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Abstract: Food processing can affect the nutrition and safety of foods. A previous study showed
that tannase and ultrasound treatment could significantly increase the antioxidant activities of green
tea extracts according to in vitro evaluation methods. Since the results from in vitro and in vivo
experiments may be inconsistent, the in vivo antioxidant activities of the extracts were studied using
a mouse model of alcohol-induced acute liver injury in this study. Results showed that all the extracts
decreased the levels of aspartate transaminase and alanine aminotransferase in serum, reduced the
levels of malondialdehyde and triacylglycerol in the liver, and increased the levels of catalase and
glutathione in the liver, which can alleviate hepatic oxidative injury. In addition, the differences
between treated and original extracts were not significant in vivo. In some cases, the food processing
can have a negative effect on in vivo antioxidant activities. That is, although tannase and ultrasound
treatment can significantly increase the antioxidant activities of green tea extracts in vitro, it cannot
improve the in vivo antioxidant activities, which indicates that some food processing might not
always have positive effects on products for human benefits.
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1. Introduction

The antioxidant properties of food include the capacities of reducing, scavenging radicals, chelating
metal ions, inhibiting oxidative enzymes, and activities as antioxidative enzymes [1–6]. Many methods
have been developed for the evaluation of in vitro antioxidant activities of natural products, and some
of them showed strong antioxidant activities, such as vegetables, fruits, cereals, algae, and tea [7–16].

Oxidative stress can be caused in the human body due to the overproduction of reactive oxygen
species (ROS) over the capability of cells to present an effective antioxidant response [17,18]. The
oxidative stress results in cellular dysfunction and is involved in various chronic disease initiation
and progression, such as diabetes, cancer, neurodegeneration, aging, cardiovascular diseases, and
liver diseases [19–21]. Due to strong in vitro antioxidant activities, some natural products have been
regarded as effective agents for the prevention and management of several chronic diseases [22–25]. On
the other hand, the formation of ROS in vivo can be stimulated due to alcohol metabolism [26,27]. The
animal model with acute alcohol administration has been used to investigate the in vivo antioxidant
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activities of food [28,29], and it often occurs accompanied by liver injury, which can be used for
hepatoprotection studies [30]. Hence, we used an animal model with acute alcohol-induced liver injury
to evaluate the in vivo antioxidant and hepatoprotective activities of green tea extracts with different
processing in this study.

Green tea (Camellia sinensis L.) has been reported to show multiple bioactivities with health benefits,
such as antioxidant, anti-inflammation, hepatoprotection, cardiovascular protection, neuroprotection,
and anti-cancer [31–36]. The epidemiological studies showed that green tea consumption can result in
a decreased risk of metabolic syndrome, but there is not enough evidence to draw a strong conclusion
regarding tea and non-alcoholic fatty liver [37]. Moreover, accumulating in vivo evidence suggested
that green tea showed hepatoprotective effects, which can ameliorate the liver injury induced by alcohol,
cholesterol, chemicals, or drugs [38–41]. These benefits are mainly due to the richness of bioactive
compounds like polyphenols, polysaccharides, and amino acids [42–45]. The major polyphenols in
green tea include catechins and phenolic acids [46]. Catechins are mainly composed of (−)-epicatechin
(EC), (−)-epigallocatechin (EGC), (−)-epicatechin gallate (ECG), and (−)-epigallocatechin gallate
(EGCG), and phenolic acids include gallic, coumaric, caffeic acids, etc. [47,48]. Furthermore, many
findings have demonstrated that the catechins and phenolic acids are responsible for the antioxidant
properties of green tea, which has protective effects against many diseases, such as diabetes, cancer,
hypertension, and cardiovascular diseases [49–53]. However, there is potential hepatotoxicity induced
by the overdose of EGCG [54,55]. Hence, food processing, such as enzymatic treatment, is used to
reduce the content of EGCG in green tea extracts to eliminate its negative effects [56].

Numerous types of enzymes are currently used in food processing to meet the demands of a broad
variety of food products [57,58]. Additionally, the use of enzymes in foods produces other substances
from enzymatic hydrolysis and improves the quality of food products [59–62]. Due to its capacities in
catalyzing hydrolysis of gallic acid esters and hydrolysable tannins, tannase (tannin acyl hydrolase
EC 3.1.1.20) is widely used in the production of gallic acid [63,64]. On the other hand, ultrasound
has been extensively used in food processing, improving the quality and safety of products [62,65,66].
Also, ultrasound creates cavitation and promotes heat and mass transfer, which accelerates chemical
reactions, such as enzymatic reactions [67–69]. However, some compounds in products have been
changed during food processing, and they might pose negative effects on the quality and health
benefits of foods [70]. Most present studies use in vitro methods to evaluate antioxidant properties of
food after they are treated with different processing methods. But fewer studies were found about the
in vivo antioxidant activities of processed and original products. Our previous study revealed that
tannase and ultrasound treatments markedly increase the antioxidant activities of green tea extracts
based on the results of in vitro assays. In this study, we aim to investigate the in vivo effects of green
tea extracts processed by tannase and ultrasound against oxidative stress and liver injury induced
by alcohol.

2. Materials and Methods

2.1. Chemicals and Reagents

Tannase (200 U/g) was bought from Yuanye Biological Technology Co., Ltd. (Shanghai, China).
All the other chemicals or reagents were of analytical grade. The kits of aspartate transaminase
(AST), alanine aminotransferase (ALT), triglyceride (TG), malondialdehyde (MDA), glutathione (GSH),
superoxide dismutase (SOD), catalase (CAT), and total protein were purchased from Nanjing Jiancheng
Bioengineering Institute (Nanjing, China). The deionized water was used for all experiments.

2.2. Preparation of Green Tea Extracts

Green tea was purchased from the local market of Guangzhou, China, and was ground into
powder which was filtered through a 100 mesh sieve. The deionized water was used to mix with
the powder (50 g/L, w/v), and then the mixture was heated at 85 ◦C for 30 min in a water bath and
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centrifugated at 4200× g for 30 min. The supernatants were collected as the green tea extracts for
further experiments.

According to the previous study, the green tea extracts showed the highest antioxidant activities
in vitro under the optimal extraction conditions with 0.1 M citrate-phosphate buffer (pH 4.62), ultrasonic
temperature of 44.12 ◦C, ultrasonic time of 12.17 min, tannase concentration of 1 mg/mL, and ultrasonic
power of 360 W [71]. The green tea extracts were divided into four groups with different treatments.
For the first group, the treatment of ultrasound and tannase (UST) was conducted by mixing the green
tea extract with 1 mg/mL tannase in 0.1 M citrate-phosphate buffer (pH 4.62) and using an ultrasonic
device (Kejin Ultrasonic Equipment Factory, Guangzhou, China) for 12.17 min at 44.12 ◦C under 360 W.
For the second group, the ultrasound treatment (US) was carried out by mixing the extract with 0.1 M
citrate-phosphate buffer (pH 4.62) without tannase and treating with ultrasound for 12.17 min at
44.12 ◦C under 360 W. For the next group, the only tannase (TAN) treatment was mixed with 1 mg/mL
tannase in 0.1 M citrate-phosphate buffer (pH 4.62), and placed in a water bath at 44.12 ◦C for 12.17 min.
The group with the green tea extract (GTE) had a treatment which included the dilution of original
extract with the same buffer solution. After the completion of treatment, the mixtures were fully
mingled by a vortexing machine. Then they were placed in the water bath at 100 ◦C for 10 min to
inactivate tannase and cooled down to room temperature. The mixture was centrifugated at 4200× g
for 10 min, and the supernatant was collected for further experiments.

The extracts from UST, US, TAN, and GTE groups were later dried via the vacuum rotary evaporator.
The dried crude extracts were collected and dissolved in deionized water for the animal study.

2.3. Animal Study

Male Kunming mice (20–25 g) were obtained from the Experimental Animal Center of Sun Yat-Sen
University, Guangzhou, China. All procedures were strictly carried out according to the principles of
“laboratory animal care and use” approved by School of Public Health, Sun Yat-Sen University (No.
2019-002; 28 February 2019). The mice were fed in a specific pathogen free (SPF) animal room under a
temperature of 22 ± 0.5 ◦C, relative humidity of 40–60%, and 12 h light/dark cycle. After the mice had
acclimated for one week, they were randomly divided into different groups (6 mice in each group),
including control, model, and treatment groups. The treatment groups were fed intragastrically with
the solutions of US (50 mg/kg body weight), TAN (50 mg/kg body weight), GTE (50 mg/kg body
weight), and UST (50, 100, 200 mg/kg body weight) for 7 days. The model and control groups received
the deionized water. On the seventh day, all treatment and model groups were fed intragastrically
with 52% alcohol (v/v, 10 mL/kg body weight) 30 min after the last administration, while the control
group received the deionized water. After 6 h fasting following the last administration of alcohol,
all mice were weighed and anaesthetized to sacrifice. Then the blood samples were collected and
centrifuged at 3000× g for 10 min. The serum was isolated for AST and ALT evaluation which followed
the instructions of the commercial kits. The liver was harvested and weighed. In order to control
potential oxidation of the sample, the low temperature condition was adopted. That is, the 10% (w/v)
liver homogenate was prepared by mixing the liver and ice-cold 0.9% normal saline solution in a
glass tube that was put in the ice box and the liver was grinded with a glass grinder [29,72,73]. The
homogenate of liver was centrifuged at 2500× g for 10 min to obtain the supernatant which was used
for the biochemical assays.

2.4. Biochemical Assays

The determination of SOD, CAT, GSH, MDA, TG, and total protein followed the instructions
of the Nanjing Jiancheng commercial kits produced by Nanjing Jiancheng Bioengineering Institute,
Nanjing, China [29,72–76]. (1) Determination of SOD activity: the xanthine and xanthine oxidase
reacted to produce superoxide radicals. The radicals oxidated hydroxylamine to induce nitrite that
reacted with a color developing agent to produce a purple-red compound. When the sample contained
SOD, it reduced the production of nitrite, which was reflected on a decrease in absorbance. The liver



Antioxidants 2019, 8, 572 4 of 14

homogenate was diluted by ice-cold saline solution to 0.25% (w/v), and the 50 µL was mixed with
reagents. The mixture was placed in room temperature for 10 min. The absorbance was detected
at 550 nm using a spectrophotometer. (2) Determination of CAT activity: CAT catalyzed the H2O2

decomposition, and the remaining H2O2 reacted with ammonium molybdate to produce a light
yellow compound. The activity of CAT was calculated based on the change in absorbance. The
liver homogenate was diluted by ice-cold saline solution to 0.5% (w/v), and the 50 µL was mixed
with reagents. The absorbance of mixture was detected at 405 nm using the microplate reader. (3)
Determination of GSH content: The reaction of GSH and 5,5′-dithiobis-(2-nitrobenzoic acid) (DTNB)
produced a yellow compound. The GSH content was determined by the colorimetry. The 100 µL
liver homogenate (10%, w/v) was mixed with 0.1 mL precipitant, and the mixture was centrifuged at
3500× g for 20 min to obtain the supernatant. The 100 µL supernatant was mixed with reagents, and
placed in room temperature for 5 min. The absorbance of mixture was determined at 405 nm using
the microplate reader. (4) Determination of MDA content: The reaction of MDA with thiobarbituric
acid (TBA) led to a red product that had an absorbance peak at 532 nm. The 100 µL liver homogenate
(10%, w/v) was mixed with reagents, and put in a water bath at 95 ◦C for 40 min. After the mixture
was cooled down, it was centrifuged at 4000× g for 10 min. The absorbance of the supernatant was
detected at 532 nm using a spectrophotometer. (5) Determination of TG content: TG was hydrolyzed
into glycerol and fatty acids by the lipase. The reaction of glycerol and adenosine triphosphate
(ATP) was catalyzed by glycerol kinase (GK) and produced glycerol-3-phosphate, which was further
oxidized into H2O2 and dihydroxyacetone phosphate by glycerophosphate oxidase. H2O2 reacted
with 4-aminoantipyrine (4-AAP) and p-chlorophenol under the catalysis of peroxidase to produce a
red quinone compound, and its color was proportional to the TG content. The 2.5 µL liver homogenate
(10%, w/v) was mixed with reagents and placed in the water bath at 37 ◦C for 10 min. The absorbance
of mixture was detected at 510 nm using the microplate reader. (6) Determination of AST activity:
AST could act on α-ketoglutaric acid and aspartic acid to produce oxaloacetic acid and glutamic acid.
The oxaloacetic acid decarboxylated into pyruvate acid that reacted with 2,4-dinitrophenylhydrazine
(DNPH) to produce 2,4-dinitrophenylhydrazone which was a reddish brown compound under alkaline
conditions. The 5 µL serum was mixed with the reagents and placed at room temperature for 15 min.
The absorbance was detected at 510 nm using a microplate reader. (7) Determination of ALT activity:
Under the condition of 37 ◦C and pH 7.4, ALT acted on alanine and α-ketoglutaric acid to produce
pyruvate acid and glutamic acid. After 30 min, DNPH in hydrochloric acid solution was added to form
acetone phenylhydrazone that was a reddish brown compound under alkaline conditions. The 5 µL
serum was mixed with the reagents and placed at room temperature for 15 min. The absorbance was
recorded at 510 nm using the microplate reader. (7) Determination of total protein: The protein reduced
Cu2+ to Cu+ under the alkaline conditions, and Cu+ reacted with the bicinchoninic acid (BCA) reagent
to form a purple complex compound that had an absorbance peak at 562 nm. The absorbance was
proportional to the concentration of total protein. The liver homogenate was diluted by ice-cold saline
solution to 0.5% (w/v), and the 10 µL diluted liver homogenate was mixed with the reagents. The
mixture was placed at 37 ◦C for 30 min and the microplate reader was used to detect the absorbance at
562 nm.

2.5. Statistical Analysis

All experiments were conducted independently three times, and the results were presented as
mean ± standard deviation (SD). The statistical analysis was performed by using SPSS 19.0 (IBM SPSS
Statistics, IBM Corp, Somers, NY, USA). One-way ANOVA plus a post hoc least-significant difference
(LSD) test was utilized to analyze the significance of differences for each group, and the statistical
significance was defined at p < 0.05.
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3. Results and Discussion

3.1. Effects of Extracts on Antioxidant Enzymes, GSH, and MDA in the Liver

The animal experiments were conducted with the model of alcohol-induced liver injury to assess
antioxidant activities of the extracts in vivo. The alcohol administration was observed to induce
oxidative stress in mice. Compared with the control group, the model group showed an obvious
decrease in CAT and SOD activities as well as GSH content, and an increase in MDA content in the
mouse liver (p < 0.05, Figure 1).
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hydrosylamine to produce nitrite. UST, the group treated with ultrasound and tannase; TAN, the 
group treated with only tannase; US, the group treated with only ultrasound; green tea extract (GTE), 

Figure 1. Effects of different extracts on catalase (CAT), superoxide dismutase (SOD), glutathione
(GSH), and malondialdehyde (MDA) in the liver. (A) CAT, (B) SOD, (C) GSH, and (D) MDA: extracts
from different methods (50 mg/kg body weight). One unit of CAT activity is defined as the amount
of protein which decomposes 1 µmol H2O2 per second. One unit for SOD activity is defined as the
amount of protein necessary to inhibit 50% of the SOD reaction where superoxide radicals oxidize
hydrosylamine to produce nitrite. UST, the group treated with ultrasound and tannase; TAN, the
group treated with only tannase; US, the group treated with only ultrasound; green tea extract (GTE),
the group treated without ultrasound and tannase. The values are presented as means ± SD. Bars
with different letters (a–c) are significantly different (p < 0.05). * p < 0.05, the model group vs. the
control group.

As displayed in Figure 1A, all treatment groups at the same dose (50 mg/kg body weight)
significantly increased the CAT activity in comparison with the model group. In addition, there was no
significant difference in CAT activity among the UST, US, and GTE groups. However, the TAN group
showed a negative effect on CAT activity compared with the GTE group. This is because tannase might
induce the degradation of some related bioactive compounds [71]. Seen from Figure 1B, although the
activity of SOD in the UST group was significantly higher than that of the GTE group, all treatment
groups did not increase SOD activity compared with the model group. However, treatment with
200 mg/kg body weight could increase SOD activity (Figure 2B). Therefore, the dose of 50 mg/kg body
weight was too low to increase the SOD activity. From Figure 1C, all treatment groups improved
GSH content significantly when they were compared with the model group. In addition, there was
no marked difference in the levels of GSH between the US and GTE groups. However, the UST and
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TAN groups showed significantly lower levels of GSH than the GTE groups. These results suggest
that tannase treatment might pose negative effects on the in vivo antioxidant activities of green tea
extract. As shown in Figure 1D, green tea extracts by different methods reversed the alcohol-induced
increase in the level of hepatic MDA, but the differences between groups were not significant. For
another thing, the effects of UST at different doses (50, 100, and 200 mg/kg body weight) were shown
in Figure 2, and they all increased the activities of CAT and SOD as well as GSH content and lowered
the level of MDA. There was no distinct dose-dependent response for the levels of CAT, SOD, and
MDA. However, a higher dose showed a stronger effect on GSH content.
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Figure 2. Effects of different doses of UST extracts on CAT, SOD, GSH, and MDA in liver. (A) CAT,
(B) SOD, (C) GSH, and (D) MDA: UST extract (50, 100, and 200 mg/kg body weight). One unit of CAT
activity is defined as the amount of protein which decomposes 1 µmol H2O2 per second. One unit for
SOD activity is defined as the amount of protein necessary to inhibit 50% of the SOD reaction where
superoxide radicals oxidize hydrosylamine to produce nitrite. UST, the group treated with ultrasound
and tannase; TAN, the group treated with only tannase; US, the group treated with only ultrasound;
GTE, the group treated without ultrasound and tannase. The values are presented as means ± SD. Bars
with different letters (a–c) are significantly different (p < 0.05). * p < 0.05, the model group vs. the
control group.

Acute alcohol consumption has been reported to induce oxidative stress and stimulate lipid
peroxidation, leading to hepatic dysfunction [77]. It produces free radicals and promotes the
development of liver diseases. Thus, the activation of antioxidant enzymes for scavenging free
radicals is essential for the protection against alcoholic liver disease. SOD and CAT are important
antioxidant enzymes in the defence against oxidative damage. SOD acts on removing superoxide, and
CAT catalyses the decomposition of hydrogen peroxide [30]. The contents of GSH are also a crucial
indicator reflecting the antioxidant and oxidant status in vivo [78]. MDA is an important product of
lipid peroxidation, and its content shows the degree of interaction of ROS with polyunsaturated fatty
acid [79].

The present study showed that the administration of extracts increased the levels of CAT, SOD,
and GSH, and decreased the contents of MDA in the liver as compared to the model group. However,
the differences among groups were not significant in the assays of SOD and MDA. On the other hand,
the groups with tannase treatment showed low CAT activity and GSH content, indicating that tannase
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might degrade some other compounds and affect antioxidant activity negatively in vivo. Overall, the
tannase and ultrasound treatment had no significant beneficial effects on the antioxidant enzymes and
MDA compared with GTE groups, even posing negative effects on the GSH content.

3.2. Effects of Extracts on AST and ALT in Serum

The activities of serum aspartate transaminase (AST) and alanine transaminase (ALT) were
measured to investigate the effects of extracts on liver injury induced by acute alcohol intake. In
Figure 3, the serum AST and ALT activities were increased in the model group compared with the
control group (p < 0.05). All treatment groups significantly decreased the serum AST activities in
comparison with the model group, but there was no significance among the treatment groups. On the
other hand, all treatment groups non-significantly decreased the serum ALT activities compared with
the model group. As shown in Figure 3C,D, the ingestion of UST extracts significantly ameliorated the
alcohol-induced increase in AST activities, but the dose-dependent effect was not significant. For the
ALT activity, the highest dose of UST extracts decreased significantly the activity of ALT in comparison
with the model group.
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Figure 3. Effects of different extracts on serum aspartate transaminase (AST) and alanine
aminotransferase (ALT) activities. (A) AST and (B) ALT: extracts from different methods (50 mg/kg
body weight). (C) AST and (D) ALT: UST extracts (50, 100, and 200 mg/kg body weight). UST, the
group treated with ultrasound and tannase; TAN, the group treated with only tannase; US, the group
treated with only ultrasound; GTE, the group treated without ultrasound and tannase. The values are
presented as means ± SD. Bars with different letters (a,b) are significantly different (p < 0.05). * p < 0.05,
the model group vs. the control group.

AST and ALT are known as effective markers for liver function. In response to liver damage,
AST and ALT are released to plasma from hepatocytes, and the levels of serum AST and ALT are
enhanced [80]. In this study, the model groups showed higher serum AST and ALT activities than the
control group, which indicated the injury in the liver. The extracts with different methods reduced the
serum AST and ALT activities, but the differences among groups were not significant. It indicated
that the treatment of ultrasound or tannase contributed little to the reduction in serum ALT and AST
activities compared with GTE group. In addition, treatment groups decreased non-significantly the



Antioxidants 2019, 8, 572 8 of 14

ALT activity in the comparison with the model group. It might be because the doses of extracts were
too small to produce a significant effect. In the dose-dependent experiment, a higher dose of UST
extract showed a more potent effect on attenuating the abnormal increase in serum ALT activities
(Figure 3D). It suggested that using appropriate doses of extracts obtained from the combined treatment
of ultrasound and tannase in green tea could diminish the liver dysfunction induced by alcohol in vivo.

3.3. Effects of Extracts on TG in Liver

Acute alcohol intake resulted in disturbed lipid metabolism with an increase in hepatic TG.
Figure 4 displays the effects of extracts on TG level in liver tissue, and a significant elevation in the
level of TG was observed in the model group (p < 0.05). The administration of extracts from different
methods non-significantly decreased the level of TG in liver tissue compared with the model group. In
addition, the results showed that high doses of UST extract could lower the hepatic TG significantly
compared with the model group in Figure 4B, but the dose-dependent effect was not obvious.
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treated with only ultrasound; GTE, the group treated without ultrasound and tannase. The values are
presented as means ± SD. Bars with different letters (a,b) are significantly different (p < 0.05). * p < 0.05,
the model group vs. the control group.

Excessive drinking can lead to lipid production in the liver, and the accumulation of adipose in
liver tissue promotes the progress of relevant diseases [81]. The results revealed that the ultrasound
and tannase treatment had little effect in reducing lipid accumulation, and there was no significant
difference compared with the GTE group. On the other hand, a high dose of UST extracts could
significantly reduce the level of TG in the liver. These results indicated that a certain dose of UST
extract could be effective in reducing lipids in the liver.

In our previous study, the treated extracts showed stronger in vitro antioxidant activities than the
original extracts, and the contents of several compounds were determined using the HPLC method [71].
HPLC results revealed that tannase and ultrasound treatment increased gallic acid content, while the
original extract had a higher EGCG content than the treated extracts. It indicated that the in vitro
antioxidant activities of UST and TAN were mainly attributed to the content of gallic acid, while the
antioxidant properties of US and GTE mainly depended on the contents of EGCG. On the other hand,
this study showed that the differences between treated and original extracts were not significant in vivo,
and to our surprise, the food processing even posed a negative effect on in vivo antioxidant activities
in some cases. Therefore, the results from in vivo and in vitro studies on antioxidant activities were
inconsistent, suggesting that some food processing might not always have positive effects on health
benefits. This study also indicated that in the future, the effects of food processing on the quality of
products should not be evaluated only using in vitro methods, and in vivo evaluation methods should
be adopted.
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3.4. Histopathological Observation

The histopathological analysis on hematoxylin and eosin (H&E)-stained liver tissue slices further
confirmed the protective effects of all treatment groups against acute alcohol liver injury (Figure 5).
The model group showed obvious pathologic changes such as disordered cell arrangement and lipid
droplets accumulation, while the control group had no significant damage (Figure 5A,B). All treatment
groups presented less steatosis than the model group (Figure 5C–F), which indicated that the lesion
induced by acute alcohol administration was attenuated by green tea extracts from different treatment
methods. In addition, there was no obvious difference among different treatment groups.
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body weight); (E) US group (50 mg/kg body weight); (F) GTE group (50 mg/kg body weight). UST, the
group treated with ultrasound and tannase; TAN, the group treated with only tannase; US, the group
treated with only ultrasound; GTE, the group treated without ultrasound and tannase.

4. Conclusions

This study investigated the effects of food processing (tannase and ultrasound treatments) on
in vivo antioxidant and hepatoprotective properties of green tea extracts. Results showed that green
tea extracts with ultrasound and tannase treatment could attenuate the oxidative stress induced by
acute alcohol administration. It increased the activities of antioxidant enzymes, such as SOD and CAT,
and the content of antioxidants such as GSH, and reduced the level of MDA. However, there was no
significant difference between the treated and original extracts. To our surprise, the tannase treatment
even had negative effects on the in vivo antioxidant activities of extracts, which might be related to its
degradation of some compounds. In addition, the dose-effect relationship was not significant in green
tea extracts with tannase and ultrasound treatment. Thus, it was indicated that the in vitro and in vivo
antioxidant activities could be inconsistent, which might be affected by many other factors, such as
metabolism and bioavailability. Moreover, the effects of food processing on properties of products
should not be evaluated only using in vitro methods, and more in vivo evaluation methods should
be carried out. Also, further studies are needed on the necessity of using different food processing
methods to produce functional compounds.
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