibited chondroprotective effects in vivo by stimulating glycosaminoglycan and hydroxyproline
synthesis and inhibiting the production of hydroxyproline in the granulomatous tissue [192]. In another
study, the unsaponifiables of avocado alone indicated a significant chondroprotective effect [193].
Several preclinical and clinical studies conducted in the last few decades have revealed the modulation
of different pathways and molecular targets associated with OA pathogenesis by ASU [194]. For
instance, the anti-OA properties of ASU are mediated via the suppression of critical regulators of the
inflammatory response such as iNOS/COX-2, and PGE-2 [195], and the reduction of catabolic enzymes
(matrix metalloproteinases-3 and -13) and [190,196]. Gabay et al. [190] demonstrated the inactivation
of the mitogen-activated protein kinases such as the extracellular signal-regulated kinase (ERK 1/2)
and NF-κB as the molecular mechanism of action for the anti-inflammatory effects of ASU. A recent
study showed the potential bone repair properties of ASU by the modulation of molecular targets
Rankl and Il1β, RANKL, and TRAP using a rat model [197]. Sterols, the major bioactive components of
ASU, have also shown anti-inflammatory activity in articular chondrocytes [198].

A significant reduction of articular cartilage erosion and synovial hemorrhage compared to placebo
was observed in horses using ASU extracts [199]. However, the extracts did not reduce signs of pain
or lameness in horses. In humans, NSAID (nonsteroidal anti-inflammatory drugs) consumption was
reduced in patients with lower limb OA after six weeks of ASU consumption [200]. Furthermore, ASU
significantly reduced the progression of joint space loss in patients with hip OA [201]. Another study
by Maheu et al. [202] demonstrated slow radiographic progression in hip OA using ASU treatment.
They also reported that the treatment was well tolerated by patients, even though the clinical outcome
did not change. Interestingly, a recent study showed that the intake of ASU extract decreased the
pain symptoms and an improved the quality of life in patients with OA of the temporomandibular
joint [203].

Other studies have combined ASU with bioactive compounds such as epigallocatechin gallate
(EGCG), and α-lipoic acid (LA) [189,204,205]. Interestingly, contrary to previous research, Heinecke et
al. [204] reported a slight inhibition of COX-2 expression and PGE2 production in activated chondrocytes.
However, when ASU was combined with EGCG, both mediators were more significantly inhibited
than their mono treatments [204]. Another study by Ownby et al. demonstrated that this combination
inhibited the gene expression of interleukin-1 beta (IL-1β), tumor necrosis factor- α (TNF-α), IL-6,
COX-2, and IL-8 in activated chondrocytes [189]. The combination of ASU with LA showed a more
significant suppression of PGE2 production in activated chondrocytes than ASU or LA alone [205].
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Table 7. Anti-inflammatory properties of Persea americana (avocado) extracts, compounds,
and combinations.

Extracts and Compounds Key Findings and Molecular Mechanism
of Action Reference

Leaf aqueous extract Reduced carrageenan-induced rat paw
oedema. [185]

Persenone A
Reduced inducible nitric oxide synthase
(iNOS) and cyclooxygenase-2 (COX-2) in

activated murine macrophages.
[173]

Avacado oil

Promoted increased collagen synthesis and
decreased inflammation in wound healing

on incisional and excisional cutaneous
wound models in Wistar rats.

[186]

(2R)-(12Z,15Z)-2-hydroxy-4-oxoheneicosa-
12,15-dien-1-yl acetate, persenone A and B

Decreased nitric oxide generation in
activated mouse macrophages. [19]

Avocado–Soybean Unsaponifiables (ASU)

Inhibited collagenase, stromelysin, IL-6,
IL-8, and prostaglandin E2 (PGE2) release in

activated human articular chondrocytes.
[192]

Stimulated glycosaminoglycan and
hydroxyproline synthesis, and inhibited the

production of hydroxyproline in the
granulomatous tissue of mice model.

[193]

Suppressed critical regulators of the
inflammatory response such as PGE-2 and
COX-2 in activated human chondrocytes.

[195]

Decreased catabolic enzymes, matrix
metalloproteinases-3 and -13 expressions
via inactivating the expression of MAPKs

(ERK 1/2) and nuclear factor kappa-B
(NF-κB) in activated mouse or human

chondrocytes.

[190]

Reduced pro-inflammatory cytokines such
as TNF-α, IL-1β, and iNOS expression in

activated chondrocytes and THP-1
monocyte and macrophages.

[196]

Exhibited a promising result on the bone
repair by modulating the molecular targets

of Rankl and Il1β, RANKL, TRAP in rat
model.

[197]

Decreased pain symptoms in patients with
osteoarthritis of the temporomandibular

joint.
[203]

Modulated the expression of TGF-β1,
TGF-β2, and BMP-2 in activated human

periodontal ligament and human alveolar
bone cells.

[206]

ASU + Epigallocatechin gallate

Inhibited COX-2 expression and PGE2
production in activated equine

chondrocytes.
[204]

Inhibited the gene expression of IL-1β,
TNF-α, IL-6, COX-2, and IL-8 in activated

equine chondrocytes.
[189]
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The implementation of ASU in the treatment of other inflammatory diseases has also been
explored. In particular, ASU has shown efficacy against periodontal disease by modulating the
expression of transforming growth factor beta 1 (TGF-β1), TGF-β2, and bone morphogenetic protein 2
(BMP-2) [206]. Additionally, a recent study demonstrated that ASU can repair periodontal disease
within seven days [207]. These results underline the significant anti-inflammatory properties of
avocado mediated via multiple signal transduction pathways and their role in the potential treatment
of various inflammatory diseases.

1.7. Effect of P. americana on Cardiovascular Health and Diabetes

Clinical have shown a positive effect on cardiovascular health and lipid profiles with the presence
of avocado in the diet [65,208]. It has been observed that the intake of avocado in a balanced diet had a
great impact on preventing cardiovascular diseases as a result of the low cholesterol levels. Grant in
1959 [209] conducted the first avocado clinical trial where 0.5 to 1.5 avocados were incorporated in the
diet of 16 male patients, and showed a significant decrease or the same total serum cholesterol level with
no increase in weight. In particular, avocado phytosterols were found to inhibit cholesterol absorption
and synthesis by mimicking its molecular structure, which resulted in lowered total cholesterol levels in
the body [210]. A randomized, controlled trial was conducted on 45 obese patients where the patients
were categorized into three major groups—(i) moderate-fat diet, (ii) low-fat diet, and (iii) moderate-fat
diet with the incorporation of one avocado (AV). A major decrease in the total cholesterol levels in all
the groups was observed from the baseline, while the AV group had a greater reduction in LDL-C and
non-high-density lipoprotein (non-HDL) [67]. According to the results from the National Health and
Nutrition Examination Survey (NHANES), people who consumed avocados had an improved diet
quality due to increased vegetable intake and reduced sugar consumption [211]. Therefore, vascular
damage and heart diseases can be reduced to a great extent by the inclusion of avocados in a diet [211].
In another study, the inclusion of avocado in a meal increased satisfaction with a decrease in actual
eating in obese adults, which indirectly had a positive effect on the body mass index (BMI) and
reduced the chances of cardiovascular diseases [212]. An increase in the satisfaction (by 23%), decrease
in eating (by 28%), and blood insulin were observed in comparison to the control group [212]. A
systematic review was conducted by Silva Caldas et al. [213] to study the effects of avocado on the
cardiovascular health of adults, and after including eight articles from the initial 234 studies, they
concluded that the presence of MUFA, specifically oleic fatty acid in avocado has been linked with its
cardioprotective effects.

A study done by Carvajal-Zarrabal et al. [214] found out that avocado oil had a significant
contribution toward the metabolic syndrome, as it reduced the inflammatory events and exhibited
positive results in the biochemical indicators when they administered avocado oil in 25 rats divided
into various groups such as a control group, a basic diet group with 30% sucrose, and a basic diet
plus olive oil and avocado oil. Extensive biochemical markers were studied, and the presence of
avocado oil seemed to have reduced the triglycerides and LDL levels, which reduced the cardiovascular
risks [214]. Cohort studies performed recently on the BMI of individuals after the intake of avocados
showed a considerable reduction in weight gain compared to the control, which consecutively
lowered various cardiovascular problems associated with obesity [215]. Another report in 2018 [216]
analyzed studies on the intake of avocado and cardiovascular risks from MEDLINE, Cochrane Central,
and the Commonwealth Agricultural Bureau, and found a significant increase in HDL cholesterol
concentration with heterogeneity associated with avocado intake. However, no significant reduction
in LDL cholesterol and serum total cholesterol was mentioned in this report [216].

The indigestible carbohydrates abundantly found in avocado are reported to prevent diabetes
and regulate blood cholesterol [217]. The glycemic index can be defined as a comparative ranking of
carbohydrate in foods according to their effect on blood sugar levels [218]. Despite its carbohydrate
content, the glycemic index rating of avocado is quite low. In rats, various aqueous concentrations
of P. americana seed extract exhibited hypoglycemic and antihyperglycemic effects by significantly



Antioxidants 2019, 8, 426 40 of 53

decreasing the blood glucose levels [219], highlighting its potential in the management of diabetes
mellitus. Another study conducted to investigate the effect of avocado paste on rats with a
hypercholesterolemic diet with high fructose showed lower levels of blood sugar and significant
reduction of fat accumulation in the liver, which was attributed to the presence of bioactive compounds
(polyphenols, fiber, and carotenoids) [220]. Investigation on the inhibitory effects of phenolic extract
from the avocado pulp, leaves, and seed on various type 2 diabetes enzymes (α-amylase and
α-glucosidase) was also performed [221]. The peel extract exhibited the highest inhibition against
α-amylase and α-glucosidase, while the leaf extract significantly inhibited the α-glucosidase. In a
recent study, the glycemic and lipoprotein profiles of the obese middle-aged adult were improved
when the carbohydrate was replaced with avocados in a meal [222]. The participants were divided into
three different groups: control group (0 g), half avocado (half-A, 68 g), and whole avocado (whole-A,
136 g). In comparison to the control group, the half-A and whole-A group showed decreased glycemic
and insulinemic response over 6 h [222].

1.8. Bioavailability and Pharmacokinetic of Compounds from P. americana

Avocado is a relatively unique fruit, containing high levels of water and fat-soluble vitamins,
plant sterols, MUFA, and phytochemicals [223]. Avocado has been shown to improve the absorption of
nutrients when used in combination with other foods and supplements [224]; however, research on the
pharmacokinetics of the avocado components alone is limited.

Vitamin A is fat-soluble in nature and present in many foods as retinol and in its provitamin
A form (carotenes). In particular, liver, fish, and cheese are rich sources of vitamin A. Carotenes
(provitamin A) are converted to vitamin A in the body. However, plant-based foods typically present
a challenging matrix for the utilization of vitamin A, hindering the absorption and conversion of
provitamin A to vitamin A [225]. Many commonly consumed plant-based foods contain higher levels
of provitamin A such as sweet potato (709 µg/100 g), carrots (835 µg/100 g), and spinach (469 µg/100 g),
especially compared to avocado (7 µg/100 g) [223]. Nevertheless, the levels of vitamins in the food
are trivial if not absorbed and converted to their active chemical forms for the body to utilize. The
absorption of provitamin A from plant sources is typically poor. In an in vitro digestion model, the
accessibility of β-carotene in raw carrots was 1–3% and lycopene was <1% [226]. The consumption of
lipid-rich food has been shown to improve the absorption of fat-soluble vitamins, including vitamin
A [227]. The presence of soluble fats during digestion facilitates the formations of mixed micelles,
which facilitate absorption [228].

The absorptions of provitamin A including β-carotene, α-carotene, β-cryptoxanthin, lutein, and
zeaxanthin were enhanced when co-consumed with avocado. This can perhaps be attributed to the
high MUFA content of avocado. In salsa, the absorption of lycopene and β-carotene was increased by
4.4 and 2.6 times respectively when avocado was added. In salad (150 g), the addition of avocado (24 g)
increased the absorption of α and β-carotene and lutein by 7.2, 15.3, and 5.1 times, respectively [224].
In addition to the improved absorption, avocados were shown to enhance the utilization of provitamin
A by increasing the conversion rate to vitamin A in participants with low conversion efficacy [229]. The
enhanced absorption of provitamin A has been attributed to the improved formation of mixed micelles
in the lumen, increasing solubility and facilitating uptake by enterocytes. Improved vitamin A uptake
has been observed with other high lipid foods such as eggs and oil [230]. Likewise, the consumption
of salad rich in carotenes, with canola oil, resulted in significantly higher carotene concentrations in
chylomicrons [231]. As avocado is a rich source of fat and high in monosaturated fatty acids, it presents
an alternative from sources high in unsaturated fats.

Avocado is the most concentrated source of β-sitosterol in commonly consumed Western
fruits [79]. Plant sterols share similar chemical structures with cholesterol; however, they are poorly
absorbed compared to cholesterol, (with about 10% systematically absorbed compared to 50–60% for
cholesterol) [232]. Similar to other lipophilic compounds, phytosterols are incorporated into mixed
micelles before being taken up by enterocytes [233]. Plant steroids may assist in lowering cholesterol
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absorption by acting as a competitive inhibitor. Interestingly, plant sterols have also been observed to
lower dietary carotene plasma levels by 10–20% [234]. As avocados have been reported to increase
carotene absorption and subsequent plasma levels, this effect may be overcome by the benefit of
the other lipid components present. Due to its unique fruit matrix high in plant sterols and MUFA,
avocados may provide an enhanced absorption of lipophilic compounds compared to other fruits
and vegetables. As established for vitamin A and carotene, it is likely that the absorption of other
lipophilic compounds may similarly be enhanced by consumption with avocado. Within avocado, this
may apply to vitamin E, vitamin K, chlorophylls, and phytochemicals such as acetogenins. Further
pharmacokinetic research is necessary to determine if the absorption of other lipophilic compounds
is enhanced in combination with avocado. The current literature does not provide any information
regarding the effect of avocado matrix on the absorption of water-soluble vitamins and phytochemicals.
Moreover, further pharmacokinetic research should be directed to understand the bioavailability of
pharmaceutically promising phytochemicals such as acetogenins from avocado.

2. Conclusions and Future Direction

Several preclinical studies performed in the last few decades lay emphasis on the unique nutritional
and phytochemical composition of avocado and their potential in the treatment and prevention of
different diseases. Some studies have underlined its importance as the source of lead molecules for
drug discovery due to the abundance of novel chemical skeletons. The cumulative effects of avocado
components in the prevention and treatment of oxidative stress and age-related degenerative diseases
are also indicated in a few studies. However, more comprehensive in vitro, in vivo, and clinical
investigations are fundamental to significantly expand the understanding of the molecular mechanisms
of action of its phytochemicals for developing subsequent therapeutic and nutritional interventions
against cancer, diabetes, inflammatory, microbial, and cardiovascular diseases. Interestingly, despite
its popularity as a “superfood”, clinical studies evaluating the therapeutic potential of avocado for the
prevention and management of different ailments are limited in the literature. More investigations to
understand the bioavailability and pharmacokinetics of avocado phytochemicals and antioxidants are
also crucial to determine their clinical efficacy and potential toxicity. Regardless of the recent food
trends and marketing gimmicks of “superfoods”, variety is fundamental for a balanced healthy diet.
As many studies have revealed the complex synergistic interactions among different phytochemicals
present in food matrices, studies to understand the possible synergy between bioactive compounds
from avocado and other fruit and vegetables will help formulate diet-based preventive strategies for
many diseases. A few reports have indicated the role of avocado in improving the bioavailability of
nutrients from other plant-based foods. Therefore, consuming avocados with other fruit and vegetables
as a part of the diet can be beneficial to human health.
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