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Abstract: Identification of thioredoxin binding protein-2 (TBP-2), which is currently known
as thioredoxin interacting protein (TXNIP), as an important binding partner for thioredoxin
(TRX) revealed that an evolutionarily conserved reduction-oxidation (redox) signal complex plays
an important role for pathophysiology. Due to the reducing activity of TRX, the TRX/TXNIP signal
complex has been shown to be an important regulator for redox-related signal transduction in many
types of cells in various species. In addition to its role in redox-dependent regulation, TXNIP has
cellular functions that are performed in a redox-independent manner, which largely rely on their
scaffolding function as an ancestral α-Arrestin family. Both the redox-dependent and -independent
TXNIP functions serve as regulatory pathways in glucose metabolism. This review highlights the key
advances in understanding TXNIP function as a master regulator for whole-body glucose homeostasis.
The potential for therapeutic advantages of targeting TXNIP in diabetes and the future direction of
the study are also discussed.
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1. Introduction

Thioredoxin interacting protein (TXNIP) was first cloned as an up-regulated gene by 1,25-dihydroxy
D3 (Vitamin D3) and named as Vitamin D3 upregulated protein 1 (VDUP1) in the human leukemia cell
line (HL-60) derived from a patient with promyelocytic leukemia [1]. Subsequentially, TXNIP was
identified as a thioredoxin (TRX) binding protein by yeast two-hybrid assay and named thioredoxin
binding protein-2 (TBP-2) [2]. Later studies identified a TBP-2 nonsense mutation gene in HcB-19
mice that confers the feature of familial combined hyperlipidemia (FCHL), and VDUP1/TBP-2 was
re-named TXNIP [3]. TXNIP was shown to lessen the reducing activity of TRX in an HL-60 cell line.
Although a later study revealed no clear evidence of the vitamin D3 responsive element (VDRE)
in the promoter of TXNIP and regulation of TXNIP expression by Vitamin D3 in other cell types
is limited [4], the direct protein–protein binding of TXNIP to TRX as well as the responsiveness to
extracellular stimulation makes it an interesting target for this study. The concept of the TRX–TXNIP
complex acting as the redox sensitive signal transducer “redoxisome” was previously discussed [5].
The fundamental function of TXNIP is to act as the oxidative stress responsive signal transducer
redoxisome, which explains the wide influence of its biological function. In addition to nuclear receptor
(NR) signaling and redox regulation, physical binding of TXNIP to the NOD-like receptor protein
3 (NLRP3) inflammasome or E3-ubiquitin ligases sheds light on TXNIP function Figure 1. In this review,
we summarize the decades of work analyzing TXNIP as a master regulator of glucose homeostasis by
integrating its function, physiological role, and diabetes development.
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Figure 1. TXNIP regulates glucose homeostasis as signal complex. The TRX/TXNIP signal complex,
redoxisome, is the basis of TXNIP regulation of the reduction–oxidation (redox) response. TXNIP has
been known to bind NOD-like receptor protein 3 (NLRP3) and activate the inflammasome. TXNIP is
a member of the ancestral α-Arrestin family and TXNIP binds to the Itchy E3 Ubiquitin Protein Ligase
(ITCH) and facilitates the ubiquitination of the substrates. TXNIP is transcriptionally regulated by
nuclear receptors (NRs) such as peroxisome-proliferator activated receptors (PPARs), glucocorticoid
receptor (GR), vitamin D receptor (VDR), and farnesoid X receptor (FXR) in a cell type specific manner.
These signal complex/transducers are involved in the physiological functions of TXNIP, including the
regulation of glucose homeostasis.

2. TXNIP/TBP-2 in Whole-Body Glucose–Lipid Metabolic Regulation

TXNIP has emerged as a master regulator for glucose and lipid metabolism, largely because
of the finding of metabolic disordering phenotypes in TXNIP mutants or gene knockout (KO)
mice. Earlier discovery of the nonsense mutation of TXNIP in HcB-19 mice revealed the important
physiological function of TXNIP in glucose–lipid homeostasis [3,6]. HcB-19 mice were identified as
a variant of the C3H strain, which exhibits a phenotype similar to familial combined hyperlipidemia
(FCHL), such as elevated levels of plasma triglyceride, cholesterol, and free fatty acids [3,6].
In addition, HcB-19 mice have an abnormal glucose metabolic phenotype, including hyperinsulinemia,
hypoglycemia, and ketosis during fasting [7–9]. Later studies revealed that many metabolic
phenotypes identified in HcB-19 are reproducible in whole-body TXNIP knockout mice (TXNIP-WKO).
With a genetic targeting strategy, we previously reported that TXNIP-WKO causes predisposition to
death with hypoglycemia, hyperinsulinemia, ketosis, and abnormal liver steatosis during fasting [10,11].
Transcriptional dysregulation of feeding-fasting transition was observed in the liver of TXNIP-WKO,
such as upregulation of the “fasting” signal, peroxisome proliferator activated receptor-alpha (PPAR-α),
in the “feeding” status and upregulation of the feeding signal, sterol response element binding protein
(SREBP), in the fasting status. Interestingly, genetic deletion or mutation of TXNIP in diabetic model
mice such as ob/ob mice [12,13], STZ-induced diabetic [13,14] mice and HFD [15,16] mice exhibited
improved glucose tolerance and remission of hyperglycemia. In addition, the correlation of the
human insulin/glucose clamp study revealed that inversed correlation of TXNIP expression and insulin
dependent glucose uptake in skeletal muscle and TXNIP expression are associated with the risk of the
pathogenesis of type 2 diabetes (T2D) in humans [17]. These findings led to the idea that suppression
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of TXNIP in the prediabetic and diabetic conditions may be beneficial for treating human diabetes.
TXNIP expression is sharply regulated in many tissues by physiological conditions, which limits
the glucose metabolism such as fasting [11] and obesity-prediabetic condition [12]. Although cell
type specificity of TXNIP expression has been observed, nutrients sensors, including (NRs) such
as peroxisome proliferator activated receptors (PPARs) [11,18], vitamin D receptor (VDR) [1,2,18],
and glucocorticoid receptor (GR) [19–21], also upregulate TXNIP transcriptional level and AMPK
downregulates TXNIP by promoting protein degradation [22]. Glucose regulates TXNIP expression
through transcriptional factor carbohydrate-response element-binding protein (ChREBP) in liver and
β cells [23,24] and through MondoA/Mlx in skeletal muscle and the heart [25]. Insulin reciprocally
suppresses TXNIP expression through insulin signaling in diverse tissues [11–13,16,26–33]. TXNIP is
induced by hypoxic conditions by hypoxia-inducible factor 1 α (HIF-1α) in endothelial cells and various
cancer cells [34–41]. HIF-1α is an important regulator of glycolysis, therefore local glucose metabolism
may also be influenced by the HIF1-α/TXNIP axis under hypoxic conditions [42]. These findings suggest
that the dynamic change of TXNIP expression is important to regulate nutritional and hormone sensing
metabolic regulation Figure 2. Although the mutation or deletion of TXNIP shows that the imbalance
of redox regulation, such as sulhydryl-redox or PTEN disulfide reduction, influences metabolic
impairment in vivo [16,43], redox-independent, tissue specific TXNIP functions in metabolic regulation
have also been widely observed. The specific role of TXNIP in metabolic tissues is discussed below.

2.1. TXNIP/TBP-2 in Immune Cells

TXNIP plays an important role in various types of immune cells. It was found that the number
of Natural Killer (NK) cells is profoundly reduced in TXNIP-WKO, which was linked to poor ability
of tumor rejection in TXNIP-WKO [44]. We previously reported that dendritic cells (DCs) derived
from TXNIP are defective in inducing T-cell responses [45]. Although these results suggest that
TXNIP is required for the maintenance of immune cell function in normal physiological conditions,
in the tumorigenic condition, TXNIP expression shows cytotoxic effects in tumorigenic immune cells.
For example, TXNIP expression is inversely correlated with hematopoietic malignancies, such as
adult T-cell leukemia (ATL), and its responsiveness to glucocorticoids to induce apoptosis in T-cell
lines infected with human T lymphotropic virus type-I (HTLV-I), the causative virus of adult T
cell leukemia (ATL) [20,21]. It is still poorly understood how these TXNIP functions in immune
cells affect metabolic phenotypes in TXNIP-WKO, while interestingly, we have previously found
that lipopolysaccharide (LPS) injection in TXNIP-WKO unexpectedly exhibited dysregulation of
the lipid and glucose metabolisms, such as hyperinsulinemia, hypoglycemia, fat deposition in the
liver and kidney, organ injuries, glycogen depletion, and elevation of serum lipid derivatives such
as free fatty acids, triglycerides, and cholesterol [46,47]. Glucose supplementation extended the
survival in TXNIP-WKO under LPS challenge. These results suggest that hypoglycemia promoted
by hyperinsulinemia may be a critical risk factor for mortality in circumstances in which fatty acid
utilization is impaired during endotoxemia in TXNIP-WKO [46]. Notably, these metabolic disorder
phenotypes resemble the phenotypes which TXNIP-WKO exhibit under fasting conditions [10,46].
These results suggest that defective immune response may contribute to the defect of metabolic
regulation in TXNIP-WKO.

A remarkable feature of TXNIP in inflammatory signaling is the physical binding with NLRP3,
a central component of inflammasome (Figure 2) [48]. The inflammasome activators, such as uric
acid crystals, induce the dissociation of TXNIP from TRX in a reactive oxygen species (ROS)-sensitive
manner and lead to the binding of NLRP3. TXNIP deficiency impaired the activation of the
NLRP3 inflammasome and the subsequent secretion of interleukin-1β (IL-1β) in macrophages.
Although TXNIP-NLRP3 inflammasome axis is independent with known NLRP3 activation by
oligomers of islet amyloid polypeptides (IAPP) [49] (a protein that forms amyloid deposits that has
been observed during type-2 diabetes in pancreatic β cells), TXNIP-NLRP3 inflammasome axis seems
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to be an important regulator for specific tissue inflammation in redox dependent and independent
manners [48,50–71].
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Figure 2. Transcriptional and post-translational modification and protein interacting domains of
TXNIP. TXNIP gene expression is regulated by various stimuli. Post-translational modifications and
protein interactions of TXNIP influence its protein stability, localization and function in a cellular and
context-dependent manner. Protein scaffolding and the biological function of TXNIP are biased in the
C-arrestin domain. Two PPxY motifs (PPCY and PPTY) of Txnip bind to the four WW domains of
E3 ubiquitin ligase, ITCH. Insulin and AMPK facilitate the protein degradation by serine 308 (S308)
phosphorylation of TXNIP. TXNIP forms disulfide bonds with reduced TRX by disulfide exchange
through its cysteine 247 (C247). Glucocorticoid–glucocorticoid responsive element (GR–GRE), heat
shock factor 1–heat shock element (HSF1–HSE), peroxisome proliferator-activated receptor γ/retinoid X
receptor α–peroxisome proliferator-activated receptor element (PPARγ/RXRα–PPRE), MLX interacting
protein/Max-like protein X (MondoA/Mlx – ChoRE) or carbohydrate-responsive element-binding
protein/Max-like protein X–carbohydrate response element (ChREBP/Mlx-ChoRE), nuclear transcription
factor Y subunit α–CCAAT motif (NF-YA–ATTGG/CCAAT), Forkhead Box O1 (FOXO1)–putative
FOXO1 binding site (FOXO).

2.2. TXNIP/TBP-2 in Pancreatic Islets

TXNIP is one of the genes most highly upregulated by high glucose stimulation in murine
and human β cells [72,73]. Glucose sensing TXNIP induction is tissue specific, and in the case of β
cells, the glucose sensor carbohydrate-response element-binding protein (ChREBP) directly binds
to the promoter region of TXNIP and enhances the gene expression [72]. ChREBP is regulated by
glucose metabolites such as glucose-6 phosphate (G6P), xylulose 5-phosphate (X5P), and fructose
2,6-biphosphate. The major regulator of glycolysis has been implicated to bind the glucose-response
activation conserved element (GRACE) of ChREBP to activate cytosolic–nuclear translocation for
further downstream regulation of β cell function including β cell proliferation/compensation and
death [74]. Glucose responsiveness of TXNIP is linked to the high glucose-induced apoptosis
induction. One of notable function of TXNIP in β cells is the induction of apoptosis in response to
high glucose [72,75]. TXNIP is induced by various kinds of stimulation and links to the apoptosis
induction by streptozotocin [14,76], ER-stress [77–79], dexamethasone/glucocorticoid [80], lipids [81],



Antioxidants 2020, 9, 765 5 of 20

inflammation/cytokines [14,82], and oxidative stress [48,83]. The stress-induced upregulation of TXNIP
is observed in the pancreatic islets during the progression of diabetes in both mice [12] and humans [17].
TXNIP deficiency is protective for β cells from mouse models of both type-1 (T1D) and type-2 diabetes
(T2D) [12,13,77]. Mechanistically, TXNIP inhibits TRX (in the cytosol, nucleus) and thioredoxin-2
(TRX2, mitochondria) and enhances oxidative stresses. TXNIP is predominantly expressed in the
cytosol and nucleus, while upon oxidative stress TXNIP shuttles to the mitochondria and interacts
with TRX2 and releases the interaction between TRX2 and apoptosis signal regulating 1 protein (ASK1),
which leads to the activation of ASK1 to induce β cell apoptosis [84,85]. TXNIP induces several
microRNAs (miRNAs) to promote β cell apoptosis. TXNIP increases expression of pro-apoptotic
miR-200, which inhibit zinc finger E-box-binding homeobox 1 (Zeb1) to promote apoptosis [86].
Although TXNIP undoubtedly controls β cell’s apoptosis, induction of apoptosis by TXNIP typically
takes from 24 h to a few days by TXNIP overexpression [12]. Since the high glucose response
TXNIP expression is rapid, TXNIP functions other than apoptotic regulation may be crucial for β cell
function. TXNIP deficiency enhances glucose-stimulated insulin secretion (GSIS) under feeding-fasting
nutritional regulation [11]. TXNIP deletion improves GSIS function in the T2D model ob/ob mice, which
contributes the amelioration of hyperglycemia [12]. These results suggest that prior to the apoptotic
induction, TXNIP acts as suppressor of GSIS, which may save glucose utilization under the fasting
and/or stress induced conditions. In addition to the physiological regulation of insulin secretion and
apoptosis, it has been reported that TXNIP mediates miR-204 induction and directly inhibits INSULIN
transcription through down regulation of MAFA [87]. TXNIP has also been shown to mediate glucose
dependent upregulation of islet amyloid polypeptide (IAPP) through miR-124a [88]. IAPP upregulation
has been suggested as a marker for functional maturation during human β cells development [89].
Accumulation of IAPP is known to promote inflammation and β cell dysfunction [49]. These important
gene regulatory functions of TXNIP have just started to be revealed. TXNIP may have differential
functions under stress or healthy physiological conditions.

2.3. TXNIP/TBP-2 in Peripheral Tissues (Muscle, Adipose, Liver)

Regulation of glucose metabolism by TXNIP in muscle is highlighted by the human glucose/insulin
physiological clamp study, which showed the dynamic regulation of TXNIP by glucose and insulin [17].
In addition, TXNIP expression is inversely correlated with glucose uptake in healthy humans and it
is upregulated in skeletal muscle of prediabetic and diabetic T2D patients [17]. TXNIP expression
in muscle cells, including vascular smooth muscle, skeletal muscle, and cardiomyocytes, is known to be
regulated by MAPK signaling and PI3K/insulin signaling. Early studies identified that glucose-induced
TXNIP expression is abolished by the P38 MAPK inhibitor PD169316 [43]. In addition, glucose-induced
TXNIP expression is upregulated by phosphoinositide 3-kinase (PI3K) inhibitor wortmanin but not
the ERK inhibitor U0126, Gi inhibition by the pertussis toxin, or protein kinase C (PKC) inhibition by
GF109203X in human aortic smooth muscle cells (SMCs) [43]. PDGF-BB enhanced phosphorylation
of PI3K/AKT in the central network of insulin signaling and reduced TXNIP transcription in both
low and high glucose conditions in SMCs [43]. Serine 308 of TXNIP was shown to be targeted for
the phosphorylation induced by insulin [32] or AMPK [22], which lead to the rapid degradation of
TXNIP protein (Figure 2). TXNIP induction by glucose is regulated by MondoA, an analog of ChREBP,
at a transcriptional level in skeletal muscle and the heart [25]. It has been reported that the mammalian
target of rapamycin (mTOR), a downstream molecule of PI3K, physically binds to MondoA in the
cytoplasm and prevents MondoA–Mlx complex formation and restricts MondoA’s nuclear entry and
reduces transcriptional activation of TXNIP [25,90]. Overexpression of TXNIP suppresses glucose uptake
while knockdown or knockout of TXNIP enhances glucose uptake in skeletal muscle and adipose
in vitro and in vivo [12,16,17,32,91]. The amount of phosphatidylinositol (3,4,5)-trisphosphate (PIP3) is
regulated by the balance of PI3K and the phosphatidylinositol 3-phosphatase PTEN [92]. Oxidation of
a small fraction of critical cysteine residues is regulated by TRX and inactivates PTEN; therefore, redox
signaling influences insulin and growth factor receptor signaling via expansion of PIP3 accumulation,
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which activates the downstream signaling kinase Akt [93–97]. It has been shown that TXNIP regulates
PTEN disulfide reduction via TRX and glucose uptake [16]. We have shown that TXNIP preserves almost
full insulin sensitivity by increasing insulin responsiveness of AKT phosphorylation under severe
insulin resistance conditions, such as ob/ob mice [12]. Regulation of whole-body insulin sensitivity by
TXNIP is modulated in white adipose tissue. Larger adipose-size phenotypes in both TXNIP-WKO and
adipose-specific TXNIP deletion (TXNIP-AKO) in control treatments and high-fat/diabetic conditions were
observed, and this phenotype displayed larger capacity for the storage of nutrients, including glucose,
compared wild type (WT) mice [12,15]. TXNIP also controls hepatic gluconeogenesis [98,99]. TXNIP-WKO
exhibited abnormal liver steatosis and impaired gluconeogenesis during fasting, which may contribute
the phenotype of hypoglycemia-induced predisposition for death [10,11]. Similarly, liver specific
TXNIP deletion (TXNIP-LKO) caused hypoglycemia and ketoacidosis, which is consistent with the
finding of poor glucose production and increased β-hydroxybutyrate release from isolated hepatocytes
from TXNIP-LKO mice [99]. Forkhead box protein O1 (FOXO1), a master transcriptional factor for
gluconeogenesis in the liver, directly regulates TXNIP expression through the binding of the promoter
region of TXNIP which contains a conserved consensus sequence, ′GTAAACAA′, of the FOXO binding
site [100,101]. Taken together, these early discoveries revealed the tight link between TXNIP expression
and glucose or insulin signaling in peripheral tissues.

2.4. TXNIP/TBP-2 in Central Nervous System

Although the direct action of the hormones in peripheral tissues is sufficient to mediate the
regulation of glucose/nutritional handling, the crucial role of the central nervous system (CNS)
in glucose homeostasis [102] has been widely acknowledged. The mediobasal hypothalamic (MBH)
TXNIP expression is changed depending on the nutritional condition. Fasting induces TXNIP
expression, whereas refeeding, leptin infusion, or insulin infusion reduces TXNIP expression in the
hypothalamus [103]. Experimental diabetes models induced by STZ, or polygenic models of obesity,
adult onset T2D, diet-induced hyperglycemia and obesity, and NONcNZO10/LtJ mice all have
MBH TXNIP expression increased at feeding status, suggesting that TXNIP is responsible for the
nutritional sensing and pathophysiological conditions in MBH [103]. TXNIP overexpression but
not C247S-mutated (binding site with TRX) TXNIP overexpression in MBH reduces the energy
expenditure and causes glucose intolerance, evidence that TXNIP regulates energy homeostasis with
TRX in a binding-dependent manner [103]. MBH comprises the arcuate nucleus of the hypothalamus
(ARH) and the ventromedial nucleus of the hypothalamus, which includes agouti related peptide
(AgRP) neurons. Later studies revealed that AgRP neuron specific TXNIP deletions generated by
AgRP-Ires-Cre mice and TXNIP flox/flox mice exhibit mild lean phenotype [104]. In addition to
nutritional sensing, the hypoxic–ischemia or excessive ROS-dependent neuron toxicity under normal
or diabetic conditions is caused by TXNIP induction [33,53,105–108]. Although these phenotypes
are caused by the CNS, it does not explain the remarkable glucose tolerance and glucose disposable
phenotype of TXNIP-WKO. CNS TXNIP may be an important player to control whole-body energy
expenditure and adiposity. Recent evidence indicates that Parkinson’s disease and diabetes, both age
and environmental stress-related chronic diseases, share remarkably similar dysregulation pathways.
TXNIP was linked with dysregulation in β-cells, peripheral tissues for diabetes, and dopaminergic
neurons, especially under high glucose conditions.

3. TXNIP/TBP-2 in Molecular Functions

3.1. TXNIP/TBP-2 as α-Arrestin, a Scaffold Protein Family

Although the TRX/TXNIP redoxisome signal complex is the primary concept of the molecular
basis of TXNIP function [5], several remarkable features of TXNIP may provide the molecular
mechanism of TXNIP in glucose homeostasis beyond redox signaling. Arrestins are protein families
of scaffolding proteins for signal transduction in organisms. For example, β-Arrestins such as
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β-Arrestin 1 and β-Arrestin 2 bind to the G-protein coupled receptors (GPCRs) and desensitize them
by multiple strategies, including preventing further activation and promoting receptor internalization
and degradation [109–112]. In addition, β-Arrestins bind to Smoothened and Frizzeled receptors,
the known seven-transmembrane-receptors (7TMRs) that mediate Hedgehog and Wnt signaling.
β-Arrestin 2 is an important regulator of insulin signaling by direct binding to the insulin receptor
(IR) [113]. Inteestingly, β-Arrestin 2 knockout (β-Arrestin 2KO) mice showed insulin resistance
when eating a normal control diet. Insulin resistance occurs in WT mice by failing to recruit the
thyrosine-protein kinase Src and the serin/threonine protein kinase Akt to the IR/β-Arrestin 2 signal
complex [113]. Another Arrestin family is called as the α-Arrestins, which consist of ARRDC1-5
and TXNIP. ARRDC3 (which is originally identified as thioredoxin-binding-protein-2-like inducible
membrane protein/TLIMP, the target of PPARγ [18]) acts as a membrane scaffold protein likeβ-Arrestins
to regulate glucose uptake in adipose tissues [114]. TXNIP may exert its regulatory effects through its
actions in the cytosol, nucleus, and mitochondria as well as intracellular matrix. It has been shown
that TXNIP translocate to the intracellular matrix to promote the internalization of GLUT1 and restrict
glucose uptake and glycolysis [115]. This novel TXNIP function at the cellular level was linked to the
extracellular remodeling during tumorigenesis and embryogenesis. At tissue level, TXNIP regulates
glucose homeostasis not only by regulating insulin signaling in adipose or muscles, but also by
regulating gluconeogenesis in the liver, insulin secretion in the pancreatic β cells, and whole-body
glucose disposals through CNS. These insights suggest that TXNIP is a more dynamic regulator of
glucose homeostasis than β-Arrestins. TXNIP directly binds to importin α, a nuclear transportation
protein providing the mechanism of nuclear shuttling from the cytosol of TXNIP [116] (Figure 2).
GFP-tagged TXNIP overexpression or HDAC inhibitor SAHA-induced TXNIP induction revealed
that TXNIP mainly localizes in the nucleus [116], suggesting that TXNIP may act as the scaffold
protein in the nucleus for regulation of gene expression. We have shown that TXNIP suppresses
PPARs signaling and activates SREBP signaling in the liver [11]. Protein purification aimed to identify
TXNIP interacting protein in the rat β cell line INS-1 revealed that the candidate nuclear proteins
binding to TXNIP include Mybbp1a, DEAD (Asp-Glu-Ala-Asp) box polypeptide 5 (Ddx5), GCN1,
and NoO/p54nrb homolog [12]. More recently, it has been identified that TXNIP forms a high molecular
weight complex (1000–1300 kDa) in redox sensitive manners [117,118]. This finding suggests that the
scaffolding function of TXNIP may be modified by oxidative stress and the physical interaction with
TRX. The shuttling of TXNIP to the mitochondria was found by H2O2 treatment in INS-1 cells and forms
the protein complex with TRX2 (mitochondrial TRX) [85]. Further identification of protein complexes
of TXNIP in different cell type with different physiological conditions may facilitate understanding of
TXNIP’s molecular function.

3.2. Protein Degradation of TXNIP/TBP-2

The α-Arrestins family of proteins includes TXNIP and conserves the PPXY sequences that are
known binding motifs of the WW domain [119–121]. Yeast Arrestin-related trafficking adaptors
(ARTs), which are the homologs of mammalian ARRDCs, have been identified to contain PPXY motifs
that interact with Nedd4-like ubiquitin ligase, Rsp5, resulting in ubiquitination and regulating the
internalization of plasma membrane proteins (cargos) and degradation in the lysosome [121]. In humans,
the NEDD family has nine members: NEDD4, NEDD4L, WWP1, WWP2, ITCH, SMURF1, SMURF2,
HECW1, and HECW2 [120]. TXNIP undergoes proteasomal degradation by polyubiquitination
through the physical interaction with the HECT ubiquitin ligase ITCH [122–125]. In contrast, TXNIP
stabilizes p53 expression by interacting with human ecdysoneless (hEcd), which is known for its role in
stabilizing p53 protein expression [126]. TRX stabilizes TXNIP protein expression, possibly preventing
the interaction between the PPXY motif of TXNIP and the WW domain of NEDD ubiquitin ligase
families [127] (Figure 2). There is growing evidence that TXNIP may act as the scaffold for proteins
when it should be undergoing proteasomal degradation when not bound with TRX. TXNIP stabilizes
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protein expression when bound with TRX in response to a variety of stress signaling in a redox
dependent manner.

4. TXNIP/TBP-2 in Clinical Work and the Future

Given the remarkable function of TXNIP for glucose homeostasis, TXNIP has been recognized as
an attractive target for treatment in both T1D and T2D. In addition, TXNIP possibly can be targeted
to metabolic disease related complications such as cardio-vasculature disease [128–131] and kidney
failure [132,133]. Verapamil was originally used for controlling ventricular rate in supraventricular
tachycardia, migraine headache prevention, treatment of high blood pressure, and angina [134,135].
Recent studies revealed that Verapamil reduces TXNIP expression in multiple cell types in vivo and
in vitro, including pancreatic β cells [76,136–141]. Since verapamil treatment in the multi low dose
streptozotocin (MLD-STZ) induced mouse model of T1D and obese T2D model ob/ob mice preserved
functional β cell mass and ameliorated hyperglycemia [76], a randomized-double blind, placebo
controlled Phase 2 clinical trial with verapamil in adult subject recent-onset T1D was performed [140].
The study found once daily oral verapamil treatment for 12 month improves endogenous β cells
insulin secretion function with a lower increase of insulin requirements and fewer hypoglycemic events
in adult individuals with recent-onset T1D [140]. Interestingly, most recent study identified a small
molecule that inhibit TXNIP expression and ameliorates hyperglycemia in both mice model of T2D
(db/db) and T1D (STZ) [141]. It was shown that SRI-37330 treatments down-regulate TXNIP mRNA and
protein level in rat β cell line as well as in mouse and human islets. The study also showed SRI-37330
reduces TXNIP-mediated glucagon secretion from α cells and suppress hepatic gluconeogenesis.
Although the mechanism how SRI-37330 inhibits TXNIP expression, the specificity for targeting TXNIP
and the molecular links between TXNIP and glucagon secretion is uncertain, these results encourage
targeting TXNIP as promising anti-diabetic therapeutics (Figure 3). However, more tissue specific
targeting of TXNIP is required for safer and efficient treatment of diabetes, since anti-oncogenic
function of TXNIP has been well known [19,94,116,142–153], which suggests that chronic TXNIP
inhibition in proliferative tissues such as the liver or intestine may increase the risk for tumorigenesis.
Tissue specific physiological role of TXNIP give us a lesson to learn the targeting tissues for each specific
condition in diabetes (Table 1). The specificity of TXNIP inhibition should be also considered since
none of the known TXNIP modulators target only TXNIP, rather broadly affecting transcriptome [154].
In addition, although drug treatments such as insulin, glucagon-like peptide-1 (GLP-1/Exendin-4),
thiazolidinediones (TZD), dipeptidyl peptidase 4 (DPP-IV) inhibitors, sodium–glucose co-transporter-2
(SGLT2) inhibitors, and metformin are successful to provide the therapeutics in T1D or T2D [155–159],
none of these therapeutics provide a “functional cure” for the diabetes, which means life-long drug
treatment to ameliorate diabetes is required for the patients. As a result, TXNIP targeting for diabetic
therapeutics should be more specific rather than treatment with inhibitors to provide a functional
cure for both T1D and T2D (Figure 3). Although, so far, the specific tissue or region targeting TXNIP
therapeutics has not been demonstrated, one such idea is using gene delivery technology combined
with genome engineering. Recent success of CRISPR associated protein 9 (Cas9) and targeted single
guide RNA (sgRNA) delivery using adeno-associated virus (AAV) in selective regions of tissues
in vivo provides evidence for the therapeutic utility of genome engineering technology [160,161].
Tissue specific TXNIP deletion in adipose or skeletal muscle exhibited powerful insulin sensitization
with no evidence of tumorigenesis, therefore AAV-CRISPR mediated TXNIP deletion in those tissues
would be beneficial for treating T2D. Using insulin promoter-driven Cas9 and TXNIP sgRNA expression
in pancreatic β cell may also be effective to sustain the functional β cell mass in both T1D and T2D
patients. Besides, direct gene editing of TXNIP in vivo, TXNIP modification in vitro may contribute for
the advanced therapeutics in diabetes. For example, regulation of TXNIP expression may optimize the
current protocol of human β-like cell generation from pluripotent stem cells. Although TXNIP-KO
mice do not show any evidence for defects of β cell differentiation, TXNIP is one of the most highly
responsive genes for high glucose and regulates both β cell function and survival. A recent study
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showed that in human pluripotent stem cells, derived insulin-producing β cells (sc-β cells) with or
without gene collection of the pathogenic variant of Wolfram Syndrome (WS) revealed a 1.5–2-fold
TXNIP gene induction by high glucose stimulation [162]. This is an encouraging observation; however,
the induction rate of TXNIP genes in response to high glucose in human β cells lines or primary human
islets are generally even higher (~10-fold) [12,72,73], suggesting that TXNIP signaling may not be fully
activated in human pluripotent stem cell-derived insulin-producing β cells. Since TXNIP has been
shown to regulate MAFA expression through miR-204 in murine and human islets [87], the current
limited expression of MAFA in hPSC-derived insulin producing cells [89,163–167] might be potentially
modified by TXNIP expression. Glucose responsiveness of TXNIP gene expression may provide the
fine tuning of glucose responsiveness of human pluripotent stem cell-derived insulin-producing β cells.
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Figure 3. Beneficial effects of TXNIP inhibition for glucose homeostasis. Known effects of TXNIP
down-regulation in glucose homeostasis are shown. TXNIP is known to be up-regulated in many tissues
of a variety of pathogenic conditions, including T1D and T2D. Broadly, TXNIP down-regulation enhances
TRX reducing activity and protects from oxidative stress. TXNIP down-regulation also enhances insulin
sensitivity and suppresses inflammation. Tissue specific TXNIP down-regulation may provide safer
treatment for T1D and T2D (yellow), and since TXNIP has anti-oncogenic functions in several tissues,
chronic whole-body TXNIP inhibition may cause serious issues for cancer development (pink).
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Table 1. Physiological role of TXNIP in normal, obese, STZ, endotoxin, ischemia, and diabetic conditions. The key physiological findings based on genetic knockout
(KO) or mutated mice are summarized. ↑ Up-regulation/Enhanced function, ↓ Down-regulation/Reduced function.

Tissue/Cell Type TXNIP Function Key Signal TXNIP Whole Body KO/Mutant TXNIP Tissue Specific KO/Mutant Reference

β cells
(Normal)

Apoptosis↑
Glucose-stimulated insulin

secretion (GSIS)↓

Mitochondria metabolism
TRX/TRX2/ROS
MAFA/miR-204
IAPP/miR-24a
Zeb1/miR-200

GSIS↑
Hyperinsulinemia↑

β cell mass↑
Apoptosis↓ [11,12,41,86–88]

β cells
(STZ/Obese/Diabetic)

Apoptosis↑
Glucose-stimulated insulin

secretion (GSIS)↓
β cells hypertrophy↓

Mitochondria
metabolism/uncoupling

AKT/Bcl-2
UPR/ER stress

GSIS↑
Hyperinsulinemia↑

Apoptosis↓

Hyperinsulinemia↑
β cell mass↑
Apoptosis↓

[12–14,78,79]

Skeletal muscle
(Normal) Insulin sensitivity/Glucose uptake↓

AKT/GLUT4
PTEN
AMPK

Insulin Sensitivity↑ Insulin Sensitivity↑ [12,16,32,91,130]

Skeletal muscle
(Obese/Diabetic)

Insulin sensitivity/Glucose uptake↓
(Insulin Resistance↑)

AKT/GLUT4
PTEN Insulin Sensitivity↑ [12,16]

Adipose
(Normal)

Insulin sensitivity/Glucose uptake,
Adipogenesis↓ AKT/GLUT4 Insulin Sensitivity↑ [11,12,16,32]

Adipose
(Obese/Diabetic)

Insulin sensitivity/Glucose uptake↓
(Insulin Resistance↑) AKT/GLUT4 Insulin Sensitivity↑ Insulin Sensitivity↑ [12,15]

Liver
(Normal)

Gluconeogenesis↑
Lipogenesis↓

FOXO1
SREBP
PPARα

AKT

Abnormal steatosis in fasting Normal glycemica, Hypoglycemia in
fasting [7–11,16,43,98,99]

Liver
(Obese/Diabetic)

Gluconeogenesis↑
Lipogenesis↓ PRMT1/PGC1a Lipogenesis↓ [12]

Immune cells
(Normal)

Inflammation↓
Tumor rejection↑

Hematopoetic Stem Cells↓

NLRP3 inflammasome
TRX/ROS

P38

NK cells↓
T-cell response↓ [44–48]

Immune cells
(Obese/Diabetic/Endotoxin) Inflammation↓ PI3K/ROS

NO

Resistant to P. aeruginosa-induced
bacteremic shock

Metabolic disordering by LPS
[46,47]

Brain
(Normal) Glucose uptake↓ TRX/ROS

AKT/GLUT4 Glucose uptake↑ [32]

Brain
(Obese/Diabetic)

Energy expenditure↑
Adipogenesis↓
Body Weight↑

Insulin resistance↑

TRX/ROS
Hypothalamus:Body Weight↓

Insulin resistance↓ AgRP Neuron: Energy
expenditure↓ Adipogenesis↓

[103–105]

Heart
(Normal)

Fatty Acid oxidation↓
Glucose Oxidatation↑ miR33/AMPKα

Fatty Acid oxidation↑
Glucose Oxidatation↓ [131]

Heart
(Obese/Diabetic/Ischemia) Mitochondria↑ Resistant for ischemia-reperfusion injury [128–130]
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5. Conclusions

After the discovery that TXNIP/TBP-2 is a binding partner of the antioxidant TRX, the TRX/TXNIP
signal complex in redox-dependent (redoxisome) and -independent pathways has been studied.
Current emerging evidence clearly suggests that TXNIP is a central master regulator of whole-body
glucose homeostasis in both rodents and humans. To further facilitate therapeutics to provide
a functional cure for diabetes, more sophisticated TXNIP-targeting therapeutics should be developed
using state-of-the-art biotechnology. We still do not fully understand the basic molecular mechanisms
of how TXNIP interacts with other proteins, responding various stimuli in the different cell types
and different cellular localizations. Of great interest, probably TXNIP function to inhibit TRX activity
by direct binding is important not only for their redox sensitive regulation, but also for their redox
independent function thorough structural changes of protein complex. Further investigation of
redox-dependent and -independent scaffolding functions of TXNIP may give us deeper insights of the
molecular functions of TXNIP in pathophysiology and future therapeutics for diabetes.
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