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Abstract: In this study, we examined the effect of six months of positive airway pressure (PAP) therapy
on Obstructive Sleep Apnea (OSA) red blood cell (RBC) proteome by two dimensional difference gel
electrophoresis (2D-DIGE) - based proteomics followed by Western blotting (WB) validation. The discovered
dysregulated proteins/proteoforms are associated with cell death, H,O, catabolic/metabolic process,
stress response, and protein oligomerization. Validation by nonreducing WB was performed for
peroxiredoxin-2 (PRDX2) and glyceraldehyde-3-phosphate dehydrogenase (GAPDH) by using antibodies
against the sulfinylated/sulfonylated cysteine of these proteins to better evaluate their redox—oligomeric
states under OSA and/or in response to PAP therapy. The results indicated that the redox-oligomeric state
of GAPDH and PRDX2 involving overoxidation by sulfinic/sulfonic acids were differentially modulated in
OSA RBC, which might be compromising RBC homeostasis. PAP therapy by restoring this modulation
induced a higher oligomerization of overoxidized GAPDH and PRDX2 in some patients that could
be associated with eryptosis and the chaperone “gain” of function, respectively. This varied response
following PAP may result from the complex interplay between OSA and OSA metabolic comorbidity.
Hence, information on the redox status of PRDX2 and GAPDH in RBC will help to better recognize OSA
subtypes and predict the therapeutic response in these patients. GAPDH monomer combined with body
mass index (BMI) and PRDX2 S-S dimer combined with homeostatic model assessment for insulin resistance
(HOMA-IR) showed to be very promising biomarkers to predict OSA and OSA severity, respectively.
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1. Introduction

Obstructive Sleep Apnea (OSA) has emerged as a major public health issue with a high proportion
of socio-economic burden. OSA is characterized by repetitive upper airway apnea/hypopnea during sleep
leading to intermittent hypoxemia, sleep fragmentation, and consequently homeostasis perturbation [1-3].
Non-treated OSA can result in cognitive and behavioral deficits, cancer, cardiovascular and metabolic
disorders, and early mortality [1-3]. More than 200 million people worldwide may be affected by OSA,
but the majority (60-90%) remains undiagnosed and thus untreated [4]. The gold-standard diagnosis
of OSA, the overnight lab-based polysomnography (PSG) is expensive, cumbersome, and not widely
available [1-3]. Diagnosis with home-monitoring equipment is an alternative not without costs, nor is it
easily accessible, and confirmation by lab-PSG is often necessary [5]. The effective treatment for OSA
is the nasal (continuous) positive airway pressure (PAP) [6], although negative results have been also
reported, and not all patients benefit from it [7].

For all these reasons, a cost-efficient blood biomarker-based tool for OSA screening in a large
population and/or to identify individuals at risk for developing complications from OSA constitute an
extreme societal need [2,8]. Biomarkers able to predict or monitor the effectiveness of PAP treatments
will also advance OSA clinical care [2,8,9].

Our group has investigated for the first time to our knowledge the red blood cell (RBC) proteome
from OSA patients to better understand the underlying mechanisms while uncovering potential
biomarkers for a more cost-effective OSA diagnosis or as predictors of treatment [2,10,11]. Why RBCs?
RBCs are the most abundant cells in the body. Dysfunction in RBC homeostasis has been described as a
potential source of systemic inflammation that leads to metabolic and cardiovascular diseases such as
those associated with OSA [12]. By two dimensional difference gel electrophoresis (2D-DIGE) proteomics,
we demonstrated that OSA induces differential changes in RBC cytoplasmic proteome [10,11], in which
redox-regulators such as peroxiredoxin-2 (PRDX2) are the most dysregulated. Since RBC is devoid of
any translational machinery, these changes might result from post-translational modifications (PTM)
regulation. Western blot (WB) validation using non-reducing SDS-PAGE indicated that different
redox-oligoforms of PRDX2 correlated with OSA severity and OSA metabolic status [10,11]. Six months
of PAP treatment decreased monomeric/dimeric sulfinic—sulfonic (overoxidized) forms of PRDX2 in
OSA RBC while it increased sulfinic—sulfonic decameric forms of this protein, which are described as
having a chaperone protective function [10].

Herein, we intended to better investigate the effect of six months of PAP treatment on the OSA
RBC proteome by using the 2D-DIGE proteomic approach followed by WB validation for the most
relevant differential proteins. The results indicated that PAP induces significant concerted modulation
in RBC redox regulators such as in glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and PRDX2.
In non-treated patients, the RBC expression level of these proteins was shown to be associated with
OSA risk or OSA disease severity, respectively.
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2. Materials and Methods

2.1. Patients and Samples

One hundred four consecutive male subjects with clinically suspected OSA syndrome were
recruited under informed consent for blood biobanking collection and clinical and biochemical
evaluation as we previously described [10]. Exclusion criteria were female gender (to avoid hormonal
influence), shift workers, other sleep disorders, neuromuscular disease, heart failure, diabetes, neoplasia,
acute disease, and previous PAP treatment. PAP therapy was prescribed for patients diagnosed with
OSA as we previously described [13,14]. For proteomics studies, blood samples were fractionated
into plasma, buffy-coat, and RBC aliquots before —80 °C storage until use. Biochemical analysis were
performed according to the hospital standard procedures and include 24 h urinary catecholamines,
glycemic and lipidic profiles, cardiovascular marker (homocysteine), and complete hemogram at time
zero (t0, hospitalization day for lab-PSG diagnosis) and time six (t6; after six months of PAP treatment).

Distinct RBC sample sets were selected from the biobank for the discovery phase and validation phase.
For the discovery phase, RBC samples from subjects with primary snoring (RDI < 5/h; n = 10) and severe
OSA before and after six months of PAP treatment (RDI > 30/h; n = 10/group) were selected (Cohort I,
Table 1). For the validation phase, RBC samples from snorer subjects (RDI < 5/h; n = 23) and OSA patients
with mild (RDI > 5/h, but < 15/h; n = 16) or moderate to severe OSA (RDI > 15/h; n = 20) that underwent
six months of PAP treatment were selected to validate GAPDH as described below (Cohort II, Table 2,
total n = 56). From this Cohort II, the same controls (n = 18) and patient samples (n = 19) in a total of
37 samples were selected to validate PRDX2 (Cohort III, Table S1, Supplementary Materials).

The protocol of this project was approved by the Ethics Committees of the Centro Hospitalar
Lisboa Norte (CHLN), Hospital Santa Maria, Lisboa, Portugal (6 January 2012) and Instituto Nacional
de Satde Dr. Ricardo Jorge, Lisboa, Portugal (9 April 2013). The project was registered at the Comissao
Nacional de Protecdo de Dados (CNPD) and all patients gave written informed consent.
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Table 1. Cohort I—Discovery phase.

Demographic, Polysomnographic, and Analytical Characterization
Screened Subjects

Demographic and PSG Parameters

Mean (Standard Deviation) p Value (<0.05)
Snorers (n = 10) OSA (n=10) PAP (n =10) Snorers vs. OSA OSA vs. PAP
Age (years) 45.6 (10.9) 46.4 (6.5) - NS n/a
Habits
Current Smoking (1) 2 1 - - -
EPW Score 9.7 (6.5) 7.7 (2.9) 4.7 (3.8) NS NS
Observational features
Morning arterial pressure (mmHg) * 132.5(17.0)/80.9 (11.0) 138.4 (12.6)/90.7 (10.4) - n/a n/a
BMI (kg/m?) 26.7 (1.6) 30.1(2.9) - 0.006 n/a
Abdominal perimeter (cm) 95.5 (4.4) 106.1 (10.4) - 0.012 n/a
Comorbidities
Hypertension (n) 3 7 - - -
Respiratory diseases (1) 0 0 - - -
Dyslipidemia (1) 3 6 - - -
Diabetes (1) 0 0 - - -
Polysomnographic parameters
Mild/Moderate/Severe (1) - -/-/10 - n/a n/a
RDI (events/h) 3.1(1.2) 53.7 (17.3) - 0.011 n/a
ODI (events/h) 3.34.7) 46.2 (22.9) - <0.001 n/a
Sleep efficiency (%) 78.4 (15.2) 73.6 (12.7) - nfa n/a
Arousal index (%) 14.7 (6.7) 38.2 (15.3) - <0.001 n/a
Minimum Arterial Saturation (%) 89.3 (0.03) 78.2 (0.08) - <0.001 n/a
PAP record
Number of days without use - - 53.2 (64.9) - -
Total of recording days - - 291.6 (158.7) - -
Residual AHI - - 1.9 (1.5) - -
Analytical parameters
Glycemic profile
Glucose (70-110 mg/dL) 96.7 (9.4) 96.2 (11.5) 92.9 (14.9) NS NS
HbAI1C (4-6%) 5.7 (0.3) 5.8 (0.4) 5.6 (0.3) NS 0.027
Insulin (3-25 mU/L) 13.1 (6.7) 23.6 (13.5) 41.1 (43.3) 0.047 NS

HOMA-IR (<2.15) 3.1 (1.6) 5.7 (3.2) 9.9 (11.2) 0.041 NS
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Demographic, Polysomnographic, and Analytical Characterization

Lipid profile

Demographic and PSG Parameters

Screened Subjects

Mean (Standard Deviation)

p Value (< 0.05)

Snorers (n = 10) OSA (n=10) PAP (n =10) Snorers vs. OSA OSA vs. PAP
Cholesterol (<190 mg/dL) 202.8 (37.1) 189.7 (29.9) 177.2 (35.6 NS NS
Triglycerides (<150 mg/dL) 127.3 (66.7) 155.6 (92.2) 141.4 (75.2) NS NS
Cardiovascular marker
Homocysteine (3.7-13.9 umol/L) 14.8 (3.0) 16.0 (3.4) 16.6 (3.3) NS NS
Urinary catecholamines
Adrenaline (1.7-22.4 ug/24h) 20.9 (13.7) 61.2 (142.8) 15.3 (7.3) NS NS
Nor-adrenaline (12.1-85.5 pg/24 h) 54.6 (16.5) 252.9 (565.5) 62.5 (25.5) NS NS
Dopamine (0-498 pg/24 h) 297.3 (94.9) 1066.9 (2403.7) 372.4 (146.9) NS NS
Complete Hemogram
RBC (4.5-5.9 x 102/L) 5.1(0.3) 5.3 (0.3) 5.2 (0.3) NS NS
Hemoglobin (13-17.5 g/dL) 15.3 (0.8) 16.0 (0.9) 15.4 (1.1) NS 0.007
Hematocrit (40-50%) 45.1 (2.9) 47.0 (3.01) 459 (2.8) NS NS
MCV (80-97 fL) 89.3 (4.7) 89.1 (4.7) 88.8 (4.9) NS NS
RDW (11.5-14.5%) 13.4 (0.6) 13.9 (0.8) 13.7 (0.6) NS NS
Platelets (150-450 x 103uL) 230.7 (33.6) 217.0 (48.9) 194.1 (46.5) NS NS

NS: non-statistical meaning; n/a: not-applicable; * PA max/PA min.

Table 2. Cohort II—Validation phase.

Demographic. Polysomnographic and Analytical Characterization

Demographic and PSG Parameters

Screened Subjects

Mean (Standard Deviation)

p Value (<0.05)

Snorers (n = 23) OSA (n = 36) PAP (n = 36) Snorers vs. OSA OSA vs. PAP
Age (years) 44.8 (9.6) 47.1(7.5) - NS n/a
Habits
Current Smoking (1) 9 6 - NS n/a
EPW Score 9.5 (4.8) 10.8 (4.9) 6.2 (4.4) NS <0.001
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Demographic. Polysomnographic and Analytical Characterization

Demographic and PSG Parameters

Screened Subjects

Mean (Standard Deviation)

p Value (<0.05)

Snorers (n = 23) OSA (n =36) PAP (n = 36) Snorers vs. OSA OSA vs. PAP
Observational features
Morning arterial pressure (mmHg) * 134.9 (17.2)/83.4 (11.9) 131.0 (16.9)/83.7 (11.9) - nja n/a
BMI (kg/m?) 27.2 (3.2) 30.2 (2.9) - <0.001 n/a
Abdominal perimeter (cm) 97.5(7.7) 106.0 (8.1) - <0.001 n/a
Comorbidities
Hypertension (1) 6 23 - - -
Respiratory diseases (1) 0 0 - - -
Dyslipidemia (1) 9 18 - - -
Diabetes (1) 0 0 - - -
Polysomnographic parameters
Mild/Moderate/Severe (1) - 16/3/17 - nj/a nja
RDI (events/h) 2.7 (1.4) 31.7 (25.2) - <0.001 n/a
ODI (events/h) 2.2 (3.3) 26.3 (25.4) - <0.001 n/a
Sleep efficiency (%) 78.1 (12.2) 74.6 (16.8) - NS n/a
Arousal index (%) 14.2 (6.0) 28.3 (17.8) - <0.001 n/a
Minimum Arterial Saturation (%) 89.3 (2.9) 82.6 (6.3) - <0.001 n/a
PAP record
Number of days without use - - 42.8 (47.5) - -
Total of recording days - - 275.6 (118.2) - -
Residual AHI - - 1.7 (1.2) - -
Analytical parameters
Glycemic profile
Glucose (70-110 mg/dL) 929 (7.9) 95.7 (12.2) 93.9 (13.7) NS NS
HbAI1C (4-6%) 5.5 (0.4) 5.6 (0.4) 5.6 (0.6) NS NS
Insulin (3-25 mU/L) 12.4 (6.1) 16.4 (10.1) 24.6 (31.0) NS NS
HOMA-IR (<2.15) 29 (1.5) 3.9 (2.6) 6.2 (8.4) 0.040 NS
Lipid profile
Cholesterol (<190 mg/dL) 190.3 (37.0) 186.7 (39.5) 182.3 (31.6) NS NS
Triglycerides (<150 mg/dL) 118.9 (62.9) 134.1 (66.1) 139.6 (83.4) NS NS
Cardiovascular marker
Homocysteine (3.7-13.9 umol/L) 15.4 (3.8) 16.2 (6.7) 17.1 (5.6) NS NS
Urinary catecholamines
Adrenaline (1.7-22.4 pg/24 h) 20.4 (17.7) 28.6 (76.1) 17.2 (9.4) NS NS
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Table 2. Cont.

Demographic. Polysomnographic and Analytical Characterization
Screened Subjects

Demographic and PSG Parameters

Mean (Standard Deviation) p Value (<0.05)
Snorers (n = 23) OSA (n =36) PAP (n = 36) Snorers vs. OSA OSA vs. PAP
Nor-adrenaline (12.1-85.5 nug/24 h) 64.0 (29.4) 117.9 (300.5) 55.0 (20.9) NS NS
Dopamine (0-498 pg/24 h) 375.5 (201.0) 547.1 (1273.6) 313.8 (133.0) NS NS
Complete Hemogram
RBC (4.5-5.9 x 1012/L) 5.1(0.4) 5.1(0.3) 5.0 (0.3) NS <0.001
Hemoglobin (13-17.5 g/dL) 15.3 (0.8) 15.6 (1.0) 15.1 (0.9) NS <0.001
Hematocrit (40-50%) 45.0 (2.1) 45.6 (2.9) 443 (2.7) NS <0.001
MCV (80-97 {L) 89.1 (5.6) 88.6 (3.8) 88.5 (3.4) NS NS
RDW (11.5-14.5%) 13.5 (0.5) 13.4 (0.7) 13.7 (0.6) NS NS
Platelets (150450 x 103uL) 232.2 (47.5) 226.2 (48.6) 204.6 (46.4) NS <0.001

NS: non-statistical meaning; n/a: not-applicable; * PA max/PA min.
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2.2. Discovery Phase: 2D-DIGE Proteomics

RBC samples (Cohort I) were lysated by incubation with 5 mM phosphate buffer pH 7.4 (1:20)
containing 1:100 cocktail of protease inhibitors (P8340, Sigma Aldrich, Darmstadt, Germany) for 30 min
at 4 °C followed sonication 10 s/40 amplitude/pulse mode (Ultrasonic Processor, VibraCell, Sonics &
Materials Inc, Newtown, CT, USA). After centrifugation at 25,000x g for 30 min at 4 °C (Centrifuge
5417, Eppendorf, Hamburg, Germany), the supernatants were recovered for further hemoglobin (Hb)
depletion using Hemovoid depletion columns (Biotech Support Group, Monmouth JCT, NJ, USA),
according to the manufacture’s protocol. The obtained Hb-depleted fractions were concentrated
and buffer-exchanged with 25 mM NH4;HCO; pH 8.4 by centrifugal filtration using 3-kD Molecular
Weight Cut-Offs (MWCO) (Amicon Ultra 4, Millipore, Darmstadt, Germany) spin concentrators.
Protein concentration was determined by a colorimetric assay (Pierce™ 660 nm Protein Assay Kit,
Thermo Fisher Scientific, Waltham, MA, USA) according to the manufacturer’s protocol. Samples were
stored at —80 °C until use.

Samples were analyzed individually by 2D-DIGE mini-gel (7 cm IPG strips) using the CyDye
DIGE fluor minimal dyes Cy3 and Cy5 from GE Healthcare, Chicago, USA. Briefly, samples
(10 pg/sample) were dried in speed vacuum and resuspended in 1.25 pL of lysis buffer (7 M urea
(Amersham Biosciences, Little Chalfont, UK), 2 M thiourea (Merck, Darmstadt, Germany), 2% (w/v)
3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonate (CHAPS, Sigma Aldrich, Darmstadt,
Germany), Tris 30 mM (Sigma Aldrich, Darmstadt, Germany) and incubated with 400 pmol Cy5
solution for 30 min at 4 °C in the dark. The labeling reaction was stopped by adding 1 pL of 10 mM
lysine, and samples were incubated for another 10 min at 4 °C in the dark. For internal standard (IS),
a sample from each subject was pooled together and labeled with Cy3 as above described. Each Cy5
labeled sample was combined with an equal amount of Cy3 labeled IS (10 ug:10 ug) and mixed with
lysis buffer with a trace of bromophenol blue (Merck, Darmstadt, Germany) to 125 uL final volume
and let to solubilize during 1 h 30 at 22 °C (with occasional vortex). To ensure an optimal protein
focusing, ampholyte pH 3-10 Non Linear (NL) (Serva, Heidelberg, Germany) was added to 1% final
concentration before loading the samples on to 7 cm Immobilized pH gradient (IPG) strips pH gradient
of 3-10 NL (non-linear) (GE Healthcare, Chicago, USA) previously rehydrated for 20 h at RT with
112 uL of lysis buffer. IEF was performed in an Ettan IPGphor 3 (GE Healthcare, Chicago, IL, USA)
in ceramic manifold with cup loading of the sample and focused as follows: step and hold 300 V for
30 min, gradient 1000 V for 30 min, gradient 5000 V for 1 h 30 min, step and hold 5000 V 1 h followed
by step and hold at 10 V for 10 min. The maximum current per strip was set to 50 pA.

Prior, 2nd dimension stripes were equilibrated once with 3 mL of SDS equilibration buffer (6 M
urea, 75 mM Tris-HCL pH 8.8, 29.3% glycerol (86%) (Sigma Aldrich, Darmstadt, Germany), 2% SDS
(Sigma Aldrich, Darmstadt, Germany) and 0.002% of bromophenol blue] including 1% of DTT (Sigma
Aldrich, Darmstadt, Germany) (15 min, RT) to accomplish the reduction of disulfide bonds, which was
followed by the derivatization of cysteine residues blocking buffer containing 4% of iodacetamide
(Sigma Aldrich, Darmstadt, Germany) (15 min, RT).

Second-dimension separation was performed using XCell SureLock Mini-Cell (Invitrogen by
Thermo Fisher Scientific, Waltham, MA, USA) using NuPAGE 4-12% Bis-tris ZOOM Gel, 1.0mm IPG
well (Invitrogen by Thermo Fisher Scientific, Waltham, USA) running 125V, 2 h, and RT.

Gels were scanned at 100 um resolution using an Amersham Biosciences Typhoon 8400, variable imager
to obtain IS (Cy3) image and sample (Cy5) image as we previously described [11,15]. Spot detection,
gel matching, and statistical analysis were performed by the Progenesis SameSpots, version 4.5 (Nonlinear
Dynamics, UK). Abundance values of matched spots across all mini gel images, expressed as normalized
volume, were compared between conditions, so that each spot could be assigned a score of relative significant
difference in terms of p-value (<0.05). The relative content alteration of each spot across the study conditions
was expressed by fold change values, which were calculated by the ratio of the mean normalized volumes
of a certain spot in each condition. Spots decreasing their abundance were represented by negative fold
values, which were calculated as the inverse of the previous ratio multiplied by —1.
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2.3. Protein Identification by Mass Spectrometry

A preparative 2D-mini gel (7 cm IPG strip, GE Healthcare, Chicago, IL, USA) stained Coomassie
(Brilliant Blue G, Sigma Aldrich, Darmstadt, Germany), containing an equal amount of each non-labeled
individual sample mixed with 10 pug of IS labeled sample, in a total of 75 ug of protein, was performed
for further spot cut-off for mass spectrometry (MS) protein identification. The introduction of some
labeled sample into preparative gel facilitates gel match with analytical gels for spot location and
picking for MS analysis. The protein spot of interest was cut off from the gel and trypsin digested,
as we previously described [16,17]. Tryptic peptides, suspended in 50% (v/v) ACN and 0.1% (v/v)
trifluoroacetic acid (TFA, for HPLC, >99.0%, Sigma Aldrich, Darmstadt, Germany) and submitted to
sonication in an ultrasonic bath during 15 min, were directly applied on a 100-well matrix-assisted laser
desorption/ionization (MALDI) plate with 5 mg/mL «-cyano-4-nydroxycinnamic acid (a«-CHCA, 1:1)
prepared in 0.1% TFA/60% ACN (Merck, Darmstadt, Germany) (v/v) and allowed to co-crystallize at RT.
Peptides were analysed on an Applied Biosystems SCIEX 4800 Plus MALDI Proteomics Analyser with
time-of-flight/time-of-flight (TOF/TOF) ion optics exactly as described [18]. The identified proteins are
shown in Table S2 (Supplementary Materials).

2.4. Protein Annotation and Classification

Protein annotation properties were acquired using the Database for Annotation, Visualization
and Integrated Discovery (DAVID) v6.8 (Frederick, MD, USA) [19]. This open-source tool retrieves a
set of biological and functional information such as GO terms, subcellular location, molecular function,
and association with biological process and/or disease with p-values of over-representation <0.05.

2.5. Validation Phase: Western Blotting Analysis

The validation of proteomics data was performed by WB for two proteins GAPDH and PRDX2
on RBC samples from Cohort II (Table 2) and Cohort III (Table S1), respectively. RBC samples were
1:100 diluted with 100 mM of N-ethylmaleimide (NEM, crystalline, >98% HPLC, Sigma Aldrich,
Darmstadt, Germany) in PBS buffer for 10 min at 4 °C to prevent exogenous-induced oxidation.
Samples (500 pL) were lysed in 1:1 double distilled (dd) H,O with protease inhibitors cocktail 1:100
(P8340, Sigma Aldrich, Darmstadt, Germany), centrifuged at 9279x g for 10 min at 4 °C (Centrifuge
5417, Eppendorf, Hamburg, Germany), and the cytoplasmic supernatants were recovered for protein
quantification as above described.

To keep protein disulfide bonds formation in an oligomerization state, samples were separated
(70 ug/lane) by non-reducing 4-12% SDS-PAGE mini gels followed by WB analysis using 1:2000
rabbit polyclonal anti-GAPDH antibody (ab9485, abcam, Cambridge, UK), 1:500 mouse monoclonal
anti-GAPDH-50; antibody (4A1) (Abfrontier, South Korea), 1:20,000 rabbit anti-PRDX2 antibody
(ab59539, abcam, Cambridge, UK), or 1:3000 rabbit anti-PRDX-S0,;3 antibody (ab16830, abcam,
Cambridge, UK) to investigate the different redox oligomeric states of GAPDH and PRDX2, respectively,
as described [20,21].

2.6. Statistical Analysis

Descriptive analyses for clinical and analytical data were expressed as mean + standard deviation
(SD), and frequency (% values) was used to characterize the groups. One-way ANOVA (analysis of
variance) was used to compare statistically more than two groups; Student-t test was used to compare
Snorer and OSA groups. A paired Student-t test was used to evaluate the effect of (before/after) PAP
treatment in an OSA group set. A correlation of variables was carried out using the Pearson correlation
test. The level of statistical significance was set at 5% (p-value < 0.05). The above-mentioned statistical
analysis was performed using IBM SPSS Statistics 25 (Armonk, NY, USA).

Subsequent statistical analysis was performed using R (version 3.6.1) (Vienna, Austria) and
RStudio (version 1.2.5019) (Boston, MA, USA).
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Logistic regression models and subsequent ROC curves were built to evaluate the discriminative
power of the different redox—oligomeric forms of GAPDH or PRDX2 and the ability to predict OSA
severity (mild—-moderate vs. severe). Cut-off points were chosen to maximize sensitivity and specificity.
Logistic regression was performed using the function glm from base R. ROC curve analysis was done
using the R package pROC.

Spaghetti plots (Spaghetti.Plot function from R package CorrMixed) were used to represent the
evolution of the variables under analysis from t0 to t6. The Generalized Estimating Equation (GEE)
was used to estimate logistic regression models with the time/group interaction term to assess the
differences of the impact of PAP in the subgroups under comparison [22]. Logistic GEE models were
fitted using the function geeglm from R package geepack. Radar Plots (using R package fmsb) were
built to illustrate graphically the differences between the average profiles of groups. Radar charts
allow representing simultaneously a small group (preferably 3 to 4) of profiles composed by several
quantitative variables. Values for each variable are scaled to the interval [0,1], with zero corresponding
to the minimum observed value and one corresponding to the maximum observed value. Intermediate
values are scaled proportionally. The Gower similarity measure [23], which is computed as one minus
the Gower dissimilarity measure, was chosen to quantify the similarity of the average profile of
the groups, since it is the similarity measure that best resembles the rationale under the radar plot.
To compute the Gower dissimilarity measure, each variable is first standardized by dividing each
entry by the range of the corresponding variable after subtracting the minimum value; the rescaled
variables have a range of [0,1], exactly. In the presence of quantitative variables only, the Gower
dissimilarity between two profiles is equal to the average of the absolute value of the differences for
each component of the profile vectors. Values of the Gower similarity measure range from zero to
one, with one indicating total similarity and zero indicating the least possible similarity. The Gower
dissimilarity measure was computed using the daisy function from the R package cluster.

3. Results

3.1. Patients: Clinical, Biochemical, and Metabolic Characteristics

The results are summarized in Tables 1 and 2 (and Table S1). In both Cohort I (Table 1, Discovery
phase) and Cohort II (Table 2, Validation phase), significant differences between OSA and Snorers
patients were observed regarding the PSG parameters as expected but also the body mass index (BMI),
abdominal perimeter, and insulin resistance, determined by homeostatic model assessment of insulin
resistance (HOMA-IR), which were higher in those with OSA (p < 0.05 Student -test). No significant
differences were observed for the other parameters, except that in Cohort II, there were significantly
higher insulin levels in OSA patients compared to Snorers (Student t-test, p < 0.05) was observed
(Table 2).

After six months of PAP treatment (compliance with mean usage > 4 h night), patients reported a
significant decrease in excessive daytime somnolence, as evaluated by the Epworth Sleepiness Scale
(EPW) score; the hemogram data, although showing clinical normal reference values, revealed a
small, but significant, decrease in the RBCs as well as platelets count, hemoglobin concentration,
and hematocrit in patients after PAP treatment (paired Student t-test, p < 0.05) (Table 2). There were no
significant changes in glucose and lipid profile and cardiovascular marker after treatment (Table 2).

3.2. PAP Treatment Induces Changes in the RBC Proteome

A total of 85 protein spots were visualized on 2D-DIGE mini-gel maps, of which 14 were
differentially abundant (fold change > 1.2; Anova p < 0.05) among Snorers and OSA before and after
PAP treatment, as shown in Figure 1. From these differentially abundant spots, 12 were identified by
MS corresponding to unique proteins, suggesting the existence of post-translational modification (PTM)
regulations in these proteins (Figure 2). The most evident were three GAPDH proteoforms that were
identified as significantly reduced in OSA RBC compared to the ones observed in Snorer RBC. However,
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after PAP, the abundance of these GAPDH proteoforms increased in these patients, reverting to levels
comparable to those of Snorers (Figure 1). Among other proteins, proteoforms for Peroxiroxin-2
(PRDX2) were also identified (Figure 2, Table S2). Changes in the acidic PRDX2 proteoform abundance
was also observed among the groups, although it was not statistically significant.

pH 3-10

Snorers OSA PAP
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4% -12% SDS-PAGE
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GAPDH Proteoforms
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Figure 1. Two dimensional difference gel electrophoresis (2D-DIGE) reference map of hemoglobin-depleted
red blood cells (RBCs) from Snorers subjects and Obstructive Sleep Apnea (OSA) patients before and after
positive airway pressure (PAP) treatment. Fourteen protein/proteoforms spots differentially abundant
(fold change > 1.2; Anova p < 0.05) among Snorer RBC and OSA RBC before and after six months of PAP
treatment are numbered and indicated with circles on the reference mini 2D-DIGE map image displayed.
The MS characterization of these proteins is fully described in Figure 2 and Table S2, Supplementary
Materials. Three proteoforms of glyceraldehyde-3-phosphate dehydrogenase (GAPDH), corresponding
to spots 4-6 on the 2D-DIGE, were identified significantly decreased in OSA RBC that after six months
of PAP treatment increased to the Snorer levels as shown by the respective graphical representations
of spot normalized volume profile among the analyzed groups (shown at the bottom of the figure).
Graphical representation of all identified spot-proteins as differentially abundant among the groups under
study is shown in Figure S1 (see Supplementary Materials).
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Figure 2. Biological processes and molecular functions of the most significantly changed proteins
among Snorers and OSA before and after PAP treatment. Table at the bottom shows the list of
proteins/proteoforms identified differentially abundant among Snorers and OSA before and after six
month of PAP treatment (fold change > 1.2; Anova p < 0.05). The biological processes and molecular
functions associated with these proteins acquired from Database for Annotation, Visualization and
Integrated Discovery (DAVID) v6.8 are shown at the top of the figure.

3.3. GAPDH and PRDX2 Redox—Oligoforms in OSA before and after PAP Treatment

GAPDH and PRDX2 were selected for further WB validation of the proteomics data using Cohort
II (Table 2) and a sub-cohort of Cohort II (Cohort III, Table S1), respectively. Knowing that GAPDH
function as a homotetrameric struc ture can be regulated by different PTMs, including cysteine
overoxidation by sulfinylation-sulfonylation (SO,/SO3) [24] and the functional dimer-decameric
transition of PRDX2 is also mainly regulated by cysteine oxidation (disulfide bond) or cysteine
overoxidation (SO,s3) [21,25], a non-reducing SDS-PAGE was used to keep as much as possible the
redox—oligomeric states of these proteins during the electrophoresis separation. WB was performed
by using specific antibodies against GAPDH, PRDX2, GAPDH-503, or PRDX2-50,/3 proteoforms.
The results are shown in Figure 3A-D.

In addition to the monomeric form (37 kDa), several oligoforms of GAPDH from 50 to 200 kDa,
which includes the tetrameric form (150 kDa), were also detected (Figure 3A). The abundance of these
oligoforms, specifically the abundance of GAPDH monomer (37 kDa), was shown to be significantly
decreased in OSA RBC compared to Snorer RBC. After PAP treatment, the abundance of this monomeric
form significantly increased in OSA RBC to the levels comparable to the ones observed in Snorer RBC
(Figure 3A). These results corroborate the 2D-DIGE proteomic data (Figure 1). All these GAPDH oligoforms
but not the monomeric ones were recognized by the antibody for SO; GAPDH, indicating the presence of
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sufinylation-sulfonylation oxidation modification in these oligoforms (Figure 3B). PAP treatment seemed to
induce the increase of oxidation modification in GAPDH tetrameric or oligomeric forms but with p-value
not sufficient to reach statistical significance (Figure 3B).
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Figure 3. Western blot (WB) validation of the proteomics data showing changes in GAPDH and PRDX2
redox/oligomeric states in RBC isolated from Snorers and OSA patients before or after PAP treatment.
On the left, representative non-reducing SDS-PAGE WB fluorograms of RBC proteins immunoreactive
to the antibody (Ab) GAPDH (A), Ab GAPDH-SOj3 (B); Ab PRDX2 (C) or Ab PRDX2-50y/3 (D). On the
right, the respective graphic plots of GAPDH (A,B) and PRDX2 (C,D) redox/oligomeric form relative
normalized protein abundances calculated by densitometric analysis (see Material and Methods).

Statistically significant differences (p < 0.05) and (p < 0.01) between groups are indicated (*) and
(**), respectively.
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As we previously confirmed, in non-reducing SDS-PAGE condition, the dimers or multimers
of PRDX2 in cells that are fully reduced or fully overoxidized were denatured and visualized as
~21 kDa monomers by WB using either Ab-PRDX2 or Ab-PRDX2-50,3 (Figure 3C,D). In contrast,
using Ab-PRDX2 dimeric/multimeric oxidized forms that have two disulfide-linked (S-5/S-S) peroxidatic
cysteines or one disulfide linked, whereas the other cysteine is either reduced or overoxidized
(5-S/SH or S-5/SO,;3) were denatured and visualized as =50 kDa (denominated here as S-5/S-S
dimer) and 52 kDa (S-S dimer), respectively [10,26]. Multimers (or decamers) fully or partially
disulfide-linked (=200 kDa) that are not denatured were hardly observed as predicted by [21]
(Figure 3C). By using the Ab-PRDX2-50,,3 on RBC lysates analyzed by a non-reducing SDS-PAGE
condition, monomer/dimer/multimer of PRDX2 that contain sulfinylated/sulfonylated (SOy3) cysteine
were exclusively detected as described [27] (Figure 3D).

A tendency for an increase of PRDX2 monomer level—in particular, the overoxidized (SOy3)
monomer—was observed in OSA RBC compared to Snorer ones (p = 0.82), which confirmed the
proteomics data. A significant increase in S-5/50,/3 dimeric forms of PRDX2 was also observed
associated with OSA (Figure 3D). After PAP, these overoxidized forms were decreased with statistical
significance (p < 0.05) for dimeric forms (Figure 3D). Moreover, multimeric overoxidized (SOy3) forms
of PRDX2 were also detected mostly exclusively in OSA patients after six months of PAP treatment.
PRDX2-50,/3 multimeric forms were also detected in some Snorer subjects (Figure 3D) and in one of
36 OSA patients analyzed before treatment.

3.4. GAPDH and PRDX2 Correlation before and after PAP

The correlation between the relative abundance of the different redox/oligomeric states of GAPDH
and PRDX2 evaluated by WB in the OSA cohort (n = 19) before and after PAP treatment was
studied. The significant results (p < 0.05%, p < 0.001***) are shown in Table 3. Before PAP treatment,
PRDX2 disulfide form (S-5/S-S), which was described as associated with the peroxidase catalytic cycle of
the protein, was significantly negatively correlated with the GAPDH tetramer (r = —0.512*) and GAPDH
SOj tetramer/oligomer (r = —0.483*/ r = —0.473*). After PAP, the overoxidized monomeric forms of
PRDX2 negatively correlated with the GAPDH monomer (r = —0.551*), GAPDH tetramer/oligomer
(r = —0.551*/ r = —0.485%), and GAPDH SOj3 tetramer/oligomer (r = —0.506*/r = —0.516*). The PRDX2
SOy/3 multimer that mostly was detected after treatment was positively correlated with the GAPDH
monomer (r = 0.526*) and strongly positively correlated with the GAPDH tetramer/oligomer
(r = 0.777**/r = 0.712***) and GAPDH SOj tetramer/oligomer (r = 0.838***/r = 0.787***).

Table 3. Correlation between peroxiredoxin-2 (PRDX2) and GAPDH redox-oligoforms in OSA before
(t0) and after six months of PAP treatment (t6).

GAPDH Correlate OSA PAP
Pearson r Value  p Value  Pearsonr Value p Value
Tetramer -0.512* 0.025 - -
sDi/:ers SO; Tetramer 0483 * 0.036 ; ;
503 Oligomers -0.473 * 0.041 - -
Monomer - - —-0.551 * 0.015
SO Tetramer - - —0.551 * 0.015
S Monozﬁler Oligomers - - —0.485 * 0.035
=) SO; Tetramer - - —-0.506 * 0.027
e 505 Oligomers - - ~0.516 0.024
Monomer - - 0.526 * 0.021
Tetramer - - 0.777 *** <0.001
Miﬁfﬁ or Oligomers - - 0.712 *** 0.001
SO; Tetramer - - 0.838 *** <0.001
SO3 Oligomers - - 0.787 *** <0.001

* Correlation is significant at the 0.05 level (2-tailed). *** Correlation is significant at the 0.001 level (2-tailed).
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3.5. Correlation between GAPDH and PRDX2 with OSA Clinical Parameters before and after PAP

The correlation between the relative abundance of each different redox/oligomeric state form of
GAPDH and PRDX2 detected by WB and the clinical and biochemical parameters measured in OSA
patients before and after PAP treatment were studied. The statistically significant results (p < 0.05%,
p < 0.01**, p < 0.001***) are shown in Table 4.

Table 4. Correlation of the different redox/oligomeric states of GAPDH and PRDX2 with the study
clinical parameters in OSA patients before and after PAP treatment.

Protein Oligomers Correlate 0sA PAP
Pearson r Value  p Value  Pearsonr Value p Value
RBC 0.389 * 0.019 - -
Monomer Hb 0.392 * 0.018 - -
RDW - - 0.363 * 0.029
RDI 0.375* 0.024 - -
HbA1C - - 0.336 * 0.045
Tetramer MCV —-0.359 * 0.032 - -
ADR - - 0.490 ** 0.002
as) HbA1C —-0.337 * 0.044 - -
e Oligomers MCV -0.339 * 0.043 - -
5 ADR - - 0.436 ** 0.008
EPW - - 0.335 * 0.046
HbA1C —-0.359 * 0.031 0.421 % 0.010
SO3 TG - - 0.341* 0.042
Tetramer ADR - - 0.553 *** <0.001
HCY - - 0.355 * 0.034
SO;3 HbA1C —-0.354 * 0.034 0.362 * 0.030
Oligomers ADR - - 0.479 ** 0.003
TG —0.593 ** 0.007 - -
Monomer EPW - - 0.557 * 0.013
HCY 0.469 * 0.043 - -
S-S/S-S RDW —0.577 ** 0.010 - -
Dimer PLT 0.510 * 0.026 - -
INS —-0.462* 0.047 - -
HOMA-IR —-0.476 * 0.040 - -
. RDW —-0.457 * 0.049 - -
S 5-5 Dimer PLT 0.552 * 0.014 - .
2 EPW 0.523 * 0.022 - -
&~ RDI —0.570* 0.011 - -
502/3 GLC - - —0.601 ** 0.007
Monomer ADR - - —0.456 * 0.050
HbA1C - - 0.549 * 0.015
§-5/5023 RDW 0465 * 0.045 - -
Dimer PLT 0.508 * 0.026 - -
SOy3 TG - - 0.479 * 0.038
Multimer ADR - - 0.772 *** <0.001

* Correlation is significant at the 0.05 level (2-tailed). ** Correlation is significant at the 0.01 level (2-tailed).
*** Correlation is significant at the 0.001 level (2-tailed).

Before treatment, GAPDH monomers correlated positively with the PSG RDI parameter (r = 0.375%) and
RBC (r = 0.389*) and Hb (r = 0.392*) hematological parameters. Significant negative correlations between the
GAPDH oligomer (r = —0.337*) and overoxidized GAPDH tetramer/oligomer (r = —0.359*/ r = —0.354*) with
the HbA1C metabolic parameter were observed before treatment. The PRDX2 monomer showed a strong
positive correlation with TG (r = —0.593**) and positive correlation with HCY (r = 0.469%). All dimeric forms
of PRDX2 (S-5/5-5, 5-5/5043, S-S dimer) correlated positively with PLT (v = 0.510%, r = 0.552%, r = 0.508*) and
negatively with RDW (r = —0.577**, —0.457%, —0.465*) hematological parameters. PRDX2 S-S dimer showed
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also a significant negative correlation with the PSG RDI parameter (r = —0.570%) and with INS (r = —0.462%)
and HOMA-IR (r = —0.476*) metabolic parameters.

After PAP treatment, the GAPDH monomer positively correlated with RDW (r = 0.363%).
Positive correlations between the GAPDH tetramer (r = 0.336*) and GAPDH SO; tetramer/oligomer
(r = 0.421% r = 0.362*) with the HbA1C metabolic parameter were observed after treatment. The GAPDH
SO; tetramer also positively correlated with the TG (r = 0.341*) and HCY (r = 0.355*) parameters at this time.
The GAPDH tetrameric/oligomeric forms, including the overoxidized ones, strongly positively correlated
with ADR (r = 0.490*/ r = 0.436**; r = 0.553**/ r = 0.479*) after treatment. The overoxidized (SO,3)
monomeric forms of PRDX2 strongly negatively correlated with GLC (r = —0.601**) and ADR (r = —0.456*)
parameters. The PRDX2 S-5/SO,/3 dimer positively correlated with HbA1C (r = 0.549*), and the PRDX2 SOy
multimer positively correlated with TG (r = 0.479 *) and strongly with ADR (r = 0.772***) after treatment.

3.6. GAPDH and PRDX2 Logistic Regtession Models and ROC Curve Analysis for Predicting OSA or OSA Severity

Following logistic regression models, ROC curves were used to compare the discriminative power
of the different redox—oligomeric forms of GAPDH or PRDX2 to classify patients at risk for OSA or
as predictors of OSA severity. The most significant results of ROC analysis are shown in Figure 4.
The GAPDH monomer presented the highest performance to predict patients at risk for OSA with an
AUC value of 0.742 (sensitivity: 0.917; specificity: 0.565) (Figure 4A). The combination of the GAPDH
monomer with the clinical parameter BMI slightly improved this performance by presenting an AUC
value of 0.826 (sensitivity: 0.694; specificity: 0.913) (Figure 4B).

A B
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Figure 4. Receiver Operating Characteristic (ROC) curves for the models using GAPDH and PRDX2 to classify
patients at risk for OSA or OSA severity. The different redox—oligomeric forms of GAPDH or PRDX2 were used
as predictors in logistic regression models and Receiver Operating Characteristic (ROC) curves were used to
assess their potential discriminative power in classifying patients at risk for OSA or as predictor of OSA severity.
The best results to predict patients at risk for OSA were obtained for the GAPDH monomer alone (AUC: 0.742;
0.917 sensitivity; and 0.565 specificity) (A) or combined with Body Mass Index (BMI) parameter (AUC: 0.826;
0.694 sensitivity; and 0.913 specificity) (B). The best results to discriminate severe OSA from mild-moderate
OSA were obtained for the PRDX2 S-S Dimer alone (AUC: 0.885; 0.769 sensitivity; and 1.000 specificity) (C)
or combined with the homeostatic model assessment for insulin resistance (HOMA-IR) metabolic parameter
(AUC: 0.936; 0.923 sensitivity; and 1.000 specificity) (D). The respective optimal cut-off values and the specificity
and sensitivity values (within parenthesis) are displayed in the plots.
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To discriminate severe OSA patients from mild—-moderate OSA patients, the S-S PRDX2 dimer
presented the best ROC AUC of 0.885 (sensitivity: 0.769; specificity: 1) (Figure 4C). However, the model
considering a combination of the S-S PRDX2 dimer with the HOMA-IR parameter presented the
greatest ROC AUC of 0.936 (sensitivity: 0.923; specificity: 1) for this OSA severity discrimination
(Figure 4D).

3.7. Clinical Response in PAP-Induced PRDX2 SO, Multimer

After PAP treatment, the SO,;3 multimeric form of PRDX2 was identified in eight (42%) of
19 evaluated OSA patients as highly and strongly positively correlated with the level of GAPDH
multimers/oligomers over- or not overoxidized (Table 3).

In attempt to understand whether the tendency for an occurrence of PRDX2 SO,/3 multimer
after six months of treatment is associated with a specific clinical state before treatment or with a
specific clinical response after treatment, patients were split into two subgroups, OSA with or without
PAP-induced PRDX2 SO,z multimer at time t6. Then, these subgroups were statistically compared
for the clinical parameters measured at before (t0) and after treatment (t6) by using Logistic GEE
regression models with the interaction term time:group. These classes of models allow accounting
for the dependence induced by the multiple (two) measurements while evaluating the effect of the
treatment and the possible differences between groups both at t0 and t6. These models allow assessing
whether the groups under comparison were similar or not at t0 as well as to quantifying and comparing
the variation in both groups from t0 to t6, which could possibly be attributed or associated with
the treatment.

Figure 5 shows the most significant results graphically displayed by spaghetti plots. Lines in green
represent the fitted value of a clinical parameter at t0, whereas lines in red represent the fitted values
for this clinical parameter in t6. Models showed that there were significant differences between t0 and
t6 in both subgroups for the EPW and hematological parameters RBC, Hb, HCT, platelets and RDW
(Figure 5A-F). Although the decreased of EPW, RBC, HTC, and PLT, at t6 (red line) compared to t0 (green
line) was shown to have a higher statistical significance in the OSA subgroup with the PAP-induced
PRDX2 SOy3 multimer (Mult.T6 = 1) than in the OSA subgroup without this multimer induction
(Mult.T6 = 0) (Figure 5A-E); these decreases were considered statistically similar between these two
OSA subgroups except that the decreased of EPW and PLT were borderline statistically different
(p = 0.06) between the subgroups (Figure 5A E). In contrast, RDW significantly increased in OSA with
the PAP-induced PRDX2 SO,z multimer (Mult.T6 = 1) (p = 0.003 **) at t6 (red line) compared with t0
(green line), and this increase was statistically significant between the subgroups (p = 0.014 *). In fact,
in OSA without this multimer (Mult. T6 = 0), RDW presented a tendency to decrease after treatment (t6)
although with no statistical significance (p = 0.12) (Figure 5F). No significant differences were observed
in the lipidic parameters between the subgroups, except that before treatment (t0), the triglycerides
(TG) showed a highly significant increased (p = 0.03 *) in the OSA subgroup with PAP-induced PRDX2
SO,z multimer (Mult.T6 = 1) compared with OSA without this multimer (Mult.T6 = 0) at this time (t0)
(Figure 5G). There were no significant differences in catecholamines between the subgroups except that
after treatment, adrenaline (ADR) significantly increased (p = 0.0009 ***) in OSA with PAP-induced
PRDX2 SOy/3 multimer (Mult.T6 = 1), and this modulation was borderline significant (p = 0.06) between
the two subgroups (Figure 5H).

Radar plots followed by Gower’s similarity measure calculation allow comparing the average
profile of groups considering a collection of variables of interest. Figure 6 shows Radar plots displaying
in one dimension the study of the clinical parameters comparing the Snorer and OSA subgroups with
(A) or without PAP-induced PRDX2 SOy3 response (B) at time t0 and t6 and the Snorer and both
OSA subgroups with and without PAP-induced PRDX2 SO,/3 response at time t0 (D) or at time t6
(E). Each of the clinical parameters under study is represented on a different radius of a radar plot.
The length of the radius was proportional to the index value. The centroid points in the periphery
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(radius equal to one) represented the highest average value, whereas the centroid points in proximity
to the center corresponded to the lowest average value for a clinical parameter.
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Figure 5. Spaghetti plot displaying clinical parameter data evaluated in two subgroups of OSA patients
before (t0) and after six months of PAP treatment (t6). The OSA subgroup with (pred.mult = 1)
and without (pred.mut = 0) induced PRDX2 SO,/3 multimer after six months of PAP treatment were

compared by evaluating the clinical parameters under study at time t0 and t6, using Logistic GEE
regression models. The most significant data were obtained for EPW (A), RBC (B), Hb (C), HCT (D),
PLT (E), RDW (F), TG (G) and ADR (H) clinical parameters as shown. Green line indicates the average
value of a clinical parameter at t0, and the red line indicates the average value of this clinical parameter

at time t6.

Intermediate values are plotted proportionally, considering the relative position to the extremes.
To evaluate the (dis)similarity among Snorer and OSA subgroups before and after PAP, the Gower
distance was calculated to obtain the similarity matrix, as explained in the Material and Methods
section. The closer to the value 1, the greater the similarity between the two groups. The results
indicated that according to the clinical parameters under study, both OSA subgroups, i.e., with and
without PAP-induced PRDX2 SO,/3 multimer, seemed to be quite different from the Snorer group at
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time t0 (before PAP) (Gower similarity measure of 0.334 and 0.351, respectively) and this difference
tended to diminish after treatment (t6) (Gower similarity measure slightly increased to 0.367 and 0.437,
respectively) (Figure 6A,B). Interestingly, at time t0, these OSA subgroups were more dissimilar to each
other (Gower similarity measure of 0.233) than they were with the Snorer group (Gower similarity
measure of 0.303 and 0.463, respectively) (Figure 6C). After treatment (t6), the OSA subgroup with
PAP-induced PRDX2 SO,/3 response showed to be more distant (dissimilar) to the Snorer group
(Gower similarity measure of 0.283) than the OSA subgroup without this multimer (Gower similarity
measure of 0.37). The difference between these OSA subgroups seemed to diminish after treatment
(Gower similarity measure of 0.346).
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Figure 6. The study clinical parameters are displayed in one dimension comparing the OSA subgroup
with (A) or without PAP-induced PRDX2-50,3 response (B), measured at time t0 (T0, red) and t6 (T6,
blue) with the Snorer group as a control reference (gray); or OSA subgroup with (green) and without
PAP-induced PRDX2-5SO,3 response (rose) at t0 (C) and t6 (D) with the Snorer group as a control
reference (gray). Each clinical parameter is represented on a different radius of a radar plot. The centroid
points in the periphery represented the highest average value, whereas the centroid points in proximity
to the center corresponded to the lowest average value for a clinical parameter. The similarities between
the different groups at different conditions are measured by the Gower similarity measure (the closer to
1, the more similar the groups) and the results indicated at the bottom to each corresponding radar plot.
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4. Discussion

In this study, we investigated the effect of six months of PAP treatment on the OSA RBC proteome
by 2D-DIGE-mini gel-based proteomics followed by WB validation. The results indicated that RBC
proteins/proteoforms associated with the biological process such as cell death, H,O, catabolic/metabolic
process, stress response, and protein oligomerization were the most relevant and significantly changed
among Snorers as control and OSA patients before and after treatment. One of these proteins, the redox
regulators PRDX2 and GAPDH, were further validated in an independent cohort of patients by
nonreducing WB using antibodies (Ab) against cysteine (Cys) sulfinylated/sulfonylated (SO,;3) of
either PRDX2 or GAPDH to better evaluated the redox—oligoform behavior of these proteins in OSA
RBC or OSA RBC under PAP.

PRDX2 is a member of six thiol peroxidases playing a key redox—oligomeric regulated role in
the antioxidant defense, redox signaling, and chaperone function [21]. Previously, we observed a
significant increase of overoxidized (SO,;3) PRDX2 monomer/dimer in OSA RBC that, after PAP
treatment, decreased with the increase of PRDX2 SO,/3 multimeric forms reported, as associated with
chaperone function [10]. In this study carried out in a larger number of patients, the level of PRDX2
SO,/3 monomer was increased in OSA compared with Snorers, although with a borderline significance
(p = 0.082). However, we confirmed that PAP treatment induced a significant decrease in the level of
low molecular overoxidized forms of PRDX2, especially PRDX2 SO,/3 dimers, whereas a significant
induction of PRDX2 SO,z multimer occurred. Interestingly, this PAP-induced PRDX2 SOy/3 multimer
phenomenon was strongly positively correlated with PAP-induced GAPDH, especially GAPDH SOs
tetramer (r = 0.838, p < 0.0001 ***).

4.1. RBC GAPDH as Predictor of OSA

GAPDH is a ubiquitous glycolytic enzyme with multiple alternative and unrelated moonlighting
functions driving by the cellular and environmental context [24,28]. GAPDH is a recognized key
redox-sensor regulated by oxidative modifications induced by hydrogen peroxide (H,O,) and other
oxidants generated either from metabolism or stress conditions. The multifunctional diversity of
GAPDH is regulated by its oligomerization, post-translational modifications (PTMs), and subcellular
localization. Cytoplasmic GAPDH functions as a tetramer protein (=150 kDa) composed of four
identical 37 kDa subunits, each with a single catalytic cysteine (Cys 152) thiol sensitive group [24,28].
In human serum, secreted GAPDH has been described as a multimer consisting of high-molecular
weight subunits besides the 37 kDa subunit [29]. Deficiencies in GAPDH activity or expression have
been implicated in diseases such as neurodegenerative diseases, cardiovascular disorders, diabetes,
and cancer [30,31]. Herein, we demonstrated for the first time our knowledge the association between
the RBC GAPDH redox-oligomeric state and OSA and OSA response to PAP treatment. In OSA
RBC, the general level of GAPDH, especially the monomeric forms, showed a significant decrease
compared to the Snorer ones used as controls. Six months of PAP treatment showed to revert that by
increasing the GAPDH monomer abundance in OSA RBC to similar levels detected in Snorer RBC.
This PAP-induced GAPDH monomer is followed by an increase of GAPDH tetrameric/oligomeric
forms, including sulfonylated (SOs3) ones.

The oxidation of GAPDH active Cys is one of the key mechanistic events in regulating metabolic
adaptation upon exposure to physiological or pathological pro-oxidant environments [28,32]. The oxidation
of GAPDH catalytic Cys-152 inactivates the enzyme oxidoreductase activity, leading to metabolic reroute
from glycolysis to the pentose phosphate pathway (PPP) to fulfill the acute demand for reducing
equivalents (e.g., NADPH), which is crucial for the antioxidant defense system [33,34].

In RBC, the glucose metabolic route varies with O, gradients along the normal course of RBC
circulation. Under the high O, partial pressure of the lung, RBC metabolism shifts toward PPP to generate
NADPH to preserve the glutathione antioxidant homeostasis. Under the low O, pressure of the peripheral
tissues, where RBC must be distorted to pass through capillaries, RBC promotes glycolysis to generate
ATP to compensate for the cation leaks induced by this mechanical stress and to promote further oxygen
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release and tissue oxygenation, thus relieving hypoxia. This metabolic shift alternation is modulated via
competition between the glycolytic enzyme complex (constituted by > 60% of GAPDH) and deoxyHb for
membrane band-3 binding [35]. Upon deoxygenation, this glycolytic enzyme complex, mainly GAPDH
is displaced by deoxyHb to be actively redistributed into the cytoplasm to increase glycolytic flux.
However, such redox-based regulatory mechanism is compromised by chronic exposure to hypoxia or
oxidative stress, leading to pathological consequences. Hypoxia favors glycolysis and downregulates PPP,
which impairs the capacities of RBC to cope with oxidative stress and ultimately its ability to carrying
oxygen to tissues [36,37]. A study performed in high-altitude polycythemia (HAPC) subjects, a typical
model of hypoxia-induced excessive erythrocytosis (increased RBC production to maintain the oxygen
level in the body), demonstrated that the PPP metabolic pathway was decreased in these subjects compared
to controls but increased after reoxygenation recovery at plain altitude, along with a significant decrease in
the RBC and Hb level [38]. OSA is characterized by intermittent hypoxemia/reoxygenation events leading
to oxidative stress [39]. The limited antioxidant capacity and greater systemic oxidative stress that are
experienced by patients with severe OSA have been suggested as associated with a reduced glutathione
level in RBC [40], whose recycling is PPP-dependent [41]. PAP therapy eliminates apnea/hypopnea events
and stabilizes normal oxygen saturation and consequently diminishes oxidative-stress in patients [42].
OSA rarely leads to erythropoiesis [43]. In this study, although OSA hematological parameters were
normal and not significantly different from Snores, PAP treatment decreased significantly the level of RBC,
HCT, and Hb in these patients, confirming ours [14] and other previous studies [44,45]. In fact, one year
of PAP therapy can cause anemia in some patients [46]. Along with that, PAP induced the GAPDH
level content in RBC, including monomer and overoxidized tetrameric/oligomeric forms. Unfortunately,
we did not evaluate whether the regulation of glycolysis/PPP metabolic ratio is impaired in OSA RBC due
to OSA intermittent hypoxia nor the effect of PAP on that. However, our results with others’ evidence
led us to speculate that OSA intermittent hypoxia might induce a PPP/glycolysis ratio imbalance in
RBC, leading to low capacity to generate NADPH, which is a key reducing equivalent for glutathione
recycling. Hypoxia is reported to up or down-regulate GAPDH mRNA and protein according to the cell
type context [47]. Therefore, the observed decreased of GAPDH in OSA RBC could be an erythrocytic
progenitor cell response to OSA intermittent hypoxia that is still visible in mature RBC. Down-regulating
the GAPDH glycolytic enzyme in these patients’ cells could help minimize hypoxia-induced glycolysis
over flux during RBC circulation in the lung. Interestingly, the GAPDH monomer content in OSA RBC
positively correlated with OSA severity (RDI). This makes us speculate that patients with severe OSA,
by not reducing GAPDH in RBC under severe intermittent hypoxia, have limited capacity to counteract
the hypoxia-induced glycolytic reroute over PPP flux, which may explain the reported lower oxidative
stress resistance in these patients [40].

These results let us investigate the putative value of each or combined redox—oligoforms of
GAPDH for the prediction of OSA or OSA severity. The best ROC analysis data indicated that the
GAPDH monomer with a cut-off point of 0.493 relative protein abundance has a specificity of 0.565
and sensitivity of 0.917 (AUC: 0.742) to predict OSA. However, the combination of GAPDH monomer
with BMI, an easily measurable clinical parameter, improved the GAPDH monomer predictive ability
for OSA screening (cut-off: 0.721 with 0.934 specificity and 0.694 sensitivity, AUC: 0.826). For OSA
severity prediction, the combination of GAPDH monomer with HOMA-IR showed a good predictive
value, cut-off: 0.720 with 1.000 specificity and 0.824 sensitivity, AUC: 0.895 (data not shown). However,
the PRDX2 S-S dimer combined with HOMA-IR showed an even better predictive value for OSA
severity (see the discussion below). Obesity and diabetes are highly prevalent in OSA [1], which justifies
these data. Taken together, these results suggest that the GAPDH monomer in RBC, combined with
BMI or HOMA-IR, are promising for OSA screening and OSA disease monitoring, respectively.
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4.2. PAP-Induced Sulfonylated GAPDH Tetramer/Oligomer in RBC May Be Related with GAPDH Peroxidase
Activity andfor Eryptosis Associated “Gain of Function”

As discussed above, PAP-induced oxygen saturation normalization might have a significant
beneficial impact on OSA RBC metabolic physiology, since PAP was showed to normalize the
GAPDH level while increasing the oxidized GAPDH content that is associated with PPP metabolic
reroute to protect cells against oxidative stress. The catalytic Cys-SOH to Cys-SOs;H transition in
the subpopulations of GAPDH coincide with oxidoreductase activity inactivation and a gain in
peroxidase activity, which enables GAPDH to enzymatically reduce H,O, to water [32,48]. However,
once sulfonylated GAPDH is formed, it is generally considered as an irreversible inactive form
associated with protein misfolding prone to degradation [48]. Very recently, Lia et al., by determining
the first crystal structure of GAPDH tetramer carrying sulfonylated modification in active Cys, showed
that this modification induces an irreversible inactivation of the enzyme without causing significant
structural changes on the tetrameric enzyme [49]. However, the exact “gain of function” associated
with this overoxidation remains to be elucidated.

Sulfonylation derived from S-nitrosylation has been reported in GAPDH and associated with
protein translocation to subcellular domains where it does not normally occur to stimulate a “gain of
function” associated with apoptosis [50]. Under stress condition or normoxia recovery from hypoxia,
erythrocytes undergo eryptosis, which resembles apoptosis in nucleated cells [51]. One of the common
features among cell-death programs is the phosphatidylserine externalization, which is a signal for
a quick cell removal by specialized phagocytes [51]. Interestingly, GAPDH is a phosphatidylserine
binding protein involved in membrane fusion, which is a process associated with apoptosis [28,52].
However, the GAPDH redox/oligo state-based mechanism modulating this process remains to be
determined. The increased RBC protein glycation, including glycated hemoglobin (HbA1C) induces
phosphatidylserine externalization and thus RBC aging and eryptosis [53]. After PAP, a significant
positive correlation between HbA1C and the tetrameric/oligomeric forms of GAPDH, especially the
sulfonylated ones, was observed. This evidence associated with the fact that the levels of RBC and HTC
decreased significantly after PAP treatment leads us to speculate that the induction of sulfonylated
forms of GAPDH in response to PAP may be associated with the induction of programmed cell death
in RBC, especially those exposed to a high level of HbAlc. An increase of RBC destruction causes
greater size heterogeneity and thus a higher RDW [54]. Studies have reported either no change [55]
or an increase in RDW after PAP treatment [44]. In this study, no significant change in RDW after
PAP was observed. However, when we considered the two subgroups of OSA patients, with and
without the occurrence of PRDX2 SO,z multimer after treatment (see below), the latter presented
a significant increase in RDW after PAP along with a higher significant decrease in RBC and HTC
compared with the OSA subgroup without the PAP-induced PRDX2 SO,;3 multimer. The GAPDH
SO; tetramer strongly significantly correlated with the occurrence of the PRDX2 SO,;3 multimer,
which again strongly supports the idea that sulfonylation of the GAPDH tetramer in OSA RBC after
PAP reoxygenation might be associated with a higher decrease of RBC and HTC level. In contrast,
the occurrence of PRDX2 SO,/3 multimers in RBC may play a protective role in order to attenuate the
PAP- induced RBC GAPDH SO3; multimer associated with eryptosis (see discussion below).

4.3. RBC PRDX2 as a Predictor of OSA Severity

As a typical 2-Cys peroxiredoxin, PRDX2 functions as a local regulator of ROS/RNO concentration
and sensor and transducer of ROS/RNO signaling [21,56]. The minimal catalytic unit of 2-Cys PRDXs
is dimeric, and it is associated into oligomeric structures, normally decamers, in which the reactivity
of peroxidatic Cys as its susceptibility to overoxidation are increased. The peroxidatic Cys of each
subunit reacts with H,O, and is oxidized to sulfenic acid derivatives (-SOH) that form a disulfide
bond (-5-S-) with the resolving Cys of another subunit. Disulfide dimeric form is subsequently
reduced by the thioredoxin/NADPH system to enable a further peroxidase catalytic cycle of HyO,.
Occasionally and with increasing H,O, concentration, 2-Cys PRDXs can be overoxidized to sulfinic
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(-SO,H), which can still be reduced by sulfiredoxin or end up irreversibly overoxidized to sulfonic acids
(-SO3H). This subsequent overoxidation causes the formation of high molecular weight oligomeric
structures on 2-Cys PRDXs with “gain of” chaperone function to protects cells against stress-induced
protein unfolding or aggregation [57]. In addition, overoxidation confers function on PRDXs associated
with HyO, signaling and circadian rhythm regulation [58]. In RBC, PRDX2 exhibits an overoxidation
circadian rhythm as a result of ROS generated by Hb autooxidation, which occurs naturally in RBC [27].
Interestingly, PPP regulates the transcription and redox circadian rhythm of many genes/proteins
including PRDX2 via NADPH metabolism. Thus, PPP inhibition has a significant impact on the
normal circadian rhythm of these genes/proteins [59]. Hypoxia inhibit PPP [60], and hypoxia in
OSA has been associated with circadian rhythm disruption [61,62]. We previously demonstrated that
although RBC is devoid of transcriptional/translational machinery, day-night changes in proteins
such as PRDX2 resulting from redox-oligo state modulation take place but were significantly different
in OSA compared to Snorer [10]. It is plausible to assume that OSA hypoxia leads to significant
changes in the circadian redox rhythm of RBC proteome, which includes PRDX2. Herein, by studying
the effect of PAP treatment on OSA RBC proteome in the morning, when the most modulation may
occur, we confirmed that in OSA, there is differential modulation in the overoxidation state of PRDX2
monomer and dimer, which is reversed by the treatment, along with the appearance of multimeric
overoxidized forms. Oxidation induced decamer dissociation into dimers to facilitate reduction by
the thioredoxin/NADPH system [63]. In contrast, overoxidation stabilizes PRDX2 decamers and
de-couples the thioredoxin/NADPH system from PRDX reduction, which increases the availability
of thioredoxin and NADPH to reduce other proteins or peptides such as glutathione under stress
conditions. Sulfinylation involves the sulfenylation of both peroxidatic Cys in a dimer and the
prior formation of disulfide bonds between the PRDX monomer partners [57]. Dimers with both
peroxidatic Cys linked by disulfide bounds (5-5/5-S Dimer) undergo a peroxidase activity cycle,
whereas dimers with both peroxidatic Cys overoxidized engage in a non-peroxidase “gain of function”
cycle associated with oligomer modulate signaling and chaperone function [21]. By nonreducing
WB using Ab-PRDXSO,3, fully overoxidized decamer/dimers are dissociated and identified as SOy/3
monomers. However, dimers partially overoxidized and disulfide-linked (S-S Dimer or S-5/5O3 Dimer)
can also be detected by Ab-PRDX2 and Ab-PRDXSOy3 respectively, migrating at the same MW but
higher than S-S/S-S Dimer. The functional significance of these dimers has yet to be established.
Although overoxidation inactivates PRDX peroxidase activity, recent studies have suggested that
overoxidized PRDX may retain some catalytic peroxide-removing activity under stress conditions [57],
which may explain the identification of S-S dimer and S-5/5Oy/3 dimer. In this study, S-5/5-S dimer but
also S-S dimer and S-5/SO,/3 dimer correlated significantly and negatively with RDW and positively
with PLT in nontreated OSA, suggesting that RBC and PLT homeostasis under OSA condition may
turn up the peroxidase activity of PRDX2 in RBC. In nontreated OSA, the S-S dimer also correlated
significantly and negatively with RDI, INS, and HOMA-IR metabolic parameters, and positively with
EPW. Ab-PRDX2 identifies partially disulfide-linked dimers (S-S dimer) without discriminating the
concomitant overoxidation. In addition to sulfinylation/sulfonylation, glutathionylation may also
occur in PRDX2 peroxidatic Cys, leading to decamer dissociation into dimer without chaperone
function [64]. Unfortunately, we have not investigated whether glutathionylation in PRDX2 would
explain the correlation between S-S dimer and OSA severity (RDI). However, by evaluating the putative
predicted value of individual or combined PRDX2 redox—oligoforms for OSA diagnosis or OSA severity,
we observed that PRDX2 S-S dimer alone or combined with HOMA-IR showed the best ROC curve
data able to discriminate severe OSA from mild—-moderate OSA. PRDX2 S-S dimer alone with a cut-off
point of 0.773 relative protein abundance has a 0.769 sensitivity and 1.000 specificity (AUC: 0.885),
which was much improved when combined with the HOMA-IR metabolic parameter, showing a cut-off
of 0.682 relative protein abundance with a 0.923 sensitivity and 1.000 specificity (AUC: 0.936) to predict
OSA severity. These data strongly suggest that PRDX2, namely S-S dimer, is a promising prognostic
biomarker in OSA.
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4.4. PRDX2 SOy;3 Multimer May Protect RBC from PAP-Mediated Eryptosis

The occurrence of PRDX2 SO,z multimers in the RBC of OSA patients was observed almost
exclusively after six months of PAP treatment and in about 45% of patients. No significant difference in
compliance with PAP treatment that could explain the occurrence of this phenomenon in some patients
but not in others was observed.

By using a logistic GEE regression model displayed by Spaghetti plots, we tried to assess
whether there were differences between these two subgroups of OSA patients, i.e., with and without
PAP-induced PRDX2 SO,;3 multimer, regarding the clinical parameters under study measured before
and after treatment.

Before treatment, no significant differences were observed between these subgroups except for
the TG parameter, which was significantly higher in the subgroup with PAP-induced PRDX2 SO,3
multimer compared to the subgroup without this induction. No significant change in TG level was
observed in both subgroups after treatment. However, the levels of both PRDX2 SO,/3 multimers
and GAPDH SOj tetramers were significantly positively correlated with plasma TG level after PAP.
After treatment, the subgroup with PRDX2-SO,/3 multimer occurrence and thus with a higher increase
of GAPDH SOj tetramer/oligomer presented the most significant decreased in RBC and HTC along
with the most significant increase in RDW, which suggest a higher eryptosis process in this patient’s
subgroup. The PLT level was also greatly decreased in the subgroup with PAP-induced PRDX2
SO3; multimer. A high level of plasma TG is associated with both RBC aggregation [65] and platelet
activation and aggregation [66]. Increased RBC aggregation and platelet activation have been observed
in OSA patients [67,68]. The constant lipid exchange between plasma lipoproteins and RBC may
explain aggregation in RBC by altering RBC membrane composition [65]. Therefore, RBC may be more
sensitive to PAP-induced eryptosis in conditions where the TG is increased.

As above discussed, the PAP-induced GAPDH SOj3 tetramer/oligomer may be related to PPP
metabolic reroute but also with increased eryptosis after treatment, but what will be the role of
PRDX2 SO,/3 multimer in this process? The overoxidation of PRDX2 by sulfinic acid promotes stable
oligoforms and interaction with signaling or chaperone/misfolded proteins [57]. The overexpression
of PRDX2 protected cells against oxidative-mediated apoptosis; conversely, PRDX2 knockdown
exaggerated the cell death induced by multiple stimuli [69]. In RBC, PRDX2 may prevent hemolytic
anemia from oxidative stress by stabilizing Hb [70]. The decameric form of PRDX2 can bind to Hb
and protect Hb from oxidative-induced denaturation and aggregation in human and mouse [70].
Interestingly, the subgroup of patients with PAP-induced PRDX2 SO,/3 multimer, although showing a
greater decrease in RBC and HCT, presented no significant decrease in Hb parameter after treatment.
In contrast, the subgroup without PAP-induced PRDX2 SO,/3 multimer showed a higher significant
decrease in Hb parameter but no significant decrease in RBC and HCT after PAP. One year of PAP
therapy was reported to induce anemia in some OSA patients [46], which makes us speculate that the
occurrence of PRDX2 SO,3 multimer after PAP may protect patients at a risk for exaggerated GAPDH
SOj3 tetramer associated eryptosis such as those patients with high plasma TG and/or glycated Hb.

Certain catecholamines, which includes ADR, are thought to suppress eryptosis [51]. In this
study, urinary ADR significantly and positively correlated with PRDX2 SO,/3 multimer and GAPDH
SOj3 tetramer after PAP. After treatment, urinary ADR greatly increased in the subgroup of patients
with PAP-induced PRDX2 SO,;3 multimer, whereas no significant change in ADR was observed
in the subgroup without this induction. A possible mechanistic interaction between overoxidized
PRDX2/GAPDH and ADR induction to protect RBCs from undergoing eryptosis under certain
physiological condition remain to be elucidate.

The varied PRDX2/GAPDH redox-oligomeric responses following PAP treatment may result
from a balance of interacting pathophysiologic features of OSA and OSA metabolic comorbidity.
Radar plots displaying in one dimension all measured clinical parameters followed by Gower’s
similarity measure calculation allowed us to evaluate the (dis)similarity among Snorer and the
OSA subgroups, i.e., with/without PAP-induced PRDX2 SO,/3 multimer, before and after treatment.
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Although both nontreated OSA subgroups were quite different from the Snorer group, they were
more dissimilar to each other than they were with the Snorer group. After treatment, both OSA
subgroups tend to be closer to Snorer in terms of similarity, being the subgroup with PAP-induced
PRDX2 SOy/3 multimer the most distant (dissimilar) to the Snorer group. The differences between
these OSA subgroups diminished after treatment but only slightly. This data confirmed that these
two OSA subgroups were heterogeneous in terms of clinical presentation, comorbidity, or risk factors.
These data confirm our conviction that information on the redox status of enzymes such as PRDX2 and
GAPDH in RBC might help to better recognize OSA subtypes and predict the therapeutic response in
these patients.

Limitations in this study should be addressed. Sample size, female gender exclusion, the OSA
group being constituted by non-diabetics but with higher levels of blood insulin and HOMA-IR,
and the Snorer group being constituted by no completely healthy subjects limit the data generalization.
Although patients were instructed to follow a restricted diet for three days before urine/blood collection
to minimize its impact in patient’s antioxidant status and catecholamine determination, their dietary
habits were not fully controlled. Proteomics and validation analysis were performed on —80 °C stored
samples, which could introduce some bias in the molecular events of both control and disease samples.

5. Conclusions

The redox—oligomeric states of GAPDH and PRDX2 involving overoxidation by sulfinic/sulfonic
acids were differentially modulated in OSA RBC probably due to the nocturnal apnea-induced
intermittent hypoxia that was chronically experienced by these patients. This observation together with
the extensive knowledge in the field point toward disturbance in GAPDH-dependent metabolic
adaptation upon exposure to different O, gradients along RBC circulation and decrease in
PRDX2-mediated signaling and chaperone protection, which together strongly compromise antioxidant
capacity of RBC to cope with oxidative stress.

PAP reoxygenation modulated redox—oligomeric states of GAPDH and PRDX2 toward their restoration,
which might improve OSA compromised RBC homeostasis. PAP also induced the occurrence of PRDX2
sulfinylated/sulfonylated multimer in some patients along with an increase of GAPDH sulfonylated
tetrameric/oligomeric forms. This phenomenon may be associated with “new gain” of function in GAPDH
and PRDX2 such as eryptosis and chaperone protection, respectively. The complex interaction between
pathophysiologic features of OSA and OSA metabolic comorbidities seemed to modulate the variability in
GAPDH/PRDX2 redox—oligomeric responses following PAP treatment among patients.

Thus, information on the redox status of PRDX2 and GAPDH in RBC will help to better recognize
OSA subtypes and predict the therapeutic response in these patients. Indeed, GAPDH combined with
BMI and PRDX2 S-S Dimer combined with HOMA-IR showed to be very promising biomarkers to
predict OSA and OSA severity, respectively.

A deeper understanding of the functional impact of PTMs on RBC GAPDH/PRDX2 regulation
will be crucial to better understand RBC homeostasis in the context of OSA. The development of high
throughput technologies other than WB will be necessary to validate in a large cohort of patients the
value of GAPDH and PRDX2 as candidate biomarkers for OSA diagnosis and prognosis, respectively.
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Abbreviations

ADR Adrenaline

AHI Apnea-hypopnea index

BMI Body mass index

DA Dopamine

EPW Epworth sleepiness scale

GAPDH Glyceraldehyde-3-phosphate dehydrogenase

GLC Glucose

Hb Hemoglobin

HbA1C Hemoglobin glycated

HCT Hematocrit

HCY Homocysteine

HOMA-IR Model assessment of insulin resistance

INS Insulin

MCV Mean corpuscular volume

NAd Nor-Adrenaline

ODI Oxygen desaturation index

OSA Obstructive sleep apnea

PAP Positive airway pressure

PLT Platelets

PRDX2 Peroxiredoxin-2

RBC Red blood cell(s)

RDI Respiratory disturbance index

RDW Red cell distribution width

TC Total cholesterol

TG Triglycerides

t0 Before PAP treatment

t6 After six month of PAP treatment
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