

Article Supplementary Material

Article

Polyphenolic and Methylxanthine Bioaccessibility of Cocoa Bean Shell Functional Biscuits: Metabolomics Approach and Intestinal Permeability through Caco-2 Cell Models

Olga Rojo-Poveda^{1,2,*}, Letricia Barbosa-Pereira^{2,3}, Charaf El Khattabi⁴, Estelle N.H. Youl^{4,5}, Marta Bertolino², Cédric Delporte^{1,6}, Stéphanie Pochet⁴ and Caroline Stévigny¹

- ¹ RD3 Department-Unit of Pharmacognosy, Bioanalysis and Drug Discovery, Faculty of Pharmacy, Université libre de Bruxelles, 1050 Brussels, Belgium; Cedric.Delporte@ulb.be (C.D.); Caroline.Stevigny@ulb.be (C.S.)
- ² Department of Agriculture, Forestry and Food Sciences (DISAFA), University of Turin, 10095 Grugliasco, Italy; letricia.barbosa.pereira@usc.es (L.B.-P.); marta.bertolino@unito.it (M.B.)
- ³ Department of Analytical Chemistry, Nutrition and Food Science, Faculty of Pharmacy, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
- ⁴ Laboratory of Pharmacology, Pharmacotherapy and Pharmaceutical care, Université libre de Bruxelles, 1050 Brussels, Belgium; Charaf.El.Khattabi@ulb.ac.be (C.E.K.); yestella@yahoo.fr (E.N.H.Y.); Stephanie.Pochet@ulb.ac.be (S.P.)
- ⁵ Laboratory of drug development, Faculty of Medicine and Pharmacy, Université Joseph Ki-Zerbo, BP 958 Ouagadougou 09, Burkina Faso
- ⁶ Analytical Platform of the Faculty of Pharmacy (APFP), Faculty of Pharmacy, Université libre de Bruxelles, 1050 Brussels, Belgium
- * Correspondence: Olga.Rojo.Poveda@ulb.be

Received: date; Accepted: date; Published: date

Abstract: Cocoa bean shell (CBS), a by-product with considerable concentrations of bioactive compounds and proven biofunctional potential, has been demonstrated to be a suitable ingredient for high-fiber functional biscuits adapted to diabetic consumers. In this work, the in vitro bioaccessibility and intestinal absorption of polyphenols and methylxanthines containing CBS and the CBS alone underwent in vitro digestion followed by an intestinal permeability study. The results confirmed that compounds were less bioavailable in the presence of a food matrix, although the digestion contributed to their release from this matrix, increasing the concentrations available at the intestinal level and making them capable of promoting antioxidant and antidiabetic activities. After digestion, CBS biscuits were shown to possess α -glucosidase inhibition capacity comparable to that of acarbose. Moreover, the presence of the food matrix improved the stability of polyphenols throughout the digestion process. Intestinal absorption of flavan-3-ols seemed to be limited to a maximum threshold and was therefore independent of the sample, while procyanidin was not absorbed. Methylxanthine absorption was high and was boosted by the presence of the food matrix. The results confirmed the biofunctional potential of CBS-based biscuits.

Keywords: cocoa bean shell; biscuits; functional foods; polyphenols; methylxanthines; in vitro digestion; α -glucosidase inhibition; bioaccessibility; metabolomics; Caco-2 absorption

Table S1. Steps and parameters employed for the metabolomics analysis in the W4M platform (<u>https://workflow4metabolomics.usegalaxy.fr/</u>). Adapted from the work of Souard et al. [19]

xcms.xcmsSet Filtration and Peak Identification using xcmsSet function from xcms R package to preprocess LC/MS data for relative quantification and statistical analysis (Galaxy Version 3.6.1+galaxy1)

Scan range option	hide
Extraction method for peaks detection	centWave
Max tolerated ppm m/z deviation in consecutive scans in ppm	15
Min,Max peak width in seconds	20,60
Signal/Noise threshold	10
Min m/z difference	0.01
Peak limits method	Peak limits are found through descent on the mexican hat filtered data
Prefilter step for the first phase	3,1500
Noise filter	500

xcms.group Group peaks together across samples using overlapping m/z bins and calculation of smoothed peak distributions in chromatographic time. (Galaxy Version 3.6.1+galaxy1)

Method to use for grouping	density
Bandwidth	10
Minimum fraction of samples necessary	0.1
Width of overlapping m/z slices	0.025
Maximum number of groups to identify in a single m/z slice	50

xcms.retcor Retention Time Correction using retcor function from xcms R package (Galaxy Version 3.6.1+galaxy1)

0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	
Method to use for retention time correction	peakgroups
Smooth method	loess
Number of extra peaks to allow in retention time correction	1
correction groups	
Number of missing samples to allow in retention time	100
correction groups	
Degree of smoothing for local polynomial regression fitting	0.2
Family	gaussian
Plottype	deviation

xcms.groupGroup peaks together across samples using over pring m/z bins and calculation of
smoothed peak distributions in chromatographic time. (Galaxy Version 3.6.1+galaxy1)Method to use for groupingdensityBandwidth5Minimum fraction of samples necessary0.1Width of overlapping m/z slices0.025Maximum number of groups to identify in a single m/z slices50

xcms.fillPeaks Integrate the signal in the region of that peak gr	oup not represented and create a new			
peak (Galaxy Version 3.6.1+galaxy0)				
Filling method	chrom			
Intensity Check Calculates, among other metrics, the relat	ive intensity of some sample group			
features with respect to the remaining samples (Galaxy Version	n 1.2.8)			
Computation method	Between one class and all the remaining samples			
Class column	Subclass1_SampleSubGroup			
Selected class	blank			
Calculate the mean fold change	Yes			
Where should the class be placed for the mean fold change calculation?	Denominator			
Generic_Filter Removes elements according to numerical or qualitative values (Galaxy Version				
2020.01)				
Deleting samples and/or variables according to Numerical	Yes			
values				
Identify the parameter to filter	Variable metadata			
Name of the column to filter	fold_Other_VS_blank			
Interval of values to remove	lower			
Remove all values lower than	2.5			
Deleting samples and/or variables according to Qualitative	Yes			
values				

values	
Removing a level in factor	Sample metadata
Name of the column to filter	sampleType
Remove factor when	blank

Normalization of preprocessed data (Galaxy Version 1.0.7)			
Quantitative Variable			
WeightProportion			

Intensity Check Calculates, among other metrics, the relative intensity of some sample group
features with respect to the remaining samples (Galaxy Version 1.2.8)Computation methodBetween one class and all the remaining
samplesClass columnSubclass1_SampleSubGroupSelected classH2O (Digestion blank)Calculate the mean fold changeYesWhere should the class be placed for the mean fold changeDenominatorCalculation?Denominator

Generic_Filter Removes elements according to numerical or qualitative values (Galaxy Version 2020.01)

Deleting samples and/or variables according to Numerical Yes values

Supplementary materia	4 01 10		
Identify the parameter to filter Variable metadata			
Name of the column to filter	fold_Other_VS_H2O		
Interval of values to remove	lower		
Remove all values lower than1.0			
Deleting samples and/or variables according to Qualitative	Yes		
values			
Removing a level in factor	Sample metadata		
Name of the column to filter Subclass1_SampleSubGr			
Remove factor when	blank		
Batch_correction Corrects intensities for signal drift and batch	-effects (Galaxy Version 2.1.2)		
Type of regression model	linear		
Transformation Transforms the dataMatrix intensity values (Galaxy Version 2.2.0)			
Method Log10			
Quality Metrics Metrics and graphics to check the quality of the	he data (Galaxy Version 2.2.6)		
Coefficient of Variation	Yes		
Which type of CV calculation should be done	Only pool CV		
Threshold	0.3		
Advanced parameters	Use default		
Generic_Filter Removes elements according to numerical or 2020.01)	r qualitative values (Galaxy Version		
Deleting samples and/or variables according to Numerical	Yes		
values			
Identify the parameter to filter	Variable metadata		
Name of the column to filter	Pool_CV		
Interval of values to remove	upper		

Remove all values upper than	0.3
Deleting samples and/or variables according to Qualitative	Yes
values	
Removing a level in factor	Sample metadata
Name of the column to filter	sampleType
Remove factor when	pool

Multivariate PCA, PLS and OPLS (Galaxy Version 2.3.10)			
Y Response (for (O)PLS(-DA) only)	1) PCA: keep the default (none); 2)		
	(O)PLS(-DA): indicate the name of the		
	column of the sample table to be modeled		
	(→ "Subclass2_ExtractionType")		
Number of predictive components	1) PCA and PLS(-DA): 4		
Number of orthogonal components (for OPLS(-DA) only)	Notes: 1) PCA and PLS(-DA): 0		
Samples to be tested	по		
Advanced graphical parameters	Full parameter list		

Supplementary Material

(Corrected) p-value significance threshold

Graphic type	summary		
Ellipses	"Subclass2_ExtractionType"		
Sample labels	"Subclass2_ExtractionType"		
Component to be displayed as abscissa	1		
Component to be displayed as ordinate	2		
Amount by which plotting text should be magnified relative	nified relative 0.4		
to the default			
Advanced computational parameters	Full parameter list		
Scaling	Standard		
Permutation testing for (O)PLS(-DA): Number of	20		
permutations			
Log10 transformation	No $(\Rightarrow$ already done in the transformation step)		
Algorithm Default			
Number of cross-validation segments 7			
Univariate Univariate statistics (Galaxy Version 2.2.4)			
Factor of interest	<u>"Subclass2_ExtractionType"</u>		
Test	Analysis of variance (qualitative, more		
	than 2 levels)		
Method for multiple testing correction <i>fdr</i>			

0.05

(CBS10 and CBS20). Results are presented as mean ± standard deviation (n=6).

TPC	Organic extraction	In vitro digestion	No-digestion	
(mg GAE/g)	Organic extraction			
S10	0.21 ± 0.04	0.26 ± 0.15	0.16 ± 0.07	
T10	0.25 ± 0.09	0.50 ± 0.14	0.13 ± 0.02	
CBS10	1.32 ± 0.12	0.77 ± 0.10	0.87 ± 0.11	
S20	0.43 ± 0.05	0.47 ± 0.26	0.41 ± 0.03	
T20	0.54 ± 0.13	0.59 ± 0.09	0.49 ± 0.11	
CBS20	2.73 ± 0.35	1.50 ± 0.19	1.68 ± 0.22	
TFC		T '4 1' 4'		
(mg CE/g)	Organic extraction	In vitro digestion	No-digestion	
S10	0.15 ± 0.01	0.25 ± 0.06	0.11 ± 0.02	
T10	0.13 ± 0.01	0.18 ± 0.06	0.10 ± 0.01	
CBS10	0.29 ± 0.03	0.19 ± 0.01	0.24 ± 0.02	
S20	0.35 ± 0.04	0.44 ± 0.10	0.17 ± 0.03	
T20	0.27 ± 0.03	0.31 ± 0.04	0.18 ± 0.06	
CBS20	0.61 ± 0.06	0.38 ± 0.03	0.47 ± 0.04	
TTC				
(mg CE/g)	Organic extraction	In vitro digestion	No-digestion	
S10	0.03 ± 0.00	0.05 ± 0.03	0.02 ± 0.01	
T10	0.02 ± 0.01	0.03 ± 0.01	0.02 ± 0.01	
CBS10	0.22 ± 0.03	0.07 ± 0.00	0.07 ± 0.00	
S20	0.06 ± 0.01	0.10 ± 0.06	0.05 ± 0.01	
T20	0.04 ± 0.02	0.06 ± 0.03	0.03 ± 0.01	
CBS20	0.45 ± 0.09	0.13 ± 0.01	0.14 ± 0.01	
Antioxidant capacity				
(umol TE/g)	Organic extraction	In vitro digestion	No-digestion	
(µmor re/g)				
S10	1.31 ± 0.25	1.78 ± 0.16	0.86 ± 0.09	
T10	1.02 ± 0.56	1.30 ± 0.46	0.64 ± 0.29	
CBS10	3.93 ± 0.37	2.83 ± 0.20	3.51 ± 0.23	
S20	3.17 ± 0.13	3.40 ± 0.70	1.86 ± 0.15	
120	2.78 ± 0.43	3.24 ± 0.38	1.33 ± 0.43	
CBS20	8.23 ± 0.84	5.49 ± 0.38	6.80 ± 0.44	
α-glu inhibition capacity	Organic ovtraction	In vitro digostion	No digostion	
(µmol AcE/g)	Organic extraction		No-digestion	
S10	1.05 ± 0.24	1.66 ± 0.39	0.10 ± 0.03	
T10	1.15 ± 0.30	1.56 ± 0.86	0.15 ± 0.08	
CBS10	1.39 ± 0.30	0.63 ± 0.14	0.95 ± 0.21	
S20	2.88 ± 0.44	5.04 ± 0.60	0.20 ± 0.05	
T20	2.18 ± 0.38	5.65 ± 0.80	0.22 ± 0.09	
CBS20	2.87 ± 0.68	1.22 ± 0.27	1.84 ± 0.41	

Figure S1. Supplementary information to the score plots for the multivariate modeling using PCA (**A**) or PLS-DA (**B**). The observation diagnostic plot shows the distances within and orthogonal to the selected score plane. For PCA, the variance explained by the first four principal components is shown and, on the loading plots, the names of the 6 variables with most extreme values in each direction, is indicated. For PLS modeling, an additional diagnostic plot shows the Q2Y (and R2Y) values from the model (horizontal lines) compared to the values from the models obtained after random permutations of the y response (dots) [19].

Figure S2. Cell viability in Caco-2 cells of the culture medium used as positive control (MEM), the DMSO percentage used for sample solubilization (DMSO 1%), high-DMSO concentration used as negative control (DMSO 40%), the digestion cocktail (Digestion blank), the digested CBS ingredient alone at different concentrations (CBS10 and CBS20), and the biscuits developed with sugar or tagatose and different percentages of CBS (S10, T10, S20, and T20). Results are presented as mean \pm standard error of the mean (SEM) (n \geq 5).

Table S3. Concentrations at the initial time (T₀, apical side) and after 60 and 120 minutes (T₁ and T₂, basolateral side) of the five target compounds for the digested samples of the CBS ingredient alone and biscuits with different CBS-added concentrations.

	Concentration T ₀ (μ g/g)				
	Catechin	Epicatechin	PCB1	Caffeine	Theobromine
CBS10	0.39 ± 0.03	0.89 ± 0.04	0.46 ± 0.10	48.10 ± 0.95	129.69 ± 3.48
CBS20	$0.54~\pm~0.03$	$1.72~\pm~0.05$	$0.68~\pm~0.14$	82.84 ± 2.73	198.53 ± 2.79
S10	$0.48~\pm~0.09$	$0.50~\pm~0.05$	0.34 ± 0.06	35.67 ± 0.88	121.81 ± 2.58
S20	$1.26~\pm~0.09$	2.23 ± 0.09	$0.89~\pm~0.07$	65.76 ± 0.40	180.92 ± 3.80
T10	$0.56~\pm~0.05$	$0.63~\pm~0.02$	0.38 ± 0.15	40.83 ± 1.14	147.18 ± 1.34
T20	$0.57~\pm~0.07$	$1.72~\pm~0.06$	0.38 ± 0.09	83.14 ± 1.16	203.16 ± 1.21
			Concentration T ₁ (u	g/g)	

-	Concentration 11 (µ8/8)							
-	Catechin	Epicatechin	PCB1	Caffeine	Theobromine			
CBS10	0.08 ± 0.00	0.05 ± 0.00	n.d.	15.59 ± 0.37	31.64 ± 2.61			
CBS20	$0.08~\pm~0.01$	0.06 ± 0.00	n.d.	29.36 ± 1.13	58.24 ± 2.40			
S10	$0.09~\pm~0.01$	$0.06 ~\pm~ 0.01$	n.d.	17.45 ± 0.57	38.84 ± 2.42			
S20	$0.08~\pm~0.00$	0.05 ± 0.00	n.d.	30.10 ± 0.90	61.41 ± 4.83			
T10	$0.08~\pm~0.00$	0.05 ± 0.00	n.d.	19.61 ± 1.27	47.41 ± 5.36			
T20	$0.08~\pm~0.01$	0.05 ± 0.01	n.d.	38.00 ± 0.50	74.85 ± 5.03			

	Concentration $T_2 (\mu g/g)$						
	Catechin	Epicatechin	PCB1	Caffeine	Theobromine		
CBS10	0.14 ± 0.00	0.08 ± 0.00	n.d.	26.73 ± 0.23	54.24 ± 1.03		
CBS20	$0.14 ~\pm~ 0.00$	0.10 ± 0.00	n.d.	50.33 ± 0.61	99.84 ± 2.23		
S10	$0.14 ~\pm~ 0.01$	$0.10~\pm~0.01$	n.d.	29.91 ± 0.55	66.58 ± 2.53		
S20	$0.13 ~\pm~ 0.00$	0.09 ± 0.00	n.d.	51.60 ± 0.53	105.27 ± 0.71		
T10	0.13 ± 0.00	0.08 ± 0.00	n.d.	33.61 ± 1.43	81.27 ± 4.36		
T20	$0.14 ~\pm~ 0.01$	0.09 ± 0.00	n.d.	65.14 ± 2.10	128.31 ± 4.50		

CBS–added concentrations.									
		Permeability (%)							
		Catechin	Epicatechin	PCB1	Caffeine	Theobromine			
CBS10	T1	19.82 ± 1.86	5.54 ± 0.29	n.d.	32.43 ± 1.27	24.37 ± 1.38			
	T2	35.45 ± 4.23	10.34 ± 0.45	n.d.	49.12 ± 1.06	48.73 ± 0.71			
CBS20	T1	15.35 ± 0.60	3.24 ± 0.09	n.d.	35.48 ± 2.12	29.33 ± 0.87			
	T2	26.55 ± 1.25	5.44 ± 0.15	n.d.	52.35 ± 2.48	57.17 ± 0.56			
S10	T1	18.08 ± 4.12	11.35 ± 1.80	n.d.	48.91 ± 0.90	31.87 ± 1.31			
	T2	29.49 ± 3.30	18.52 ± 0.81	n.d.	80.89 ± 0.49	68.45 ± 0.68			
S20	T1	6.33 ± 0.54	2.43 ± 0.28	n.d.	45.77 ± 1.34	33.92 ± 1.97			
	T2	10.53 ± 0.70	3.81 ± 0.18	n.d.	72.66 ± 0.41	70.98 ± 1.41			
T10	T1	13.70 ± 1.20	7.81 ± 0.28	n.d.	48.08 ± 3.91	32.21 ± 3.61			
	T2	22.96 ± 2.44	13.18 ± 0.38	n.d.	77.54 ± 5.20	68.40 ± 2.73			
T20	T1	14.52 ± 1.09	3.13 ± 0.44	n.d.	45.72 ± 1.25	36.83 ± 2.26			
	T2	24.29 ± 3.60	5.16 ± 0.42	n.d.	72.11 ± 3.11	76.55 ± 2.09			

Table S4. Percentage of permeated compound on the basolateral side after 60 and 120 minutes (T1 and T2, basolateral side) in relation to the concentration at T0 on the apical side of the five target compounds for the digested samples of the CBS ingredient alone and biscuits with different CBS–added concentrations.

© 2020 by the authors. Submitted for possible open access publication under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).