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Abstract: Sunlight contains a significant amount of ultraviolet (UV) ray, which leads to various
effects on homeostasis in the body. Defense strategies to protect from UV rays have been extensively
studied, as sunburn, photoaging, and photocarcinogenesis are caused by excessive UV exposure.
The primary lines of defense against UV damage are melanin and trans-urocanic acid, which are
distributed in the stratum corneum. UV rays that pass beyond these lines of defense can lead to
oxidative damage. However, cells detect changes due to UV rays as early as possible and initiate cell
signaling processes to prevent the occurrence of damage and repair the already occurred damage.
Cosmetic and dermatology experts recommend using a sunscreen product to prevent UV-induced
damage. A variety of strategies using antioxidants and anti-inflammatory agents have also been
developed to complement the skin’s defenses against UV rays. Researchers have examined the use of
plant-derived materials to alleviate the occurrence of skin aging, diseases, and cancer caused by UV
rays. Furthermore, studies are also underway to determine how to promote melanin production to
protect from UV-induced skin damage. This review provides discussion of the damage that occurs in
the skin due to UV light and describes potential defense strategies using plant-derived materials.
This review aims to assist researchers in understanding the current research in this area and to
potentially plan future studies.

Keywords: sunlight; ultraviolet; oxidative damage; antioxidant; inflammation; melanin; photoprotection;
photoaging; photocarcinogenesis; plant extract; cosmetics

1. Introduction

Solar energy is a major factor in the environment that interacts with life and has a positive or
negative effect on the birth, growth, aging, and death of organisms [1]. Sunlight that passes through
the atmosphere and reaches the earth’s surface mainly comprises visible light and some ultraviolet
(UV) and infrared rays [2,3]. Of these, visible light and infrared rays are relatively safe for life and only
have a harmful effect under special conditions, such as the presence of photosensitizers. However,
high-levels of UV rays can lead to direct damage to living organisms.

In humans, melanin and trans-urocanic acid perform the primary defense functions in the skin
by absorbing UV rays [4,5]. The body is equipped with various enzymatic and non-enzymatic
measures to protect from the UV rays that pass through the primary lines of defense [6,7]. Damage is
inevitable if UV rays are too intense or the defenses in the skin are not sufficient, leading to negative
consequences, such as oxidative damage and disease. Therefore, enhancing the external defenses
against UV rays, rather than relying only on the skin’s own defense capabilities, is essential to prevent
UV-associated damage.

Defense strategies to protect the skin against the harmful effects of UV rays have been widely
studied [8]. In this review, we will introduce these studies, with a focus on protection against
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UV-induced toxicity using plant-derived natural products. These products are divided into several
categories, including UV absorbers, antioxidants, anti-inflammatory agents, and promoters of melanin
synthesis. Figure 1 shows the scope of this review. The aim of this review is to assist the development
of novel research plans and industrial application strategies to reduce skin damage caused by UV rays.
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2. UV-Induced Toxicity in the Skin

UV rays are categorized into UVA (315–400 nm), UVB (280–315 nm), and UVC (200–280 nm) rays,
depending on the wavelength range (ISO 21348 Definitions of Solar Irradiance Spectral Categories).
UV rays are a major cause of skin photoaging and photocarcinogenesis [9,10]. Overexposure to UV
radiation, particularly the UVB component, causes erythema, edema, hyperplasia, hyperpigmentation,
photoaging, immunosuppression, and skin cancer [11,12]. Overexposure of the skin to UV rays
stimulates the production of reactive oxygen species (ROS); increases oxidative damage of biomolecules,
such as lipids, nucleic acids, and proteins; and decreases endogenous antioxidants in the cutaneous
tissues [13–15]. Approximately 9–14% of solar UVB rays reach the dermis in the skin and can induce
inflammatory responses, such as erythema and edema [12]. Sunburn reactions are mediated by the
tumor suppressor p53 [16,17]. The p53 arrests cell cycle, allowing cells to properly repair the damaged
DNA or to remove the damaged cells, thereby reducing the risk of cancer development. Previous
studies have demonstrated that exogenous antioxidants can prevent photocarcinogenesis [18].

Intrinsic aging of the human skin, also called natural or chronological aging, is dependent on
time and genetics, whereas extrinsic skin aging is affected by environmental factors, such as solar
radiation [19]. UV radiation is a major cause of skin photoaging, which is characterized by wrinkles,
laxity, blister formation, roughness, and loss of skin tone [12,20,21]. Apart from intrinsic aging, which
is currently inevitable, photoaging can be reduced by minimizing UV exposure and maintaining proper
skin care [20]. The main issues that are targeted in the cosmetics field include wrinkles and unwanted
pigmentation, which are associated with inflammation or oxidative stress due to overexposure to UV
rays [12,20].

Skin photoaging involves alterations in the extracellular matrix composition of the dermis. UV rays
induce and activate matrix metalloproteinases (MMPs), a group of zinc endopeptidases that degrade
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extracellular matrix macromolecules, including type I collagen [22,23]. MMPs secreted from both the
dermal fibroblasts and epidermal keratinocytes participate in collagen metabolism in the skin [24,25].
MMPs play key roles in connective tissue remodeling in UV-exposed skin and cause wrinkles and
other phenotypes in photo-aged skin [26,27].

Gene expression of MMPs, such as MMP-1, -2, -3, and -9, is upregulated in UV-exposed human
dermal fibroblasts [26,27]. The cell signaling pathways involve UV-induced activation of cytokine
receptors and the subsequent activation of mitogen-activated protein kinases (MAPK), such as
extracellular signal-regulated kinase (ERK), c-Jun-N-terminal kinase (JNK), and p38 kinase [28–30].
The promoters of the MMP-1 and MMP-3 genes can be transactivated by activator protein-1 (AP-1)
complexes [29,31]. Although the initial events of this signal cascade are not fully understood, evidence
suggests that UV-damaged DNA acts as a trigger that initiates this process [32].

Keratinocytes account for 95% of the mass of cells in the human epidermis and play an important
role in maintaining skin homeostasis, through both their autocrine and paracrine effects [33]. Under
normal conditions, the constitutive production of cytokines and other soluble factors in human
keratinocytes is low; however, various stimuli, such as UV rays and endotoxins, can trigger the
expression of pro-inflammatory cytokines [34]. Certain cytokines or cell components that are secreted
from UVB-irradiated epidermal keratinocytes can regulate gene expression of dermal fibroblasts
through paracrine effects. For example, interleukin (IL)-1β, tumor necrosis factor (TNF)-α, and stratifin
are released from UV-exposed keratinocytes and stimulate MMP-1 expression in fibroblasts [35–37].

Apoptotic cell death is involved in skin photoaging [38], and typically involves changes in the
expression of the pro-apoptotic (Bax, Bak, and Bid) and anti-apoptotic (Bcl-2 and Bcl-x) members of
the Bcl-2 protein family [39]. UV-induced apoptosis is mediated by caspases in keratinocytes [40].
UV rays induce apoptosis of keratinocytes via intrinsic pathways, involving direct DNA damage;
extrinsic pathways, involving activated cell membrane death receptors; and other ROS-mediated
pathways [38,40]. Apoptosis can be detected using various markers, including DNA laddering, changes
in the expression of pro-apoptotic (Bax, Bak, and Bid) and anti-apoptotic (Bcl-2 and Bcl-x) members of
the Bcl-2 protein family, and activation of caspases [41–43].

3. Melanin as an Endogenous UV Filter

Melanin is a polymeric dark pigment produced by melanocytes [44]. Pheomelanin and eumelanin
are the major forms of melanin that are found in the skin, hair, iris of eyes, and the stria vascularis of
the inner ear, whereas neuromelanin is found in the brain. In human skin, epidermal melanocytes
are present at the junction of the dermis and epidermis [44]. The number of melanocytes per unit
area of skin does not vary greatly among individuals; however, melanocytes from individuals with
different skin colors have different activities that lead to more or less production of pheomelanin or
eumelanin [12,45].

There is a close relationship between the melanogenic activity and human skin color [46,47].
The vertical and horizontal distribution of melanin in the skin can also change the appearance of the
skin color [48]. Skin color also appears to be associated with genetic background, e.g., mutations in the
SLC24A5 and SLC45A2, which encode solute carrier proteins [49,50]. Single nucleotide polymorphisms
in these genes alter the activity of the potassium-dependent sodium–calcium exchanger and the
biogenesis of melanosomes [51,52]. Other intrinsic and extrinsic factors contribute to skin color by
regulating the expression of melanin-related genes [53].

Abnormal melanin metabolism can lead to skin pigment disorders, which are categorized into
either hyperpigmentation or hypopigmentation [53,54]. Hyperpigmentation occurs when melanin
excessively accumulates owing to various internal and external stimulatory factors [55,56]. Meanwhile,
hypopigmentation occurs when melanin production is reduced by genetic or epigenetic factors,
as observed in albinism or vitiligo [57,58].

Melanin plays an important role in the regulation of epidermal homeostasis which is associated
with the behavior of melanocytes [45,59,60]. Melanin absorbs UV radiation and dissipates energy in
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the form of heat, providing protection against UV radiation in the skin [10]. In our in vitro study, small
interfering RNA (siRNA)-mediated knockdown of tyrosinase (TYR) resulted in decreased melanin
content and viability of melanocytes exposed to UV rays [61]. The incidence of malignant melanoma is
known to be significantly lower in dark-skinned people than in fair-skinned people [62].

4. Trans-Urocanic Acid and Sunscreen Products

trans-Urocanic acid is a major acid-soluble UV-absorbing compound in the stratum corneum [63].
The photon energy absorbed by trans-urocanic acid is dissipated in the form of heat in a reversible
isomerization reaction to its cis isomer [64–66]. Histidase-deficient mice that cannot produce urocanic
acid are more prone to UV-induced DNA damage and apoptotic cell death than the wild type littermates,
supporting an essential role of urocanic acid in UV protection [67]. However, there is a controversy
surrounding whether topically applied urocanic acid has a beneficial or detrimental effect when the
skin is exposed to UV radiation [68]. Urocanic acid has been shown to mediate an immunosuppressive
effect against UV rays [69] and increase photo-carcinogenic risk in hairless mice [70].

Sunscreen products are widely used for the maintenance of skin health and beauty [71]. Cosmetic
and dermatology experts recommend using a sunscreen product to assist the skin’s own defense
against UV rays. Although current evidence suggests that both inorganic and organic agents in
sunscreen products are safe enough for daily use on the skin, there is an increasing concern regarding
the penetration of sunscreen agents into the skin and the potential harmful side effects of these
products [72,73]. Therefore, there is a need for the development of safer and more effective strategies
for UV protection.

5. UV Protection by Botanical Extracts

Numerous plant extracts or constituents have previously been demonstrated to attenuate
inflammatory responses due to UV exposure in cells, animals, and humans [74,75]. Selected studies
have investigated plant extracts and the key findings of these studies are listed in Table 1.

Table 1. Protective effects of plant-derived extracts against ultraviolet (UV) radiation-induced toxicity.

Models Materials Key Findings Literature

C57BL/6 mice, SKH-1 hairless
mice Sasa quelpaertensis Topically applied plant extracts reduced edema

and erythema in mice exposed to UV light. [76]

SKH:hr-1 hairless albino mice Propolis
The extract reduced cutaneous inflammation,
immunosuppression, and lipid peroxidation

induced by UV exposure.
[77]

SKH-1 hairless mice Broccoli sprout
Dietary glucoraphanin-rich broccoli sprout
extracts protected against UV-induced skin

carcinogenesis.
[78]

Primary keratinocytes Blackberry
Anthocyanin-rich fractions of blackberry extracts
reduced UV-induced free radicals and oxidative

damage in cells.
[79]

HaCaT human keratinocytes Gardenia jasminoides The extract displayed antioxidant,
anti-inflammatory, and anti-apoptotic effects. [41]

Human epidermal keratinocytes,
Human dermal fibroblasts Portulaca oleracea The extracts protected human keratinocytes and

fibroblasts from UV-induced apoptosis. [80]

HaCaT human keratinocytes,
Human volunteers Citrus and Rosemary The extracts protected UV-induced damage in a

skin cell model and in human volunteers. [81]

HaCaT human keratinocytes Bambusae caulis in
Taeniam

The extract enhanced the viabilities of
UVB-exposed cells and reduced the number of

apoptotic events.
[42]

HaCaT human keratinocytes,
Humans volunteers Scutellaria radix

The extract enhanced the sun protection factor
(SPF) of a sunscreen product, as determined in

human subjects.
[82]

HaCaT human keratinocytes,
Reconstituted human skin tissue Propolis The extract inhibited UV-induced photodamage. [83]
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In our study, botanical extracts derived from Sasa quelpaertensis, Althaea rosea, and Dryopteris crassi
rhizoma attenuated cytotoxicity and melanin synthesis in cultured human epidermal melanocytes
exposed to UVB rays [84]. When these plant extracts were topically applied to the ears of C57BL/6 mice
or the dorsal skin of the SKH-1 hairless mouse before and after exposure to UVB rays, they prevented
an increase in ear thickness or dorsal skin redness, suggesting that they possess anti-inflammatory
activity that reduces edema and erythema [84]. Sasa quelpaertensis extract, which contains p-coumaric
acid as one of its main constituents, had the most potent activity [76,84].

Bambusae caulis in Taeniam has been used as a health food additive and a traditional medicine for the
treatment of atherosclerosis, hyperlipidemia, hypertension, and fatigue, among other conditions [85–87].
Its bioactivity is believed to be at least partly related to potent antioxidant properties [24,88]. Bambusae
caulis in Taeniam extract, which also contains p-coumaric acid, enhanced the viability of UVB-exposed
HaCaT human keratinocytes and attenuated apoptotic events, including the cleavage of procaspase 3
to its active form and an increase in the Bax to Bcl-2 ratio [42]. It also exhibited antioxidant activity
by decreasing the generation of ROS and reducing lipid peroxidation in cells exposed to UVB [42].
Additionally, it reduced the expression of MMP1 and phosphorylation of JNK after stimulation with
UVB [42].

We have also compared the protective effects of a number of yellow plant extracts, such as
Gardenia jasminoides, Phellodendron amurense, and Rheum rhabarbarum, in HaCaT keratinocytes exposed
to UVB rays [41]. Of the plant extracts tested, Gardenia jasminoides extract had the lowest cytotoxicity
and enhanced the viability of UVB-exposed cells in a dose-dependent manner. The extract also
attenuated lipid peroxidation, the gene expression of IL-1β, TNF-α and MMP1, and UVB-induced
apoptosis, supporting its antioxidative, anti-inflammatory, and anti-apoptotic effects. Many of these
properties that Gardenia jasminoides extract exhibits against UV treatment are attributed to crocin,
a water-soluble carotenoid derivative [89]. The pharmacological effects of crocetin and crocin have
been widely investigated [90,91].

Scutellaria radix, which is the root of Scutellaria baicalensis Georgi, has been used in traditional
medicine in Asia to treat inflammatory and allergic diseases because it contains various flavonoids,
such as bailcalein and baicalin (baicalein-7-O-glucuronide) [92]. Scutellaria radix extract and its
constituents have been shown to exhibit antioxidant and anti-inflammatory effects in various
experimental models [93–95]. Scutellaria radix extract also showed UV-protective effects [96–98].
In our study, the extract of Scutellaria radix showed high UV absorptivity and free radical scavenging
activity, and attenuated UV-induced cell death of HaCaT keratinocytes [82]. The inclusion of the
Scutellaria radix extract in sunscreen cream significantly enhanced the sun protection factor (SPF),
as determined in human subjects [82].

Propolis is a mixture of pollen, resin, bee wax, and salivary gland secretions produced by honeybees
and contains various phenolic compounds [99]. Previous studies have shown that propolis and its
constituents exhibited antioxidant effects via mitigating oxidative modifications of biomolecules [77,100].
Propolis extract has also been shown to have immunomodulatory and anti-inflammatory effects under
various pathological conditions [77,101,102]. In a recent study, propolis extract significantly lowered
the total protein carbonyl content, a marker of protein oxidation, in HaCaT cells exposed to UVB
rays [83]. It also attenuated oxidative photodamage due to UVB exposure in a model of reconstituted
skin tissue [83].

An extract of Portulaca oleracea, commonly called Purslane [103], has been shown to reduce
apoptotic cell death of human fibroblasts and keratinocytes after UVB irradiation, as mitochondrial
membrane depolarization was detected by JC-1 staining, phosphatidylserine exposure was detected
by annexin V-fluorescein isothiocyanate (FITC) staining, and apoptotic DNA fragmentation was
detected using the terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay and
electrophoretic DNA ladder assay [80]. Other extracts derived from broccoli sprouts, blackberries,
citrus, and rosemary have also been shown to have UV-protective effects in keratinocytes, mice, and
humans [78,79,81].
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6. Plant-Derived Antioxidants That Protect Melanocytes

Melanocytes localized in the stratum basale of the epidermis can also be exposed to UV rays that can
increase ROS generation in the cell and deplete the endogenous pool of antioxidants [104]. UV-induced
oxidative stress of melanocytes is related to the occurrence of vitiligo and melanoma [105,106].
Mimicking these conditions by exposing melanocytes to hydrogen peroxide and using various defense
strategies with antioxidants have been important research topics in the field of dermatological sciences.

As listed in Table 2, numerous studies have reported that a variety of plant-derived compounds,
including flavonoids, such as quercetin, apigenin, (−)-epigallocatechin-3-gallate, hyperoside, afzelin,
and baicalein; iridoids, such as geniposide; and terpenoids, such as bilobalide, alleviated oxidative
stress and reduced apoptosis in melanocytes exposed to hydrogen peroxide. This experimental
evidence supports the working hypothesis that certain plant-derived antioxidants may alleviate the
oxidative stress of melanocytes in human skin exposed to UV rays.

Table 2. Cytoprotective effects of plant-derived antioxidants in melanocytes.

Materials Models Key Findings Literature

Quercetin
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p-Coumaric acid is a common secondary metabolite in plants that has been shown to have
antioxidant activity in a variety of oxidative stress models, including cell [119] and animal [120,121]
models. p-Coumaric acid attenuated UVB toxicity in human epidermal melanocytes [122] and HaCaT
human keratinocytes [123]. p-Coumaric acid also reduced erythema induction in hairless mice and
human skin exposed to UV [123–125]. Certain protein factors released from UV-irradiated keratinocytes
induced MMP-1 expression in dermal fibroblasts via paracrine effects [36,126]. Keratinocyte-releasable
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stratifin was shown to induce MMP-1 expression in target fibroblasts [127,128]. In our study, p-coumaric
acid reduced the expression and secretion of stratifin and indirectly attenuated MMP-1 expression in
fibroblasts in medium transfer experiments [43].

Cinnamic acid attenuated UVA-induced expression of MMP-1 and -3 and the degradation of
type I procollagen through inhibition of AP-1 and induction of nuclear factor erythroid 2-related factor
2 (Nrf2)-mediated antioxidant gene expression in human dermal fibroblasts [129]. Caffeic acid and
ferulic acid showed anti-inflammatory and anticarcinogenic effects in mice exposed to UV [130–134].
The incorporation of ferulic acid in a sunscreen product as an anti-inflammatory additive increased
SPF and UVA-protection factor (UVA-PF), as demonstrated in human skin [135]. Selected studies on
the protective effects of cinnamic acid, p-coumaric acid, caffeic acid, and ferulic acid against UV rays
are listed in Table 3.

Table 3. Protective effects of phenyl propanoids against UV-induced toxicity.

Compounds Models Key Findings Literature

Cinnamic acid
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8. Anti-inflammatory and Anticarcinogenic Effects of Quercetin

Flavonoids are a group of phenolic compounds derived from plants [136]. Various flavonoids
have diverse bioactivities depending on their chemical structure, and the uptake of certain flavonoids
is believed to have health benefits [137,138]. In this section, studies on the anti-inflammatory and
anticarcinogenic effects of quercetin, a representative flavonoid, will be discussed.
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In 1997, Steerenberg et al. reported that the oral administration of quercetin had no effect on the
onset or growth of non-melanoma skin tumors in SKH hairless mice exposed to sub-erythemal doses of
UVB for 17 weeks, although quercetin treatment restored the skin-associated contact hypersensitivity
to picryl chloride [139,140]. Subsequent studies by Erden Inal et al. showed that intraperitoneal
administration of quercetin reduced oxidative stress in Sprague–Dawley rats exposed to UVA for
9 days [141]. Casagrande et al. reported that the topical application of quercetin, formulated in
emulsions, attenuated UVB-induced skin damage in hairless mice (HRS/J) [142].

Quercetin has also been shown to inhibit UV-induced lipid peroxidation in liposomes in vitro,
primarily by scavenging UV-generated radical species, although it can also absorb UV radiation [143].
Quercetin decreased UV-induced nuclear factor (NF)-κB activation in HaCaT keratinocytes, thereby
suppressing gene expression of inflammatory cytokines, such IL-1β, IL-6, IL-8, and TNF-α [144].
Quercetin has also been shown to lower the levels of ROS generation in HaCaT keratinocytes exposed
to UVB and prevent the loss of cell membrane fluidity, mitochondrial membrane depolarization,
outflow of cytochrome C, and apoptosis [145].

Quercetin-loaded nanoparticles prepared using poly(D,L-lactide-co-glycolide) (PLGA) and
tocopheryl polyethylene glycol 1000 succinate (TPGS), suppressed UVB-induced NF-kB activation and
cyclooxygenase (COX) 2 expression in HaCaT keratinocytes [146]. The quercetin-loaded PLGA-TPGS
nanoparticles exhibited enhanced skin permeation and protective effects against UVB-induced damage
in the skin of mice [146]. Quercetin-loaded chitosan was shown to permeate through the cell
membrane and to inhibit the NF-kB/COX-2 signaling pathway in HaCaT keratinocytes, without
affecting cell viability [147]. It also enhanced the percutaneous penetration of quercetin and modulated
the NF-kB/COX-2 signaling pathway, ameliorating skin edema in C57BL/6 mice exposed to UVB
irradiation [147].

Based on the findings of these studies, it has been suggested that quercetin has the potential to be
used in dermatological or cosmetological approaches to attenuate oxidative stress and inflammation of
the skin due to exposure, although its activity may not be sufficient to exert anticarcinogenic effects.

9. Synthesis of Melanin

Melanin is synthesized through a series of oxidative reactions inside specialized organelles
called melanosomes [148,149]. Proopiomelanocortin-derived peptide hormones, such as α-melanocyte
stimulating hormone (MSH), β-MSH, and adrenocorticotrophic hormone, stimulate skin pigmentation
in response to UV and/or inflammatory stimuli [53,150].

The binding of an agonist to the melanocortin 1 receptor (MC1R), a G protein-coupled receptor,
initiates a series of signaling events. The activation of adenylate cyclase produces cAMP, which
in turn activates protein kinase A (PKA), which phosphorylates and activates cAMP-responsive
element-binding protein (CREB); the CREB transcription factor then induces microphthalmia-
associated transcription factor (MITF) gene expression and activation [151]. In addition to the
α-MSH/MC1R pathway, the stem cell factor (SCF)/tyrosine kinase receptor c-Kit/MAPK pathway and
the Wnt/Frizzled/glycogen synthase kinase (GSK) 3β/β-catenin pathway can activate MITF [152,153].
Other intracellular signaling pathways, such as phospholipase C (PLC)/diacyl glycerol (DAG)/protein
kinase C (PKC) β cascade and nitric oxide (NO)/cGMP/protein kinase G (PKG) cascade, are also
involved in the regulation of melanogenesis [154,155].

MITF controls the biogenesis of melanosomes as well as the gene expression of TYR, tyrosinase-
related protein 1 (TYRP1), and dopachrome tautomerase (DCT) in melanocytic cells [44,156]. TYR
catalyzes the initial steps of melanin synthesis by converting L-tyrosine and L-dihydroxyphenylalanine
(DOPA) to L-dopaquinone [157]. These reactions are followed by subsequent reactions, which may
involve thiol conjugations, leading to the synthesis of reddish-yellow pheomelanin or brownish black
eumelanin [158].
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Mature melanosomes that contain melanin pigments are delivered from a single melanocyte to
several tens of epidermal keratinocytes in close proximity, spreading melanin pigments throughout
the epidermis [159].

10. Use of MC1R Agonists to Stimulate Melanin Synthesis

Previous studies have investigated a strategy for melanoma prevention through the enhancement of
eumelanin synthesis usingα-MSH analogs that function as MC1R agonists [160]. [Nle4-D-Phe7]-α-MSH
is the first synthetic analog of α-MSH [161]. It is a linear 13 amino acid peptide and its amino
sequence, Ac-Ser-Tyr-Ser-Nle-Glu-His-D-Phe-Arg-Trp-Gly-Lys Pro-Val-NH2, is similar to that of
α-MSH. The methionine at the 4th position and L-phenylalanine at the 7th position of α-MSH
are replaced by norleucine and D-phenylalanine, respectively, to enhance resistance to enzymatic
degradation. [Nle4-D-Phe7]-α-MSH alone or in combination with UV radiation induces human
skin tanning [162]. Phase II trials found that treatment with [Nle4-D-Phe7]-α-significantly increased
melanin density and tolerance to artificial light [163].

Abdel-Malek et al. showed that tetrapeptide analogs of α-MSH, such as Ac-His-D-Phe-Arg-
Trp-NH2, n-Pentadecanoyl-His-D-Phe-Arg-Trp-NH2, and 4-Phenylbutyryl-His-D-Phe-Arg-Trp-NH2,
enhanced melanin synthesis and promoted human melanocyte survival under conditions of UV
irradiation [164]. Jackson et al. identified tetrapeptide analogs ofα-MSH that function as highly selective
MC1R agonists [165]. They showed that the pentapeptides Bz-Gly-His-D-Phe-AAB-AAA-NR1R2

exhibited potency similar to that of [Nle4-D-Phe7]-α-MSH. In an ex vivo experiment on human skin
tissue culture, Bz-Gly-His-D-Phe-D-Arg-D-Trp-N(CH2CH2CH3)2 induced the protein expression of
MITF, TYR, and TYRP-1 and enhanced the activation of Nrf2 after UVA-irradiation. Further studies
are needed to determine the in vivo efficacy of these melanogenic peptides.

11. Plant-Derived Materials that Stimulate Melanin Synthesis

The induction of melanin synthesis is an attractive strategy to alleviate UV-induced damage in
the skin [166]. Table 4 shows selected studies that investigated botanical extracts and their constituents
that were found to promote melanin synthesis in cells.

Forskolin is a diterpene compound isolated from the roots of Coleusforskohlii forskohlii, and it is a
potent activator of adenylate cyclase [167]. Increased melanin levels, as a result of forskolin treatment,
prevented the incidence of skin cancer in mice exposed to UV irradiation [168]. The promotion of melanin
synthesis could alleviate UV-induced damage that causes skin photoaging and photocarcinogenesis.

Flavonoids, such as pratol [169], apigenin-7-butylene glucoside [170], liquiritin, and liquiritigenin [171],
and coumarins, such as umbelliferone [172], promoted melanin synthesis in B16 F10 mouse melanoma
cells. Some of these compounds activated the p38, JNK, and PKA signaling pathways. However, it is
uncertain whether the rest of the compounds have similar mechanisms of action.

Gynostemma pentaphyllum saponins induced melanogenesis and activated the cAMP/PKA
and Wnt/β-catenin signaling pathways [173], and Cistanche deserticola polysaccharides induced
melanogenesis via activation of the MAPK signaling pathway and upregulation of MITF [174].
The extracts of Melia azedarach [175] and Argania Spinosa [174] induced melanin synthesis via activation
of the cAMP signaling pathways in independent studies.

To date, most of the studies that have been conducted have shown that certain botanical products
promote melanin production at the cellular level. Further studies are needed to examine whether
increased melanin levels improve the resistance of cells to oxidative damage due to UV exposure.
The identification of active constituents of these plant extracts and the exact mechanisms of action
remains to be elucidated.
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Table 4. Induction of melanogenesis by plant-derived materials.

Models Materials Key Findings Literature
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human skin tanning [162]. Phase II trials found that treatment with [Nle4-D-Phe7]-α-significantly 
increased melanin density and tolerance to artificial light [163]. 

Abdel-Malek et al. showed that tetrapeptide analogs of α-MSH, such as Ac-His-D-Phe-Arg-Trp-
NH2, n-Pentadecanoyl-His-D-Phe-Arg-Trp-NH2, and 4-Phenylbutyryl-His-D-Phe-Arg-Trp-NH2, 
enhanced melanin synthesis and promoted human melanocyte survival under conditions of UV 
irradiation [164]. Jackson et al. identified tetrapeptide analogs of α-MSH that function as highly 
selective MC1R agonists [165]. They showed that the pentapeptides Bz-Gly-His-D-Phe-AAB-AAA-
NR1R2 exhibited potency similar to that of [Nle4-D-Phe7]-α-MSH. In an ex vivo experiment on human 
skin tissue culture, Bz-Gly-His-D-Phe-D-Arg-D-Trp-N(CH2CH2CH3)2 induced the protein expression 
of MITF, TYR, and TYRP-1 and enhanced the activation of Nrf2 after UVA-irradiation. Further 
studies are needed to determine the in vivo efficacy of these melanogenic peptides.  

11. Plant-Derived Materials that Stimulate Melanin Synthesis 

The induction of melanin synthesis is an attractive strategy to alleviate UV-induced damage in 
the skin [166]. Table 4 shows selected studies that investigated botanical extracts and their 
constituents that were found to promote melanin synthesis in cells.  

Forskolin is a diterpene compound isolated from the roots of Coleusforskohlii forskohlii, and it is a 
potent activator of adenylate cyclase [167]. Increased melanin levels, as a result of forskolin treatment, 
prevented the incidence of skin cancer in mice exposed to UV irradiation [168]. The promotion of 
melanin synthesis could alleviate UV-induced damage that causes skin photoaging and 
photocarcinogenesis.  

Flavonoids, such as pratol [169], apigenin-7-butylene glucoside [170], liquiritin, and 
liquiritigenin [171], and coumarins, such as umbelliferone [172], promoted melanin synthesis in B16 
F10 mouse melanoma cells. Some of these compounds activated the p38, JNK, and PKA signaling 
pathways. However, it is uncertain whether the rest of the compounds have similar mechanisms of 
action.  

Gynostemma pentaphyllum saponins induced melanogenesis and activated the cAMP/PKA and 
Wnt/β-catenin signaling pathways [173], and Cistanche deserticola polysaccharides induced 
melanogenesis via activation of the MAPK signaling pathway and upregulation of MITF [174]. The 
extracts of Melia azedarach [175] and Argania Spinosa [174] induced melanin synthesis via activation of 
the cAMP signaling pathways in independent studies.  

To date, most of the studies that have been conducted have shown that certain botanical 
products promote melanin production at the cellular level. Further studies are needed to examine 
whether increased melanin levels improve the resistance of cells to oxidative damage due to UV 
exposure. The identification of active constituents of these plant extracts and the exact mechanisms 
of action remains to be elucidated. 
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12. Plant-Derived Materials that Attenuate Extrinsic Skin Aging

A number of plant extracts and constituents have been shown to suppress the gene expression of
MMPs in dermal fibroblasts and epidermal keratinocytes exposed to environmental factors including
UV radiation and airborne particulate matters (PM), indicating their potential skin antiaging effects.
As mentioned above, Bambusae caulis in Taeniam extract and p-coumaric acid, and Gardenia jasminoides
extract attenuated the expression of MMP-1 in UVB-exposed HaCaT human keratinocytes [41,42].
Additionally, Quercus glauca extract and rutin (quercetin-3-O-rutinoside) inhibited the UVB-induced
expression of MMP-1 in human dermal fibroblasts [177]. Geniposide was shown to attenuate
UV-B-induced photooxidative stress and MMP-2 expression in human dermal fibroblasts [178].
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In human epidermal keratinocytes exposed to PM, (−)-epigallocatechin gallate and punicalagin
lowered the mRNA expression of MMP-1 [179]. (−)-Epigallocatechin gallate also decreased the
expression of MMP-1, -2, -8, -9, and -13 in human dermal fibroblasts exposed to PM [180]. Camellia
japonica flower extract inhibited urban dust-induced MMP-1 expression in cultured human dermal
fibroblasts and in human skin explants [181]. Therefore, certain plant-derived materials can attenuate
the extrinsic skin ageing process by suppressing the expression of MMPs involved in collagen
degradation. For additional studies on the antiaging effects of plant-derived compounds, please see
other review articles [182–184].

13. Conclusions

The hypothesis that plant-derived materials with UV-absorbing, antioxidant, anti-inflammatory,
and melanin synthesis-promoting properties will alleviate UV-induced toxicity is supported by a
variety of experimental evidence from in vitro and in vivo studies. Various plant-derived compounds,
such as phenyl propanoids, flavonoids, and carotenoids, can absorb UV rays and release energy in the
form of heat. These compounds can also act as antioxidants by directly scavenging various types of
free radicals or by enhancing the intrinsic antioxidant capacity through the Nrf2-dependent pathway.
Certain plant-derived compounds, such as quercetin, can also suppress the amplification of UV toxicity
by inhibiting target enzymes involved in inflammation.

Melanocytes can be damaged by UV toxicity; however, these cells have the unique function of
synthesizing melanin, which can assist in the protection of all types of skin cells, including keratinocytes,
fibroblasts and melanocytes themselves. If melanocytes die or their ability to synthesize melanin
decreases, the skin’s UV defense capability weakens. In other words, restoring the survival of
melanocytes exposed to oxidative stress or promoting melanin synthesis will improve the overall
UV tolerance capacity of the skin. Various flavonoids, iridoids, and terpenoids have been shown to
alleviate oxidative stress and apoptosis of melanocytes exposed to hydrogen peroxide. Furthermore,
various natural products, such as flavonoids, coumarins, polysaccharides, and saponins, have been
shown to promote melanin synthesis in melanocytes.

Upon UV exposure, melanin synthesis in melanocytes acts as a defensive measure for all skin cells.
After enough melanin is produced, the melanin acts as a filter or shield against UV light. However,
during the period of melanin synthesis, when the melanin levels are not high enough for protection,
the skin still has a high risk of UV-induced damage. This means that UV-assisted tanning can harm
the skin and that “sunless tanning” is a better choice [160,168]. Natural products that can preserve
melanocyte viability under conditions of oxidative stress and can induce melanin synthesis in the
absence of UV radiation will provide a preemptive defense against UV exposure.

The regulation of melanin metabolism in the skin is important not only for skin health but also
for cosmetic purposes. A substance that rescues the viability of melanocytes and stimulates melanin
synthesis will be also useful in the prevention and treatment of hypopigmentation diseases, such as
vitiligo [185]. Conversely, these substances may not be preferable for those who want to have a clean
and light skin tone, as the promotion of melanin synthesis can lead to hyperpigmentation.

Plant-derived ingredients can be misunderstood to be safe because they are natural. However,
certain plant-derived compounds can act as prooxidants rather than antioxidants depending on
the situation [186]. In addition, they can induce cytotoxicity, cell death, inflammation, metabolic
disturbance, and carcinogenesis in certain circumstances [187]. Therefore, every plant-derived
component must be sufficiently examined from a toxicological aspect before use.

This review introduced emerging strategies for reducing UV toxicity using plant-derived materials
(Figure 3). There are various substances that have been demonstrated to prevent UV-induced oxidative
damage in epidermal keratinocytes or dermal fibroblasts, attenuate the death of epidermal melanocytes
under oxidative stress conditions, and promote “sunless” melanin synthesis in melanocytes. Although
future studies are required to verify the in vivo and clinical efficacy of these substances, emerging
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strategies using these plant-derived materials are expected to open new possibilities for the prevention
of skin photoaging and photocarcinogenesis.Antioxidants 2020, 9, x 13 of 22 
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(COXs), p53 activation, and oxidative damages in DNA and other biomolecules. These can lead to 
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provide UV-defensive measures. Research has shown that various plant-derived materials, such as 
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Figure 3. Emerging strategies using plant-derived materials to protect the skin from ultraviolet
(UV)-induced damage. Overexposure of the skin to UV radiation induces production of reactive oxygen
species (ROS), gene expression of matrx metalloproteinases (MMPs), cytokines, and cyclooxygenases
(COXs), p53 activation, and oxidative damages in DNA and other biomolecules. These can lead
to photoaging, inflammation, apoptosis, and/or photocarcinogenesis. Melanin and trans-urocanic
acid provide UV-defensive measures. Research has shown that various plant-derived materials, such
as botanical extracts, flavonoids, phenylpropanoids, carotenoids, coumarins, iridoids, terpenoids,
polysaccharides, and saponins, can help mitigate UV-induced toxicity. Plant-derived materials can
act as UV absorbers, antioxidants, anti-inflammatory agents, and/or promoters of melanin synthesis.
Future clinical studies are needed to determine whether these UV defense strategies using plant-derived
materials can reduce the incidence or progression of photoaging, inflammation, and photocarcinogenesis
in humans.
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Abbreviations

AP-1 activator protein-1
COX cyclooxygenase
CREB cAMP-responsive element-binding protein
DAG diacyl glycerol
DOPA dihydroxyphenylalanine
DCT dopachrome tautomerase
ERK extracellular signal-regulated kinase
FITC fluorescein isothiocyanate
GSK3β glycogen synthase kinase 3β
IL interleukin
JNK c-Jun-N-terminal kinase
MAPK mitogen-activated protein kinase
MMP matrix metalloproteinase
MC1R melanocortin 1 receptor
MITF microphthalmia-associated transcription factor
MSH melanocyte stimulating hormone
NO nitric oxide
NF-κB nuclear factor-κB
Nrf2 nuclear factor erythroid 2-related factor 2
PLGA poly(D,L-lactide-co-glycolide)
PKA protein kinase A
PKC protein kinase C
PKG protein kinase G
PM particulate matter
PTEN phosphatase and tensin homolog deleted on chromosome 10
ROS reactive oxygen species
SCF stem cell factor
siRNA small interfering RNA
SPF sun protection factor
TNF-α tumor necrosis factor-α
TPGS tocopheryl polyethylene glycol 1000 succinate
TUNEL terminal deoxynucleotidyl transferase dUTP nick end labeling
TYR tyrosinase
TYRP1 tyrosinase-related protein 1
UV ultraviolet
UVA-PF UVA-protection factor
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