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Abstract: Salvia sclarea essential oil is used as an aromatic therapy for dysmenorrhea. Sclareol—one
of the natural products isolated from S. sclarea—displays anti-inflammatory and antioxidant activities;
however, researchers have not yet evaluated the mechanism related to the pain-relieving effect
of sclareol. In the present study, we aimed to investigate the potential effect of sclareol in
ex vivo and in vivo dysmenorrhea models, as well as its possible mechanism. In the ex vivo
study of uterine tissue from Sprague Dawley (SD) rats, the uterine contraction amplitude was
observed and recorded. In the in vivo study, we measured the uterine contraction pressure of SD
rats and performed writhing tests on mice. The uterine tissues from the writhing test subjects
were collected and analyzed by Western blot. The results demonstrated that sclareol inhibited
prostaglandin (PG) F2α-, oxytocin-, acetylcholine-, carbachol-, KCl-, and Bay K 8644-induced uterine
contraction and possessed an analgesic effect in the writhing test. Sclareol affects the Ca2+ level and
regulates oxytocin receptor (OTR), myosin light chain kinase (MLCK), extracellular signal-regulated
kinase, p-p38, cyclooxygenase-2 (COX-2), and phospho-myosin light chain 20 (p-MLC20) protein
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expression. Integrating these results, we suggest that sclareol is a potential alternative supplement
for dysmenorrhea.

Keywords: sclareol; Salvia sclarea essential oil; dysmenorrhea; uterine contraction; writhing test

1. Introduction

Dysmenorrhea is the most common gynecological disease affecting reproductive women globally,
with a 16–91% prevalence [1,2]. Instances of dysmenorrhea, leading to absence from school or work,
affect performance, as well as causing economic losses [3]. Dysmenorrhea refers to when women
undergo lower abdominal pain, who may present with associated symptoms, such as headache,
diarrhea, and vomiting [1,4]. However, the reason for dysmenorrhea is still unclear, and most theories
have been directed toward the high level of prostaglandin (PG) F2α in the menstrual phase [5]. PG is
produced by cyclooxygenase-2 (COX-2) and it can stimulate vasoconstriction of the uterus, leading to
ischemia [6]. PG can also cause sensitization of afferent nerves, resulting in the painful symptoms of
dysmenorrhea [7].

The pain of dysmenorrhea is caused by uterine hyper-contraction. Calcium is one of the most
important manipulators of this contraction [8]. Contractions occur in the smooth muscle upon calcium
influx through the calcium channel, where calcium and calmodulin form a complex which activates
myosin light chain kinase (MLKL) to induce the extracellular signal-regulated kinase (ERK)/p38
signaling pathway. Furthermore, phosphorylated myosin light chain 20 (MLC-20) is combined with
actin, resulting in cross-bridge cycling and uterine contraction [9].

Aromatherapy has been used as a form of pain-relief therapy [10], using essential oils, such as
clary sage, marjoram, and lavender oils. Sclareol is one of the compounds found in Salvia sclarea
essential oil, isolated from Salvia sclarea flowers or leaves, and it is classified as a bicyclic diterpene
alcohol [11]. It has been noted that sclareol displays antitumor, anti-inflammation, antioxidant,
and immune-regulation activity both in vivo and in vitro [12–15]. The condition of chronic inflammation
is highly correlated with pain [16], also indicating that chronic inflammation is related to uterine pain
behavior in an endometriosis model [17]. Several natural compounds show high antioxidant and
anti-inflammation effects, such as extra virgin olive oil (EVOO) [18–20] and resveratrol [21], which can
decrease inflammatory cytokine levels and prevent oxidative-related cell death. Sclareol can regulate
inflammation by affecting the protein expression of COX-2 [12,13], as well as antioxidant enzyme
activity. These reasons indicate that sclareol has the potential to improve dysmenorrhea. In this study,
we investigated the anti-dysmenorrhea activates of sclareol in ex vivo and in vivo dysmenorrhea
models, as well as its possible mechanism.

2. Materials and Methods

2.1. Reagent Preparation

Sclareol (CAS: 515-03-7, 98%), oxytocin, sodium bicarbonate, carbachol, acetylcholine (Ach),
mannitol, glucose, potassium chloride, potassium phosphate, magnesium sulfate, calcium chloride,
estradiol, and dimethyl sulfoxide (DMSO) were purchased from (Sigma-Aldrich, St. Louis, MO, USA).
PGF2α and Bay K 8644 were purchased from (Cayman Chemical Company, Ann Arbor, MI, USA).

2.2. Ultra-Performance Liquid Chromatography–Mass Spectrometry (UPLC–MS) Analysis of Total Sclareol
Content of Salvia sclarea Essential Oil

The Salvia sclarea L. essential oil (Can June International Inc., Taipei, Taiwan) was diluted
to an appropriate concentration with ethanol and filtrated using a nylon filter (0.22 µm) before
being injected into the ultra-performance liquid chromatography–mass spectrometry (UPLC–MS)
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system. Standard stock solutions of sclareol standard (Sigma-aldrich, St. Louis, MO, USA) were
dissolved in ethanol and the calibration range was 20–150 ng/mL with a correlation coefficient of
0.999. The system included a Waters Acquity UPLC equipped with a pump, column compartment,
autosampler, and Waters TQS mass spectrometer (Waters, Milford, MA, USA) operated in positive
electrospray ion (ESI+) mode. The Acquity UPLC HSS T3 (1.8 µm; 2.1 mm × 100 mm) column was
employed and maintained at 35 ◦C with a flow rate at 0.3 mL/min and injection of 2 µL. The mobile
phase consisted of 10% (A) and 90% methanol (B), both containing 5 mM ammonium acetate and 0.1%
formic acid. The linear gradient conditions were as follows: 1–99% A (0–10 min), 99% B (10–12 min).
The ESI parameters were set as follows: capillary voltage, 3.0 kV; cone voltage, 15 V; desolvation
temperature, 400 ◦C; source temperature, 150 ◦C; desolvation gas flow, 850 L/h; cone gas flow, 150 L/h;
nebulizer gas flow, 7.0 bar. Selected ion recording (SIR) mode was used to monitor sclareol at m/z
331 [M + Na] +. All data were collected using MassLynx 4.1 software spectrometer (Waters, Milford,
MA, USA).

2.3. Cell Culture

Human uterine smooth muscle cells were obtained from promo cells and were cultured in
Dulbecco’s modified Eagle’s medium, nutrient Mixture F-12 (DMEM F12) (Caisson, Taichung City,
Taiwan) supplemented with 10% fetal bovine serum (FBS) (Gibco, Grand Island, NY, USA) and
100× penicillin–streptomycin solution (Corning, Manassas, VA, USA) at 37 ◦C in a humidified 5%
CO2 incubator.

2.4. Reactive Oxygen Species (ROS) Measurement

For treatments, cells were cultured in 96-well plates (1000 cells/well), treated with 1 µM PGF2α

and sclareol for 30 min, and incubated with 25 µM 2′,7′-dichlorofluorescin diacetate (DCFDA) for
30 min. A fluorescence microscope was used to capture the fluorescence. We used ImageJ to quantify
the ROS density.

2.5. Animals

Female imprinting control region (ICR) mice (18–22 g) and Sprague Dawley (SD) rats (200–300 g)
were housed in a temperature-controlled and 12 h/12 h artificial illumination room, given ab libitum
access to food and water. All animal studies were conducted according to the protocols approved by the
IACUC of Taipei Medical University (Permit No. LAC-2019-0350, LAC-2019-0351 and LAC-2019-0645).

2.6. Uterine Tissue Preparations and Measurement of Uterine Contraction Ex Vivo

Preparation and measurement were carried out according to previously studies [21,22]. SD rats
were sacrificed by CO2 and the uterus was surgically removed. Uterine tissue was placed in a container
that contained Krebs solution (113 mM NaCl, 4.8 mM KCl, 2.5 mM CaCl2, 18 mM NaHCO3, 1.2 mM
KH2PO4, 1.2 mM MgSO4, 5.5 mM glucose, and 30 mM mannitol; pH 7.4), adherent fat, and connective
tissue guardedly removed from the uterus. Each piece of uterine tissue was cut at the same length
and set in an isolated organ bath which contained Krebs solution, bubbled with 95% O2 and 5% CO2

at 37 ◦C. We preloaded 1 g and equilibrated after at least 30 min. After equilibration, uterine tissue
contractions were stimulated using different drugs (10−6 M PGF2α, 10−6 M oxytocin, 10−5 M carbachol,
10−6 M Ach, 50 mM KCl, and 10−6 M Bay K 8644). Sclareol (10, 25, 50, 75 and 100 µM), Salvia sclarea
essential oil (10, 25, 50, 75, and 100 ppm), or DMSO (solvent control) was added to the organ bath
at 10 min intervals. The contraction tension was detecting by force displacement transducers and
recorded using LabScribe. To revise for variations between individual uterine contractions, the mean
amplitude vales of the pretreatment intervals were expressed as a percentage of control values and
taken as 100%.
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2.7. Measurement of Uterine Contraction Pressure in the In Vivo Study

The method for the measurement of uterine contraction in vivo was modified from previous
studies [21,22]. SD rats were anesthetized. We then made a ventral incision at the abdomen and uterus.
We put a thin catheter into the uterus, and the catheter was connected to a transducer to detect to
pressure transformations, which were recorded using LabScribe software. The rat was injected with
oxytocin (1 IU) intraperitoneally (ip) to stimulate uterine hypercontraction, with an ip injection of
sclareol (5, 10, or 15 mg/kg) at 20 min intervals. The mean amplitude vales of the pretreatment intervals
were expressed as a percentage of control values and taken as 100%.

2.8. Measurement of Uterine Tissue under Ca2+-Dependent Contractions

This study method was modified from [23]. The uterine tissue was placed in an organ
bath containing Ca2+-free Krebs solution. After equilibration, sclareol (100 µM) was added; then,
the Ca2+-free Krebs solution was supplied with increasing concentrations of Ca2+, from 0.5 to 5 mM,
to restore spontaneous contraction. In another study, the uterine tissues were placed in an organ bath
containing Ca2+-free Krebs solution. After equilibration, oxytocin (10−6 M) was added to the organ
bath to induce intracellular Ca2+ release from the sarcoplasmic reticulum to produce contractions;
then, sclareol (10, 25, 50, 75, and 100 µM) or DMSO (solvent control) was added to the organ bath at
10 min intervals.

2.9. Acetic Acid-Induced Writhing Test

Forty-eight female ICR mice were randomly separated into six groups (control, model control,
50 mg/kg sclareol, 100 mg/kg sclareol, and 150 mg/kg sclareol, n = 8/group) and were orally pretreated
with PBS (control and model control group) and sclareol (50, 100, or 150 mg/kg) 15 min before induction.
After pretreatment, all animals received an ip injection of PBS (only control group) or acetic acid (0.6%,
10 mL/kg). The number of writhes was recorded in the 30 min after the ip injection. Analgesia (%) =

(model control writhing times − (sclareol writhing times))/model control writhing times.

2.10. Oxytocin-Induced Writhing Test

The oxytocin-induced writhing test was carried out according to previous studies [24–26].
Forty-eight female ICR mice were randomly separated into six groups (n = 4–8/group): control,
model control, 50 mg/kg sclareol, 100 mg/kg sclareol, and 150 mg/kg sclareol. All mice were pretreated
with estradiol (E2, ip, 1 mg/kg) for seven consecutive days. Different doses of sclareol (50, 100,
or 150 mg/kg) were administered orally for three days before ip injection E2. On day 7, oxytocin
(70 IU/kg) was given as an ip injection after pretreatment for 15 min. The number of writhes was
recorded in the 30 min after the ip injection. After the test, mice were sacrificed, and uterine tissue
was collected for further analysis. Analgesia (%) = (model control writhing times − (sclareol writhing
times))/model control writhing times.

2.11. Lipid Peroxidation Determination

The lipid peroxidation was measured using the level of malondialdehyde (MDA) in the
serum. We used a 2-thiobarbituric acid-reacting substances test (TBARS) assay kit and followed
the manufacturer’s instructions. Results were measured on a 532 nm plate using a VERSA Max
microplate reader (Molecular Devices, San Jose, CA, USA).

2.12. Western Blotting Analysis

Tissue proteins were homogenized by means of a radioimmunoprecipitation assay buffer
containing protease inhibitor and phosphatase inhibitor (Roche Mannheim, Baden-Württemberg,
Germany). Protein samples were quantitated using the bicinchoninic acid assay (BCA)
(T-Pro Biotechnology, Dublin, UK). In total, 40–60 µg of protein in the sample was separated by 10–12%
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SDS-PAGE. The protein was transferred to 0.22 µm poly (vinylidene fluoride) (PVDF) membranes and
blocked with 5% bovine serum albumin (BSA) for 1 h at room temperature (RT). The membrane was
incubated with primary antibodies, including oxytocin receptor (OTR) (1:500, sc-8103, Santa Cruz),
myosin light-chain kinase (MLCK) (1:1000, sc-25428, Santa Cruz), cyclooxygenase-2 (COX-2) (1:200,
160126, Cayman), phosphorylated extracellular signal-regulated kinase (p-ERK) (1:1000, #9101, Cell
signaling), ERK (1:1000, #9102, Cell signaling), p-p38 (1:1000, #9211, Cell signaling), p38 (1:1000,
#9212, Cell signaling), phosphorylated myosin light chain-20 (p-MLC20) (1:1000, #3675, Cell signaling),
MLC20 (1:1000, sc-28319, Santa Cruz), and α-actin (1:5000, sc-32251, Santa Cruz) overnight at 4 ◦C.
Then, the membranes were incubated with a secondary horseradish peroxidase (HRP) -conjugated
antibody (anti-mouse or anti-rabbit, 1:10000 or anti-goat, 1:500, RT, 2 h) and visualized using enhanced
chemiluminescence (ECL) (T-Pro Biotechnology). Results were quantitated using ImageJ software.

2.13. Statistical Analysis

All results are expressed as the means ± standard error of the mean (SEM), analyzed using
GraphPad Prism version 5.0 software (GraphPad, San Diego, CA, USA). Calculation of statistically
significant differences was performed using one-way analysis of variance (ANOVA) with Tukey’s post
hoc test or the Mann–Whitney U test. A Student’s unpaired t-test was used for comparison between
two groups. Significance was accepted at p < 0.05.

3. Results

3.1. Effect of Salvia sclarea L. Essential Oil on PGF2α-Induced Uterine Contractions

To explore whether Salvia sclarea L. essential oil had the potential to inhibition uterine contraction,
we first used PGF2α to induce uterine contraction, as PGF2α is the major factor leading to dysmenorrhea.
Figure 1A,B show that PGF2α (10−6 M) significantly increased the contraction amplitude, and,
when exposed to Salvia sclarea essential oil (at 10, 25, 50, 75, and 100 ppm), the contraction amplitude
was inhibited in a dose-dependent manner; at 25–100 ppm, it was significantly inhibited. This verifies
that Salvia sclarea essential oil has the potential to inhibit uterine contraction.Antioxidants 2020, 9, x FOR PEER REVIEW 6 of 17 
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Figure 1. Effect of Salvia sclarea L. essential oil on prostaglandin (PG) F2α-induced uterine contraction
and total sclareol content in Salvia sclarea L. essential oil. (A) Representative recordings of rat uterine
tissue were induced with PGF2α (10−6 M) along with exposure of rat uterine smooth muscles to
essential oil (at 10, 25, 50, 75, and 100 ppm.) (B) Dose-dependent effects of essential oil on the
mean peak amplitude. Each column represents the mean ± standard error of the mean (SEM); n = 4;
* p < 0.05, ** p < 0.001 compared to 0. (C) Ultra-performance liquid chromatography (UPLC)–MS/MS
chromatogram of sclareol standard. (D) UPLC–MS/MS chromatogram of Salvia sclarea essential oil.
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3.2. Total Sclareol Content of Salvia sclarea L. Essential Oil

To evaluate the effective compound in Salvia sclarea L. essential oil, the total sclareol content
of Salvia sclarea essential oil was analyzed using UPLC-MS/MS. We found that the retention time of
sclareol was 11.51 min, and that of clary sage oil was 11.48 min. The sclareol content in clary sage oil
was 0.239%, according to the calibration curve (Figure 1C,D).

3.3. Effect of Sclareol on Oxytocin-Induced Uterine Contraction In Vivo

To confirm the inhibitive effect of sclareol in vivo, we examined the uterine contraction pressure
of rats. The rats were ip injected with oxytocin (1 IU) to induce uterine contraction, and then ip injected
with 5, 10, or 15 mg/kg sclareol. The intervention of sclareol was able to significantly reduce the uterine
contraction pressure, proving that sclareol is able to affect the uterine contractions in vivo (Figure 2).
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Figure 2. Effect of sclareol on oxytocin-induced uterine contraction in vivo and its possible mechanism.
(A) Effect of sclareol (5, 10, or 15 mg/kg) on oxytocin-induced (1 IU) uterine contractions in vivo. The rats
were ip injected with oxytocin combined with sclareol (5, 10, or 15 mg/kg), and the contractions were
recorded. (B) The effects of sclareol on the mean peak amplitude. * p < 0.05 compared to spontaneous
contraction (Spon), ## p < 0.01 compared to oxytocin, ### p < 0.001 compared to oxytocin. Each column
represents the mean ± SEM; n = 7.

3.4. Effect of Sclareol on PGF2α-, Oxytocin-, Acetylcholine-, and Carbachol-Induced Uterine Contractions

Since sclareol is contained in Salvia sclarea L. essential oil, we further examined the effect of
sclareol on uterine contractions, to investigate whether sclareol can affect uterine contractions via
different pathways. We, thus, examined the effect of sclareol on PGF2α-, oxytocin-, acetylcholine-,
and carbachol-induced uterine contractions. PGF2α is the main reason for the increase in dysmenorrhea.
Oxytocin, acetylcholine, and carbachol are intended to release intracellular stored Ca2+. As a result,
PGF2α (10−6 M) can significantly increase the contraction amplitude, and, at concentrations of
25–100 µM, sclareol was significantly inhibited, showing that sclareol can possibly be used to
treat uterine hypercontraction (Figure 3A). Sclareol significantly decreased oxytocin-, acetylcholine-,
and carbachol-induced uterine contraction in different dosages (Figure 3B,D). The vehicle (DMSO) did
not affect oxytocin-, acetylcholine-, and carbachol-induced uterine contraction.



Antioxidants 2020, 9, 991 7 of 16

Antioxidants 2020, 9, x FOR PEER REVIEW 7 of 17 

carbachol-induced uterine contractions. PGF2α is the main reason for the increase in dysmenorrhea. 
Oxytocin, acetylcholine, and carbachol are intended to release intracellular stored Ca2+. As a result, 
PGF2α (10−6 M) can significantly increase the contraction amplitude, and, at concentrations of 25–100 
µM, sclareol was significantly inhibited, showing that sclareol can possibly be used to treat uterine 
hypercontraction (Figure 3A). Sclareol significantly decreased oxytocin-, acetylcholine-, and 
carbachol-induced uterine contraction in different dosages (Figure 3B,D). The vehicle (DMSO) did 
not affect oxytocin-, acetylcholine-, and carbachol-induced uterine contraction. 

 

Figure 3. Effect of sclareol on drug-induced uterine contraction. Representative recordings of rat
uterine tissues were induced with (A) 10−6 M PGF2α, (B) 10−6 M oxytocin, (C) 10−5 M carbachol,
and (D) 10−6 M acetylcholine Ach, with exposure of rat uterine smooth muscles to sclareol (10, 25, 50, 75,
and 100 µM). Dose-dependent effects of sclareol on the mean peak amplitude. Each column represents
the mean ± SEM; n = 4–8. * p < 0.05, ** p < 0.01 and *** p < 0.001 compared to 0 (drug-induced only).

3.5. Effect of Sclareol on KCl- and Bay K 8644-Induced Uterine Contractions

To explore the effect of extracellular calcium on uterine contraction, we used KCl to create
High-K+ conditions due to membrane depolarization, causing extracellular Ca2+ entry through the
voltage-dependent calcium channel. Bay K 8644 is an L-type Ca2+-channel activator that increases



Antioxidants 2020, 9, 991 8 of 16

the entry of extracellular Ca2+. Administration of sclareol along with KCl (10–100 µM) or Bay K 8644
(75–100 µM) resulted in a dose-dependent decrease in uterine contractions (Figure 4A,B).Antioxidants 2020, 9, x FOR PEER REVIEW 9 of 17 
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and *** p < 0.001 compared to 0 (drug-induced only). Inhibitory actions of sclareol on Ca2+-dependent
contractile responses. (C) Muscle segments were initially pretreated in a Ca2+-free medium containing
calcium (0.5–5 mM) only or plus sclareol (100 µM), and calcium was then cumulatively applied to
trigger muscle contraction. (D) Inhibitive effect of sclareol on the mean peak amplitude. * p < 0.05
compared to control; n = 3. (E) Rat uterine contractions were induced with oxytocin (OT) (10−6 M) and
exposure to sclareol (10, 25, 50, 75, and 100 µM) or DMSO (0.05%, 0.126%, 0.25%, 0.375%, and 0.5%).
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3.6. Effect of Sclareol on Ca2+-Dependent Contractions

When uterine tissue is in Ca2+ free conditions, the spontaneous contractions were invalidated.
Along with an increase in Ca2+ concentrations, the spontaneous contractions were recovered. To test
the calcium-dependent contraction, we used a calcium-free solution for further examination. When in
the Ca2+-free Krebs solution combined with sclareol treatment, the contractions declined (Figure 4C,D).
As shown in Figure 4E, oxytocin (10−6 M) was added to an organ bath to increase the calcium influx,
which recovered the uterine contraction, and sclareol showed the inhibition of calcium influx-induced
contraction. This demonstrates that sclareol can effectively decrease calcium-dependent contractions.

3.7. Effect of Sclareol on PGF2α-Induced Uterine Contraction-Related Protein Expression

To examine the possible mechanism of sclareol’s inhibition of uterine contractions, we used
Western blot analysis to observe the uterine contraction-related protein expression. Uterine tissue was
collected after treatment with PGF2α or in combination with sclareol (100 µM) for 30 min. Uterine tissue
that was treated with the sclareol combination presented significantly lower protein expression of
COX-2, MLCK, p-ERK, p-p38, and p-MLC20 compared with the uterine tissue treated with PGF2α,
illustrating that sclareol inhibited uterine contraction by affecting calcium-related signaling and protein
expression (Figure 5B,F).
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Figure 5. Possible mechanism underlying the effect of sclareol on PGF2α-induced uterine contraction.
(A) Tissue collection method. After PGF2α-induced uterine contraction in the presence of 0 and
100 µM sclareol, the uterus was taken out (at 30 min). (B–F) Protein expression of cyclooxygenase-2
(COX-2), myosin light-chain kinase (MLCK), phosphorylated extracellular signal-regulated kinase
(p-ERK), ERK, p-p38, p38, phosphorylated myosin light chain 20 (p-MLC20), MLC20, and α-actin
during PGF2α-induced contraction at 30 min in rat uterus; n = 3–6; * p < 0.05, ** p < 0.001 compared to
0; # p < 0.05, ## p < 0.01 compared to PGF2α. Each column represents the mean ± SEM.

3.8. Effect of Sclareol on Acetic Acid-Induced Writhing Test

To evaluate analgesic effects, we used the acetic acid-induced writhing model. The acetic acid
solution significantly increased writhing times in the model control group and attained 62.5 times
more writhing in 30 min. On the other hand, intervention with sclareol (at 50, 100, and 150 mg/kg) was
able to significantly reduce the writhing times compared to the model control group, demonstrating
that sclareol possesses analgesic effects (Table 1).
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Table 1. Effect of sclareol on acetic acid- and oxytocin-induced writhing tests.

Model Acetic Acid- Induced Oxytocin-Induced(Pretreat Sclareol)

Group Writhing Times
/30 min Analgesia (%) Writhing Times

/30 min Analgesia (%)

Control 0.0 ± 0.0 - 0.0 ± 0.0 -

Model control (MC) 62.5 ± 18.6 *** - 17.4 ± 5.6 *** -

Sclareol (mg/kg)
50 24.6 ± 16.5 ## 60.7 4.0 ± 3.3 ### 77

100 30.4 ± 11.0 ## 51.3 3.5 ± 2.8 ### 79.9

150 36.2 ± 19.8 # 42.1 1.8 ± 1.7 ### 89.9

Analgesia (%) = (Model control writhing times—(sclareol writhing times))/model control writhing times. *** p < 0.001
compared to control group, # p < 0.05 compared to model control group, ## p < 0.01 compared to model group,
### p < 0.001 compared to model group. Each column represents the mean ± SEM; n = 4–8.

3.9. Effect of Sclareol on Oxytocin-Induced Writhing Test

To further evaluate the inhibition of uterine hypercontraction pain, we used an oxytocin-induced
writhing model. The injection of oxytocin could significantly increase writhing times in model control
groups, and the administration of sclareol (at 50, 100, and 150 mg/kg) could significantly decrease the
writhing times in 30 min. This demonstrates that sclareol has the potential to improve dysmenorrhea
(Table 1).

3.10. Effect of Sclareol on Oxidative Stress in Uterine Smooth Muscle Cell and Dysmenorrhea Mice

A significant increase in the serum MDA level was observed in the oxytocin-treated group
compared with the control group. As treatment with sclareol decreased significantly, oxytocin-induced
oxidative stress increased. We used an in vitro method to examine the ROS fluorescence density.
The results showed that the PGF2α-induced group had a significantly higher ROS density, and a high
dose of sclareol could eliminate the increase in ROS density. This shows that the high antioxidant
ability of sclareol plays an important role in the inhibition of dysmenorrhea (Figure 6).
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Figure 6. Effect of sclareol on oxidative stress in uterine smooth muscle cell and dysmenorrhea mice.
(A) Reactive oxygen species (ROS) density in in vitro study. * p < 0.05 compared with control group,
## p < 0.01 compared with sclareol 0 µM group; C, control group. (B) Serum MDA concentration in
oxytocin-induced writhing test. * p < 0.05 compared with control group; # p < 0.05, ## p < 0.01 compared
with sclareol 0 mg/kg group; n = 3–8; the graph was captured at 20×magnification.
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3.11. Effect of Sclareol on Oxytocin-Induced Uterine Contraction-Related Protein Expression

To investigate the possible mechanism underlying sclareol’s improvement of writhing times in the
oxytocin-induced writhing test, we used Western blot analysis to observe the uterine contraction-related
protein expression. We found that the intervention of sclareol resulted in a lower protein expression of
p-MLC20/MLC20, p-ERK/ERK, p-p38/p38, COX-2, MLCK, and OTR. These results, as well as those of
the earlier Western blot study from rat uterine tissue, prove that sclareol improves dysmenorrhea by
affecting calcium-related signaling and protein expression (Figure 7).
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and (F) oxytocin receptor (OTR) levels were detected by Western blot. C, Control; 0, model control
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4. Discussion

Sclareol is a labdane-type diterpenes compound, which was first extracted from the plant
Salvia sclarea L. (Lamiaceae). Sclareols are widely used in the food and cosmetic industries and
as supplements. Recently, it has been widely used in anticancer [27] and anti-inflammation
experiments [12]. Sclareol inhibited lipopolysaccharide-induced lung injury via the inhibition of
p-ERK and p-p38 protein expression to reduce the mitogen-activated protein kinase (MAPK) signaling
transduction pathway, further inhibiting COX-2 expression and having an antioxidant effect, decreasing
the number of reactive oxygen species (ROS) and inflammation [12]. Furthermore, in cancer research,
it was shown that sclareol has an outstanding effect on the inhibition of the ERK-related signaling
pathway [28]. These effects of sclareol demonstrate the capacity for Salvia sclarea essential oil to be
used for the improvement of dysmenorrhea symptoms [29]. It has been used as an abdominal massage
oil, and it was proven to be effective in decreasing the severity of dysmenorrhea [30]. The results
of the present study demonstrate that Salvia sclarea essential oil reduced uterine contractions in a
PGF2α-induced rat uterine contraction model, illustrating that Salvia sclarea essential oil can improve
dysmenorrhea via the reduction of uterine hypercontraction.

In this study, we used different agents to induce uterine contraction, and those agents acted on
different receptors, such as PGF2α acting on the FP receptor, oxytocin acting on OTR [31], acetylcholine
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and carbachol acting on the muscarinic acetylcholine receptor (M3) receptor [32], and Bay K 8644 and
KCl affecting the voltage-gated calcium channels (VDCC) [33,34]. Although uterotonic hormones
(PGF2α, oxytocin, acetylcholine, and carbachol) act on different receptors, they all induce uterine
contraction via increases in extracellular Ca2+ entry and intracellular Ca2+ release. Moreover, Bay K
8644 (a Ca2+ channel activator) and KCl solution (which creates high K+ conditions, leading to
membrane depolarization) increase extracellular Ca2+ via the VDCC [21]. In addition, when the uterine
tissue is in Ca2+-free Krebs solution, oxytocin can induce contraction via intracellular Ca2+ release
from the sarcoplasmic reticulum [23]. Obviously, sclareol showed inhibitory effects in this study,
demonstrating that the relaxation effect induced by sclareol can take place via several receptors, thus
affecting Ca2+ level.

Phosphorylated MLC20 (p-MLC20) plays a pivotal role in regulating uterine smooth muscle
contraction, and it is the only known physiological substrate of MLCK [35]. Phosphorylated ERK is one
of the proteins that can active MLCK [25,36]. p-ERK also acts as a signaling trigger in several pathways.
Previous studies showed that sclareol can significantly decrease the activity of the p38-AMPK signaling
pathway [37]. In cancer research, sclareol not only showed an anticancer effect, but also had the
ability to target the mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase
(ERK) signaling pathway [28], showing that sclareol can modulate the ERK/p38 signaling pathway.
This is the first study to claim the effect of sclareol on the calcium-related muscle contraction signaling
pathway. Our results showed that p-ERK, MLCK, and p-MLC20 protein expression was increased in
PGF2α-induced rat uterine tissue, and that intervention with sclareol was able to reduce the expression
of those proteins, indicating that the effect of sclareol on uterine contraction may take place by affecting
p-ERK, MLCK, and p-MLC20 protein expression.

PGF2α is a critical factor in dysmenorrhea and a product of COX-2. Hence, nonsteroidal
anti-inflammatory drugs (NSAIDs) have been used as a first-line therapy for treating dysmenorrhea.
NSAIDs are a cyclooxygenase inhibitor; they can inhibit COX, reducing prostaglandin production.
However, NSAIDs have around a 30% failure rate [38], and disorders of the liver, kidney, and digestive
system can occur when using them in the long term. In a previous study, it was shown that
p-p38 is a protein that can regulate Phospholipase A2 (PLA2) activity, decreasing the production of
arachidonic acid and PGH2 [39], which is the first intermediate in the biosynthesis of all PGs [6]. In our
study, we found that p-p38 protein expression was increased in PGF2α-induced rat uterine tissue,
suggesting that sclareol potently improves inflammatory conditions in dysmenorrhea by affecting
p-p38 protein expression.

The acetic acid-induced writhing test has been used as a screening tool for peripheral analgesic
or anti-inflammatory new substances [40]. When mice are ip injected with acetic acid solutions,
proinflammatory substances are released, activating peripheral nociceptors, leading to pain and
writhing responses [24]. Compared to the control group, a significant reduction in writhing times is
considered an antinociceptic response [41]. Sclareol produced significant reductions in writhing times,
suggesting that sclareol exerts a peripheral analgesic effect. Although it did not show a dose-dependent
result, this can be explained by the suggestion that a low dose of sclareol exerted central control at the
brain or spinal cord level to provide an analgesic effect [42]. A high dose of sclareol can provide an
anti-inflammatory effect; however, it takes more than 15 min to act.

To further explore the possibility of using sclareol to relieve dysmenorrhea, an oxytocin-induced
writhing test was carried out. The oxytocin-induced writhing test is a reliable model for primary
dysmenorrhea [43]. This model reflects the clinical features and pathogenesis of dysmenorrhea,
such as uterine contraction, PG synthesis, pain, and Ca2+ entry [26]. Pretreatment with estrogen
could increase the oxytocin receptor (OTR) protein expression and increase the writhing responses
induced by oxytocin [44]. In this study, oxytocin significantly increased writhing times and OTR
protein expression, as in previous studies, and the intervention with sclareol attenuated writhing times
and OTR protein expression. Equally, sclareol inhibited oxytocin-induced uterine contraction ex vivo.
These findings imply that sclareol can reduce dysmenorrhea.
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5. Conclusions

Our findings suggest that sclareol is a potential natural product that can treat primary
dysmenorrhea. In fact, this is the first study showing the relationship between sclareol and
dysmenorrhea. Furthermore, sclareol improved dysmenorrhea via downregulating the protein
expression of OTR, MLCK, COX-2, p-ERK, p-p38, and p-MLC20 and regulating the concentration
of intracellular calcium. Hence, sclareol may ameliorate primary dysmenorrhea and inflammation
(Figure 8).
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