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Abstract: Vibrio anguillarum (V. anguillarum) is a bacterium that seriously harms flounder and other
aquaculture species. Vaccination is an effective means of preventing vibriosis and is mainly adminis-
tered by intraperitoneal injection. Effective antigen processing at the initial stage of immunization is
essential to elicit adaptive immune responses and improve vaccine efficacy. To understand the early
immune response of flounder caused by inactivated V. anguillarum, we detected the transcriptome
profiles of the cells in the peritoneal cavity (PoPerCs) after inactivated V. anguillarum immunization.
More than 10 billion high-quality reads were obtained, of which about 89.33% were successfully
mapped to the reference genome of flounder. A total of 1985, 3072, 4001, and 5476 differentially
expressed genes were captured at 6, 12, 24, and 48 h post immunization, respectively. The hub module
correlated with the immunization time was identified by WGCNA. GO and KEGG analysis showed
that hub module genes were abundantly expressed in various immune-related aspects, including the
response to stimuli, the immune system process, signal transducer activity, autophagy, the NOD-like
receptor signaling pathway, the toll-like receptor signaling pathway, the T cell receptor signaling path-
way, and Th17 cell differentiation. Additionally, genes related to Th cell differentiation are presented
as heatmaps. These genes constitute a complex immune regulatory network, mainly involved in
pathogen recognition, antigen processing and presentation, and Th cell differentiation. The results of
this study provide the first transcriptome profile of PoPerCs associated with inactivated V. anguillarum
immunity and lay a solid foundation for further studies on effective V. anguillarum vaccines.

Keywords: peritoneal cells; RNA-seq; immune response; fish

1. Introduction

The flounder (Paralichthys olivaceus), an economically important marine fish, is mainly
cultured in the north of China [1]. Vibriosis is a deadly hemorrhagic septicaemic disease
that continuously damages flounder culture, causing severe negative consequences for
industrial production [2]. Vibrio anguillarum (V. anguillarum), a Gram-negative, rod-shaped
bacterium, is one of the main causative agents of vibriosis in many marine fish species,
including various species of economic importance in the aquaculture industry, such as sea
bass (Dicenthrarchus labrax), carp (Cyprinus carpio), rainbow trout (Oncorhynchus mykiss),
Atlantic salmon (Salmo salar), Atlantic cod (Gadus morhua L.), ayu (Plecoglossus altivelis),
turbot (Scophthalmus maximus), and flounder (Paralichthys olivaceus) [3–6].

To prevent vibriosis caused by V. anguillarum, many studies have been carried out,
which have largely focused on developing safe and efficient V. anguillarum vaccines [7–9].
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Vaccines, as safe and environmentally friendly biological agents, offer numerous advan-
tages compared to other biological approaches, including precise targeting and durable
immune protection [10]. Currently, although vaccines have evolved from traditional in-
activated and live vaccines to subunit vaccines and nucleic acid vaccines (DNA vaccines
and RNA-based vaccines), inactivated vaccines still represent the predominant type of
licensed Vibrio vaccines [11]. We all know that inactivated vaccines are produced from
intact infectious bacteria or viruses, which are rendered non-pathogenic through physi-
cal or chemical methods after amplification and cultivation, while still preserving their
antigenicity. Inactivated vaccines are safe for use, easily stored, and can enable recipients
to generate humoral immune responses, while posing no risk of contamination [12]. The
administration of inactivated vaccines primarily occurs through intraperitoneal injection
(i.p.), and this process can be accurately simulated using computer mathematical models,
enabling improved optimization of vaccination dosage and timing [11,13]. Teleosts possess
resident peritoneal cavity cells (PerCs) including lymphocytes, granulocytes, macrophages,
and dendritic cells, which play a role in antigen presentation and pathogen clearance in
the early stages of immunity or infection [14]. Elucidating the mechanism of inactivated
V. anguillarum after i.p. delivery, especially the role of PerCs, for the cells first exposed
to foreign antigens, would contribute to the optimization of vaccination, and therefore
deserves intensive studies.

Transcriptome analysis is a powerful tool for uncovering the relationship between
gene responses and external stimuli, leading to a better understanding of the underlying
molecular mechanisms of host–pathogen interactions [15]. It has been employed to inves-
tigate immune-related genes and signaling pathways in the head kidney and spleen of
teleosts after immunization with inactivated vaccines. For instance, bivalent-inactivated
Aeromonas salmonicida and V. anguillarum vaccines have been shown to activate the rainbow
trout complement system and up-regulate TCRα, T-bet, and HSP90 in the head kidney [16].
Additionally, differential genes in the Atlantic salmon spleen elicited by immunization with
inactivated Aeromonas salmonicida vaccine were significantly enriched in cytokine–cytokine
receptor interaction, the MAPK signaling pathway, PI3K-Akt signaling pathway, and TNF
signaling pathway [17]. However, transcriptome analysis of PerCs from teleosts after
immunization has not been reported.

In this study, our objective was to identify key genes in flounder PerCs (PoPerCs)
associated with the initial stages of inactivated V. anguillarum immunization at the tran-
scriptional level. We identified hub modules using WGCNA and analyzed their biological
functions and signaling pathways through GO and KEGG. Furthermore, we presented the
key genes of the main KEGG pathway in the form of heat maps. This study enhances our
understanding of the immune response of PoPerCs induced by inactivated V. anguillarum
and provides a valuable reference for optimizing inactivated V. anguillarum vaccines.

2. Materials and Methods
2.1. Ethics Statement

The use of fish in this study strictly adhered to the recommendations outlined in
the Guidelines for the Use of Experimental Animals of Ocean University of China. The
protocol for animal care and handling used in this study was approved by the Committee
on the Ethics of Animal Experiments of Ocean University of China (permission number:
20190101). Before injection and sampling procedures, the fish were anesthetized by using
100 mg/L MS222 (Sigma, St. Louis, MO, USA). Every effort was made to minimize any
potential suffering and ensure the well-being of the animal.

2.2. Experimental Fish

Healthy flounders, 25–30 cm in length, were obtained from a farm in Qingdao, Shan-
dong Province, China. These fish were acclimated in tanks filled with aerated seawater at
20 ◦C and were fed commercial feed. Prior to the experiment, flounders were randomly
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selected and underwent standard microscopic and bacteriological examinations to ensure
they were not infected with V. anguillarum.

2.3. Inactivated Bacteria Immunization and Sample Collection

V. anguillarum strain had been previously isolated from diseased flounder and was stored
in our laboratory [18]. Inactivated V. anguillarum was prepared as previously described [13].
Briefly, V. anguillarum resuspended in 0.01 M phosphate-buffered saline (PBS) with a pH of 7.2
to reach a concentration of 1 × 109 CFU/mL was treated with 0.5% formalin at 30 ◦C for 48 h.
After being washed three times with PBS, the inactivated bacteria suspension was adjusted to a
concentration of 1.0 × 108 CFU/mL and stored at 4 ◦C until use.

For immunization and RNA-seq analysis, each fish was injected intraperitoneally with
100 µL of inactivated bacteria suspension. The PoPerCs were sampled from nine fish at
each of the specified time points (0, 6, 12, 24, 48 h) after immunization, with three fish
combined as a separate sample. These sampling groups were labeled IV-0 (control), IV-6,
IV-12, IV-24, and IV-48. All collected cells were immediately frozen in liquid nitrogen and
subsequently stored at −80 ◦C.

In accordance with the specified time points and sampling strategies, the intestine,
spleen, head kidney, and peripheral blood leukocytes (PBLs) were isolated to detect the
expression of Th cell differentiation-related genes in various body compartments, including
the blood, mucosae, and lymphoid organs. The isolation procedure for PoPerCs and PBLs
was carried out as previously described [19,20]. All samples were promptly frozen in liquid
nitrogen and stored at −80 ◦C until RNA isolation.

2.4. RNA Extraction, Library Construction, and Sequencing

Total RNA was extracted from each sample using the TRIzol Reagent Kit (Invitrogen,
Carlsbad, CA, USA) following the manufacturer’s instructions. The quality and integrity of
the RNA were assessed using a nanodrop spectrophotometer (Nanodrop, Wilmington, NC,
USA) and an Agilent 2100 Bioanalyzer (Agilent, Santa Clara, CA, USA). Total mRNA was
enriched using Oligo(dT) beads. Subsequently, the enriched mRNA was fragmented into short
fragments using a fragmentation buffer and reverse transcribed into cDNA with the NEBNext
Ultra RNA Library Prep Kit for Illumina (NEB, Ipswich, MA, USA). Purified double-stranded
cDNA fragments underwent end repair, had an A base added, and were ligated to Illumina
sequencing adapters. The ligation reaction was purified with the AMPure XP Beads (1.0×).
Ligated fragments were size selected through agarose gel electrophoresis and polymerase chain
reaction (PCR) amplification. The resulting cDNA library was sequenced using an Illumina
Novaseq6000 by Gene Denovo Biotechnology Co. (Guangzhou, China).

2.5. Transcript Assembly and Correlation Analysis of Samples

The reads obtained from the sequencer consist of raw data that may include adaptors
or low-quality bases, thereby impacting subsequent assembly and analysis. To address this,
we employed fastp (version 0.18.0) [21] to filter out low-quality reads containing adapters
or having more than 10% unknown nucleotides (N), as well as reads consisting of 50%
or more low-quality bases (Q-value ≤ 20). Subsequently, we conducted Q20, Q30, and
GC-content calculations using the resulting clean data. The clean reads were then aligned
to the flounder reference genome using HISAT2.2.4 [22] with the default parameters and
the addition of “-rna-strandness RF”.

We performed correlation analysis using the R package to evaluate the reproducibility
between samples. Correlation coefficients were computed to assess the level of repro-
ducibility between the two parallel experiments, with a correlation coefficient closer to
1 indicating higher reproducibility.

2.6. Differentially Expressed Genes and WGCNA Analysis

FPKM (fragments per kilobase of transcript per million mapped reads) values were
calculated for each transcribed region using RSEM software to quantify the gene expression
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abundance and variation [23]. Differentially expressed gene (DEG) analysis between two
distinct groups was carried out using DESeq2 software (version 1.40.2) [24], and genes
with p values below 0.05 and an absolute fold change ≥ 2 were classified as differentially
expressed genes.

The weighted gene co-expression network was constructed using the WGCNA v1.47
package in R [25], where genes exhibiting similar expression patterns were grouped into
modules. Co-expression modules were constructed using the blockwiseModules func-
tion with default settings, except for the power set to 8, TOMType set as unsigned, and
minModuleSize set to 50. Correlation analysis was conducted using the module eigen-
gene in relation to post immunization times. Modules exhibiting a Pearson correlation
coefficient (R) > 0.5 and a p-value < 0.05 were deemed to be strongly correlated with the
inactivated V. anguillarum immunization times. These modules showing a high correlation
with immunization time were designated as hub modules.

2.7. GO and KEGG Enrichment Analysis

The hub module genes underwent GO and KEGG enrichment analysis. GO enrich-
ment analysis within the hub modules identified significantly enriched genes associated
with specific biological functions [26]. KEGG analysis within the hub module identified
metabolic pathways or signal transduction pathways significantly enriched among the
hub module genes [27]. The identification of significantly enriched GO terms and KEGG
pathways was conducted through a hypergeometric test with a threshold of p ≤ 0.05.

2.8. Quantitative Real-Time PCR (qPCR)

To validate the reliability of the transcriptome data, we selected T helper (Th) cell
differentiation-related genes (NOD2, TLR2, MHC-II, ATG5, GABARAPL1, TCRβ, CD4-1,
STAT4, and RORα) for qPCR analysis using the Light-Cycler® 480 II Real-Time System
(Roche, Basel, Switzerland). Each reaction comprised 10 µL of 2 × Universal SYBR Green
Fast qPCR Mix, 2 µL of cDNA template, 0.4 µL each of forward and reverse primers, and
7.2 µL of DEPC water. The reaction protocol consists of a pre-denaturation at 95 ◦C for
3 min, followed by 40 cycles of annealing at 95 ◦C for 5 s, and an extension at 60 ◦C for
30 s. All reactions were carried out in triplicate. The expression levels of these genes
were analyzed using the 2−∆∆Ct method with β-actin serving as the internal control. The
information about primers is provided in Table 1.

Table 1. Primers used for the qPCR analysis of selected genes.

Name Sequence (5′-3′) Accession Number Amplicon Length (bp)

NOD2-F TGGTAGGTAATGGTGTAGGGAATG XM_020079852.1 138NOD2-R CCAGGGCTTGAACCAGACTTT
TLR2-F CATGGAAACAGAGTAGCTGGGATT XM_020112938.1 151TLR2-R TGTGGAGCAGGTTGAGACGC

MHC-II-F CTATCACTATTGTGGGCTGCTTTG XM_020093263.1 190MHC-II-R TGCTCTGCTTTCTTGACACCTTT
ATG5-F CCTCCACTGTCCGTCCAACT XM_020093489.1 256ATG5-R CGGTCTATCACTCATCGTCTGG

GABARAPL1-F TGTGCTTCCTCATCCGTCAG XM_020093139.1 126GABARAPL1-R CCTCTTCATGGTGCTCCTCATA
TCR β-F CCCCACTACATCTCAAGGTTTCC XM_020105957.1 151TCR β-R CAAAGTTTACACTGCTGCCCAC
CD4-1-F CCAGTGGTCCCCACCTAAAA XM_020093150.1 82CD4-1-R CACTTCTGGGACGGTGAGATG
STAT4-F CCAGCAAAGTCCATCCATACA XM_020099666.1 151STAT4-R TCGAAGCACAGATGCTCGTTT
RORα-F CCTTACTGCTCCTTCACCAACG XM_020079419.1 252RORα-R GGCGAACTCCACCACATACTG
β-actin-F GAGGGAAATCGTGCGTGACAT AF135499.1 142β-actin-R ATTGCCGATGGTGATGACCTG

2.9. Statistical Analysis

Statistical analysis was performed by using one-way ANOVA and Tukey’s multiple
comparison tests in IBM Statistical Product and Service Solutions (SPSS) Statistics for
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Windows, version 20.0 (IBM, Armonk, NY, USA). The data are presented as mean ± SD,
and statistical significance was defined as p < 0.05.

3. Results
3.1. Transcriptome Sequencing Quality

A total of 120,880,346,400 raw data were generated by the transcriptome sequencing
of 15 PoPerCs samples (see Table 2). After removing low-quality data, each sample retained
between 6,600,187,229 and 10,459,182,090 clean data reads; these clean reads exhibited Q20
and Q30 values higher than 97.16% and 92.38%, respectively. The average GC content
across all samples was 47.74%. The unique mapping rate for each sample within the
flounder reference transcriptome ranged from 89.33% to 90.33%, with a total mapping rate
exceeding 91.15%. Moreover, the Pearson correlation coefficients (R) for the relationships
between samples within each group exceeded 0.85 (see Figure 1), indicating a high level of
reproducibility among samples within each group. These results confirm the acquisition of
high-quality transcriptome data, suitable for further analyses.

Table 2. Summary of transcriptome data from PoPerCs samples.

Sample Raw Data (bp) Clean Data (bp) Q20 (%) Q30 (%) GC (%) Unique Mapped (%) Total Mapped (%)

IV-0-1 7,885,244,100 7,787,759,502 97.16 92.38 47.89 89.53 91.34
IV-0-2 6,677,778,000 6,600,187,229 97.55 93.22 47.92 90.05 91.83
IV-0-3 7,790,959,800 7,684,573,272 97.45 93.05 47.90 89.62 91.43
IV-6-1 8,263,775,700 8,155,916,011 97.35 92.88 47.61 89.33 91.15
IV-6-2 8,468,135,100 8,371,786,696 97.65 93.46 47.64 89.64 91.53
IV-6-3 7,501,817,700 7,405,558,922 97.45 93.10 47.60 89.40 91.19

IV-12-1 9,283,881,900 9,172,219,940 97.47 93.13 47.93 89.96 91.83
IV-12-2 7,436,369,400 7,352,695,274 97.36 92.87 47.75 89.56 91.41
IV-12-3 8,982,513,000 8,889,939,324 97.55 93.19 47.79 89.85 91.7
IV-24-1 10,557,306,600 10,459,182,090 97.38 92.91 48.01 90.01 91.89
IV-24-2 8,221,355,100 8,141,427,164 97.56 93.38 47.61 90.33 92.12
IV-24-3 7,957,429,800 7,864,449,269 97.20 92.46 47.98 90.16 91.97
IV-48-1 6,749,397,000 6,677,417,329 97.46 93.12 47.70 90.04 91.82
IV-48-2 8,024,550,900 7,930,624,583 97.22 92.59 47.40 89.59 91.36
IV-48-3 7,079,832,300 7,002,516,806 97.28 92.62 47.41 89.94 91.66
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3.2. Differentially Expressed Genes at Different Times after Immunization

As shown in Figure 2A–D, volcano plots were used to visualize the differentially
expressed genes (DEGs) between the control group (IV-0) and the four treatment groups
(IV-6, IV-12, IV-24, and IV-48). The total DEGs identified in the IV-0 vs. IV-6, IV-0 vs. IV-12,
IV-0 vs. IV-24, and IV-0 vs. IV-48 comparisons were 1985 (922 up-regulated and 1063 down-
regulated), 3072 (1482 up-regulated and 1590 down-regulated), 4001 (3065 up-regulated and
936 down-regulated), and 5476 (4145 up-regulated and 1331 down-regulated), respectively
(Figure 2E).
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3.3. Gene Co-Expression Modules Post Immunization

A total of 21 co-expression modules, each containing 95 to 11,616 genes, were identified
through WGCNA based on the analysis of 20,814 genes from 15 samples (see Table 3). The
association between module eigengene and immunization time was assessed to determine
their correlations. The blue (R = 0.71, p = 0.003) modules demonstrated a significant corre-
lation with immunization time (Figure 3A), and were therefore selected as hub modules
for further analysis. Specifically, the expression of most genes within the blue module
eigengene was up-regulated at 24 h and 48 h post-immunization (Figure 3B).
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Table 3. Number of genes in each WGCNA module.

Module Gene Number Module Gene Number Module Gene Number

Blue 11,616 Magenta 359 Royal blue 238
Brown 2093 Purple 354 Dark red 237

Red 1520 Green–yellow 329 Dark green 230
Green 693 Salmon 300 Dark grey 194

Dark turquoise 506 Cyan 290 Dark orange 180
Black 498 Grey60 260 White 178
Pink 385 Light green 259 Saddle brown 95
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3.4. Enrich Classification Hub Modules Genes

To uncover the functions of hub module genes and the immune-related pathways
they are involved in, GO and KEGG enrichment analyses were performed for these hub
module genes. The Go terms were mainly classified into three groups: biological process
(BP), molecular function (MF), and cellular component (CC). As shown in Figure 4A, the
BP category contained hub genes associated with the cellular process, response to stimulus,
signaling, and immune system process, along with other processes. The MF category
included hub genes involved in binding, catalytic activity, signal transducer activity, and
nucleic acid binding transcription factor activity. In the CC category, hub genes were
related to cellular components such as cells, membranes, extracellular regions, and macro-
molecular complexes. The KEGG enrichment results revealed the top 20 immune-related
pathways for blue module (Figure 4B). Genes within the blue module were significantly
enriched in pathways such as autophagy, the NOD-like receptor signaling pathway, the
toll-like receptor signaling pathway, the T cell receptor signaling pathway, and Th17 cell
differentiation (p < 0.05).

3.5. Expression of T Helper (Th) Cell Differentiation-Related Genes

Based on KEGG annotations, we further screened genes related to the pattern recognition
receptor (PRR), autophagy, antigen processing and presentation (APP), the T cell receptor sig-
naling pathway, Th17 cell differentiation, as well as Th1 and Th2 cell differentiation. In the PRR
category, genes such as NLPX1, NLPR12, NLRC3, and TLR2 exhibited up-regulated expression
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at 48 h post-immunization, whereas NOD1 and NOD2 showed up-regulated expression at 6 h
(Figure 5A). Hub genes in the MHC-I pathway included HSC70, MHC-I, CALR, and CANX.
The expression of these genes as well as their downstream genes (CD8α, CD8β, and IFNγR1)
exhibited earlier up-regulated genes involved in the MHC-II pathway and Th cell differentiation
(see Figure 5B,D–F). These latter genes included MHC-II, STAT4, STAT5B, STAT6, CD4-1, TCRβ,
NFATC, and RORα. Interestingly, the expression of genes related to autophagy such as BECN1,
ULK1, ATG5, ATG16L1, and GABARAPL1 also exhibited up-regulation at either 24 or 48 h
post-immunization (see Figure 5C).
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3.6. Validation of Gene Expression Profiles by qPCR

The expression profiles of NOD2, TLR2, MHC-II, ATG5, GABARAPL1, TCR β, CD4-1,
STAT4, and RORα was further examined by qPCR, as these genes are closely related to
the PRR, antigen processing and presentation, and Th cell differentiation. The results
largely confirmed expression patterns of the selected genes in RNA seq (see Figure 6).
Specifically, the expression of TLR2, ATG5, GABARAPL1, TCRβ, CD4-1, STAT4, and RORα
was significantly up-regulated at 48 h after immunization (p < 0.05). The expression
of NOD2 was significantly up-regulated at 6 h post-immunization, followed by down-
regulation at both 24 and 48 h (p < 0.05). Moreover, MHC-II exhibited significant up-
regulation at 6, 24, and 48 h after immunization (p < 0.05). The expression profiles of these
genes in intestine, spleen, head kidney and peripheral blood leukocytes (PBLs) is illustrated
in Figure S1. These findings indicated that genes related to Th cell differentiation were
expressed to various degrees in the blood, mucosae, and lymphoid organs within 48 h
following the inactivation of Vibrio anguillarum.
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4. Discussion

In the early stages of vertebrate immunity, antigen processing occurs through both
innate and adaptive immunity [28]. Serving as key participants in both innate and adaptive
immune responses, PerCs play an important role in the early stage of i.p. immunization [13].
In this study, we conducted a transcriptome analysis to investigate the immune response of
PoPerCs from flounder following the immunization with inactivated V. anguillarum with
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a focus on the first 48 h. The RNA-Seq data generated a total of 119,496,253,411 high-
quality clean reads, and these reads were well annotated, benefiting from the flounder’s
whole genome sequence [29]. These data provide a valuable resource for exploring the
genetic landscape of PoPerCs and an in-depth understanding of gene expression profiles
post-immunization with inactivated V. anguillarum. Furthermore, these findings lay a
strong foundation for further vaccine-related research. The reliability and accuracy of
RNA-seq data were confirmed by qPCR results, which can be used for subsequent analyses.
We identified 14,561 DEGs, with 7210 DEGs (comprising 75% of all up-regulated DEGs)
exhibiting up-regulation at 24 h and 48 h post-immunization. To further screen out the hub
genes following immunization with inactivated V. anguillarum, we conducted WGCNA
resulting in a total of 21 co-expression modules. One of these modules exhibited a significant
correlation with the immunization time, and its gene expression pattern closely resembled
that of DEGs, with up-regulation at 24 h and 48 h post-immunization. Consequently, the
genes within this module were designated as hub genes for subsequent analysis. The
identified immune-related hub genes were primarily associated with pathways such as
NOD-like receptor signaling, toll-like receptor signaling, autophagy, lysosome, antigen
processing and presentation, T cell receptor signaling, and Th17 cell differentiation.

The initial step in mounting an effective immune response is the timely recognition
of the pathogen. Typically, the innate immune system identifies pathogen-associated
molecular patterns (PAMPs) through a series of pattern recognition receptors (PRRs) [30].
Our study identified a total of six classical PRR genes associated with the immunization
of V. anguillarum, namely, NOD1, NOD2, NLRX1, NLRP12, NLRC3, and TLR2. Previous
studies have reported that NOD1 is capable of responding to Gram-negative bacteria and
may play a crucial role in recognizing LPS [31]. Further studies have demonstrated that
muramyl dipeptide (MDP), a peptidoglycan motif found in both Gram-negative and Gram-
positive bacteria, can effectively activate NOD2 [32]. In mammals, NLRX1, NLRP12, and
NLRC3 have been identified as negative regulators of the NF-κB signaling pathway [33].
In our study, after immunization with inactivated V. anguillarum, the expression of NLRX1,
NLRP12, and NLRC3 was down-regulated at 6 h and 12 h, while the expression of IKBKB and
IKBKG genes showed the opposite trend (see Figure 5D). IKBKB and IKBKG belong to the
nuclear factor kB (IKB) kinase (IKK) family, which can lead to ubiquitination and protease
resolution of IKB, ultimately resulting in the release and activation of NF-κB [34]. Therefore,
NLRX1, NLRP12, and NLRC3 are likely to perform similar regulatory functions from fish
to mammals. TLR2 in teleosts is typically located on the cell membrane and primarily
involved in recognizing various ligands in bacteria [35]. Studies in other fish species like
mrigal (Cirrhinus mrigala) and rohu (labeo rohita) showed that TLR2 expression was induced
following exposure to PGN and LTA, as well as Gram-positive or Gram-negative bacterial
infection [36,37]. In the orange-spotted grouper (Epinephelus coioide), TLR2 expression
was also up-regulated in response to LPS, Poly(I:C), and Vibrio alginolyticus [38]. The
observed up-regulation or down-regulation of NOD1, NOD2, NLRX1, NLRP12, NLRC3,
and TLR2 mRNA within 48 h suggests that PoPerCs can effectively recognize inactivated V.
anguillarum and trigger an immune response.

The genes belonging to the major histocompatibility complex family, responsible
for the recognition and presentation of foreign antigens, are important components of
the vertebrate adaptive immune system [39]. In higher vertebrates, it has been reported
that MHC-I molecules bind peptides consisting of 8–11 amino acids, which subsequently
interact with TCRs found on CD8+ T lymphocytes. Conversely, MHC-II molecules bind
longer peptides ranging from 12 to 25 amino acids, and interact with TCRs of CD4+ T
lymphocytes [40]. There is substantial evidence suggesting that MHC-I and II molecules
perform similar functions in both fish and mammals [41]. In the Antarctic bullhead notothen
(Notothenia coriiceps), it has been observed that inactivated Escherichia coli activates genes
involved in both MHC-I and MHC-II antigen processing and presentation pathways [42].
Similarly, live attenuated V. anguillarum has been shown to up-regulate the expression of
genes related to both MHC-I and II in zebrafish (Danio rerio) [43]. In our study, we found that
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inactivated V. anguillarum could up-regulate the expression of genes related to the MHC-I
pathway (HSC70, MHC-I, CANX, CD8α, etc.) and MHC-II (CTSB, MHC-II, CD4-1, etc.)
pathway. Interestingly, their expression did not show simultaneous up-regulation. This
indicates that inactivated V. anguillarum induces a specific immune response in flounder
through both MHC-I and II pathways.

Autophagy is a highly conserved self-digestion process and it involves lysosomal
degradation of cytoplasmic material [44]. One of its non-canonical functions is its partici-
pation in APP for MHC-II activation of CD4+ T cells. This activation is through a process
known as LC3/GABARAP-associated phagocytosis (LAP), relying on key autophagy-
related molecules such as ATG5 and ATG16L1 [45,46]. In mammals, dendritic cells deficient
in ATG5 are less efficient at presenting extracellular antigens to CD4+ T cells [47]. More-
over, both human and mouse studies have found that ATG16L1 is also essential for the
efficient presentation of MHC-II in dendritic cells and macrophages during LAP-mediated
antigen processing [48]. In zebrafish, LAP has been identified as the primary host pro-
tective autophagy-related pathway responsible for macrophage defense during systemic
infection by Salmonella typhimurium [49]. In our study, we observed an up-regulation in the
expression of autophagy-related genes such as ATG5, ATG16L1, and GABARAPL1 after
immunization. This expression pattern paralleled that of MHC-II-related genes. Therefore,
it is plausible that LAP may promote the MHC-II antigen presentation pathway in flounder
as well, and this process may also depend on ATG5 and ATG16L1.

CD4+ T cells, also known as Th cells, are integral to coordinating immune responses [50].
They perform multiple functions in fish, such as stimulating B cells to produce antibodies,
recruiting granulocytes (neutrophils, eosinophils, and basophils) to the site of inflammation,
and modulating immune responses [51,52]. CD4+ T cells can be further categorized into
several major subpopulations, including Th1, Th2, and Th17, and each possesses a distinct
role in immune responses [53]. Th1 cell differentiation is primarily regulated by key cy-
tokines like IFN-γ and IL-12, which act through the control of transcription factors such as
master regulator T-bet, STAT1, and STAT4 [54]. Th2 cell differentiation, on the other hand,
is driven by cytokines like IL-4/13, which influence several master regulators including
GATA-3, STAT5, and STAT6 [55,56]. For Th17 cell differentiation, IL-6 and TGF-β play cru-
cial roles, and along with the two key cytokines lie three master regulators, namely retinoic
acid receptor-related orphan receptors (RORα and RORγ) and STAT3 [57]. In our study,
we found the expression of key factors associated with Th1 cells (IFN-γR, IL-12R, STAT1,
and STAT4), Th2 cells (STAT5B and STAT6), and Th17 cells (IL-6R, TGF-βR, and RORα)
were up-regulated within 48 h following immunization. This suggests that inactivated V.
anguillarum has the potential to induce the differentiation of Th cells in flounder.

5. Conclusions

In summary, our study represents the first attempt to conduct a transcriptome analysis
of PoPerCs in response to immunization with inactivated V. anguillarum. We identified a
total of 14561 DEGs, suggesting that inactivated V. anguillarum triggers a systemic immune
response in PoPerCs. Based on WGCNA, we identified a hub module closely related to
immunization time, characterized their biological functions and highlighted the involved
signaling pathways, and identified a series of hub genes. These findings contributed to a
deeper understanding of the early-stage immune response to inactivated V. anguillarum
in flounder. Consequently, our results lay the groundwork for further investigation into
the molecular mechanisms underlying the immune response of flounder to inactivated
bacterial pathogens.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/vaccines11101603/s1, Figure S1: Expression of Th cell differentiation-
related genes in intestine, spleen, head kidney, and peripheral blood leukocytes (PBLs) after inacti-
vated Vibrio anguillarum immunization.
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