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Abstract: The emergence of Omicron variants coincided with declining vaccine-induced protection
against SARS-CoV-2. Two bivalent mRNA vaccines, mRNA-1273.222 (Moderna) and BNT162b2
Bivalent (Pfizer-BioNTech), were developed to provide greater protection against the predomi-
nate circulating variants by including mRNA that encodes both the ancestral (original) strain and
BA.4/BA.5. We estimated their relative vaccine effectiveness (rVE) in preventing COVID-19-related
outcomes in the US using a nationwide dataset linking primary care electronic health records and
pharmacy/medical claims data. The study population (aged ≥18 years) received either vaccine
between 31 August 2022 and 28 February 2023. We used propensity score weighting to adjust
for baseline differences between groups. We estimated the rVE against COVID-19-related hospi-
talizations (primary outcome) and outpatient visits (secondary) for 1,034,538 mRNA-1273.222 and
1,670,666 BNT162b2 Bivalent vaccine recipients, with an adjusted rVE of 9.8% (95% confidence interval:
2.6–16.4%) and 5.1% (95% CI: 3.2–6.9%), respectively, for mRNA-1273.222 versus BNT162b2 Bivalent.
The incremental relative effectiveness was greater among adults ≥65; the rVE against COVID-19-
related hospitalizations and outpatient visits in these patients was 13.5% (95% CI: 5.5–20.8%) and
10.7% (8.2–13.1%), respectively. Overall, we found greater effectiveness of mRNA-1273.222 compared
with the BNT162b2 Bivalent vaccine in preventing COVID-19-related hospitalizations and outpatient
visits, with increased benefits in older adults.

Keywords: mRNA-1273.222; BNT162b2 Bivalent vaccine; bivalent vaccine; COVID-19 vaccine;
hospitalization; symptomatic disease; relative vaccine effectiveness

1. Introduction

Despite high levels of vaccine effectiveness (VE) against the ancestral SARS-CoV-
2 strain and variants observed in the early stages of the COVID-19 pandemic, the VE
of a primary series of mRNA-1273 and BNT162b2 monovalent vaccines decreased with
the emergence of the Delta and Omicron variants and subvariants [1,2]. Administration
of a monovalent vaccine booster dose improved both immunogenicity and VE; how-
ever, effectiveness remained lower compared to that observed against earlier circulating
SARS-CoV-2 variants.

To counter waning immunity and broaden protection against emerging variants,
bivalent mRNA vaccines were developed targeting both the spike protein of the Omicron
BA.4/BA.5 subvariant and the ancestral (original) SARS-CoV-2. These bivalent vaccines
demonstrated increased protection against COVID-19-related symptomatic infections and
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severe outcomes and substantially boosted clinical protection and antibody titers against
circulating variants for up to 6 months [3]. While the safety profile was similar between
monovalent and bivalent mRNA vaccines, greater immunogenicity and relative vaccine
effectiveness (rVE) were demonstrated with increased time since prior infection or prior
COVID-19 vaccination [4–13]. Bivalent vaccines (Original/ Omicron BA.4/BA.5) were
authorized in the United States (US) by the Food and Drug Administration (FDA) in
August 2022 [14,15]. The bivalent vaccines were recommended by the US Centers for
Disease Control and Prevention (CDC) for all adults in September 2022. Authorization for
bivalent vaccines was subsequently extended to all individuals ≥6 months of age [16,17].
However, while approximately 70% of the eligible US population had completed a primary
series, only ~17% of those eligible have received bivalent vaccination as of June 2023 [18].

While hospitalization rates during the period of Omicron predominance have been
lower than those observed earlier in the pandemic [18], vulnerable sub-groups, including
unvaccinated adults, older adults, immunocompromised persons, and those with certain
chronic underlying medical conditions, remain at increased risk for severe outcomes
and death. Hence, information on VE and waning protection over time has immediate
public health implications [19] and is essential for COVID-19 vaccine decision-makers
and healthcare providers to provide recommendations and increase vaccine confidence
among patients, particularly those at higher risk for COVID-19-related morbidity and
mortality [18,20,21].

Previous analyses of the primary series and booster reported slightly higher VE
for the monovalent mRNA-1273 (Moderna) vaccine compared with BNT162b2 (Pfizer-
BioNTech) in preventing both reported cases and COVID-19-related hospitalizations and
outpatient visits [22–25]. In addition, a recent publication demonstrated a reduced risk
of potential vaccine-related adverse events following mRNA-1273 vaccination compared
with BNT162b2 in community-dwelling older adults [26]. As the rVE of bivalent mRNA
vaccines has not been established, the current study evaluated data from a large nationwide
dataset to estimate the rVE of the mRNA-1273.222 bivalent vaccine (Original/ Omicron
BA.4/BA.5) and the BNT162b2 Bivalent vaccine (Original/ Omicron BA.4/BA.5) against
COVID-19-related hospitalizations and outpatient visits in adults in the US.

2. Methods
2.1. Data Source and Deidentification

We performed an observational, retrospective cohort study using real-world data
from two integrated sources: widely used primary care electronic health record (EHR)
platforms in the US (the Veradigm EHR dataset, including the Allscripts Tier 1, Allscripts
Tier 2, and Practice Fusion EHRs) and pharmacy and medical claims data (the Komodo
dataset). Further details of the dataset and deidentification processes are provided in the
supplementary materials.

2.2. Participants and Study Design

This retrospective observational study was designed, implemented, and reported in
accordance with Good Pharmacoepidemiological Practice, applicable local regulations, and
the ethical principles laid down in the Declaration of Helsinki.

Adults ≥18 years of age who had received either mRNA-1273.222 (50 mcg) or BNT162b2
Bivalent (30 mcg) between 31 August 2022 and 28 February 2023 were eligible for inclusion.
We defined the index date as the vaccination date with the bivalent vaccine, and the cohort
entry date (CED) as 7 days later (Figure 1). Individuals were followed up for outcomes of
interest from the CED until the end of the available data (28 February 2023), receipt of another
COVID-19 vaccine, or disenrollment from their medical/pharmacy plan, whichever occurred
first. We classified individuals into two exposure cohorts based on the type of bivalent vaccine
received (Supplementary Materials Table S1, list of identifying codes), with each individual
only included once.
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Figure 1. Study design. CED, cohort entry date; EHR, electronic health record.

Inclusion criteria included a minimum of 365 days of continuous medical and phar-
macy enrollment in a health plan contributing data to the claim set prior to receipt of the
booster (index date), and at least one contact with a health service provider in the 365 days
prior to the index date. Exclusion criteria included evidence of SARS-CoV-2 infection or
vaccination within the first 7 days after receipt of the bivalent vaccine, less than 1 day of
follow-up, or missing birth year or sex.

2.3. Study Objectives

The primary objective of this study was to assess the rVE between mRNA-1273.222
and BNT162b2 Bivalent in preventing COVID-19-related illness requiring hospitalization,
evaluated from the cohort entry date to the first occurrence. The secondary objective
was to assess the rVE in preventing COVID-19-related outpatient visits, evaluated from
cohort entry date to first occurrence (see Supplementary Materials Table S2). Exploratory
objectives included subgroup analysis for primary and secondary outcomes (COVID-19-
related hospitalizations and outpatient visits, respectively) by age group (≥50 years and
≥65 years).

2.4. Statistical Analysis

Using a multivariable logistic model for baseline variables, we calculated a propensity
score and estimated weights to minimize the influence of potential confounders that we had
identified prior to the analysis (Table S3). We then used stabilized and truncated weights to
re-weight the study sample using a 1% asymmetrical trim to limit the effects of extreme
weights on the study sample and performed weighting separately for the subgroup analysis
by age group.

Using Cox regression models, we estimated unadjusted hazard ratios (HR) for the
primary and secondary outcomes after propensity score weighting with exposure as the
only predictor. Using multivariate Cox regression models, we then estimated the adjusted
HRs, with any baseline variable with a standardized mean difference (SMD) of >0.1 after
weighting included as a covariate. We calculated rVE as 100 × (1 − HR) for both unadjusted
and adjusted estimates with 95% confidence intervals (95% CI). Further details of the
statistical analysis are provided in the supplementary materials. All statistical analyses
were performed using SAS 9.4 or R Statistical Software (v4.1.3) [27] survival package
(v3.2-13).
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2.5. Sensitivity Analyses

We performed two sensitivity analyses. First, since the main analyses were conducted
on closed claims, we compared open versus closed claims (see Supplementary Materials
for further details). Second, we used a cohort entry date of 14 days after vaccination (index
date) instead of 7 days, as specified in the main closed claims analysis.

3. Results

Records were available for 8,929,450 individuals who had received a bivalent mRNA
vaccine within the study timeframe (Figure 2). Of these, 2,748,358 individuals were eligible
for inclusion in the pre-weight cohort, with 1,049,575 in the mRNA-1273.222 group and
1,698,783 in the BNT162b2 Bivalent group. After weighting, a total of 1,034,538 and 1,670,666
were included in the mRNA-1273.222 and BNT162b2 Bivalent groups, respectively (Table 1).
After weighting, key baseline demographic variables were broadly similar between the
two groups: the mean age was 58–59 years across groups, 58% were women, and 40%
were white (where race was available). The majority (95%) of individuals in both groups
had received the bivalent vaccine between September and December 2022 (Figure 1).
The median duration of follow-up was 108 and 107 days for the mRNA-1273.222 and
BNT162b2 Bivalent vaccines, respectively (Table 1). Overall, 69.5% of individuals vaccinated
with mRNA-1273.222 and 68.2% of individuals vaccinated with BNT162b2 Bivalent had
underlying medical conditions. As expected, we found a nearly identical hospitalization
risk pattern in the evaluation of the negative control for both vaccines, with a p-value of
0.46, indicating that the groups were well-balanced (Figure 2). The baseline characteristics
of the age subgroups are provided in Tables S4 and S5.
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Table 1. Key baseline characteristics of patients included in the mRNA-1273.222 and BNT162b2 Bivalent vaccine groups (pre- and post-weighting).

Pre-Weighting Post-Weighting
mRNA-1273.222 BNT162b2 Bivalent SMD mRNA-1273.222 BNT162b2 Bivalent SMD

Number of patients 1,049,575 1,698,783 1,034,538 1,670,666

Age at index, mean (SD) 60 (16.3) 58 (16.9) 0.1091 59 (16.5) 58 (16.7) 0.0238

Sex
Female 604,099 (57.6) 989,261 (58.2)

0.0137
598,134 (57.8) 969,767 (58.0)

0.0047Male 445,476 (42.4) 709,522 (41.8) 436,404 (42.2) 700,899 (42.0)

Race

Black 41,438 (3.9) 71,545 (4.2)

0.0242

41,695 (4.0) 68,926 (4.1)

0.0064
Other 43,292 (4.1) 72,004 (4.2) 43,444 (4.2) 70,448 (4.2)
White 425,675 (40.6) 670,704 (39.5) 413,323 (40.0) 663,768 (39.7)

Unknown 539,170 (51.4) 884,530 (52.1) 536,076 (51.8) 867,524 (51.9)

Ethnicity
Hispanic 38,672 (3.7) 66,301 (3.9)

0.0140
39,044 (3.8) 64,185 (3.8)

0.0046Non-Hispanic 852,545 (81.2) 1,371,939 (80.8) 838,544 (81.1) 1,351,443 (80.9)
Unknown 158,358 (15.1) 260,543 (15.3) 156,950 (15.2) 255,038 (15.3)

Region

Midwest 201,029 (19.2) 373,067 (22.0)

0.0760

210,897 (20.4) 354,455 (21.2)

0.021
Northeast 272,159 (25.9) 437,311 (25.7) 268,924 (26.0) 432,274 (25.9)

South 314,939 (30.0) 470,675 (27.7) 296,959 (28.7) 471,340 (28.2)
West 196,278 (18.7) 315,809 (18.6) 194,309 (18.8) 311,409 (18.6)

Unknown 65,170 (6.2) 101,921 (6.0) 63,449 (6.1) 101,188 (6.1)

Month of index

August 2022 12 (<0.1) 21 (<0.1)

0.0645

13 (<0.1) 21 (<0.1)

0.0206

September 2022 252,601 (24.1) 453,304 (26.7) 259,247 (25.1) 433,404 (25.9)
October 2022 385,320 (36.7) 619,160 (36.4) 380,441 (36.8) 609,256 (36.5)

November 2022 230,341 (21.9) 351,626 (20.7) 221,444 (21.4) 351,191 (21.0)
December 2022 128,551 (12.2) 194,995 (11.5) 123,180 (11.9) 196,156 (11.7)

January 2023 42,133 (4) 63,853 (3.8) 40,173 (3.9) 64,422 (3.9)
February 2023 10,617 (1) 15,824 (0.9) 10,041 (1.0) 16,215 (1.0)

Primary series
COVID-19 vaccine

Heterologous 90,742 (8.6) 179,627 (10.6)
0.1652

102,076 (9.9) 169,119 (10.1)
0.0297Homologous 301,861 (28.8) 369,852 (21.8) 252,916 (24.4) 387,485 (23.2)

Not reported 656,972 (62.6) 1,149,304 (67.7) 679,546 (65.7) 1,114,062 (66.7)

Time since last COVID-19
monovalent vaccination

≤90 days 15,489 (1.5) 18,482 (1.1)

0.2365

12,849 (1.2) 20,336 (1.2)

0.0440
91–180 days 215,483 (20.5) 216,131 (12.7) 163,208 (15.8) 238,465 (14.3)
>180 days 614,126 (58.5) 1,029,498 (60.6) 622,635 (60.2) 1,015,967 (60.8)

Not reported 204,477 (19.5) 434,672 (25.6) 235,845 (22.8) 395,898 (23.7)
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Table 1. Cont.

Pre-Weighting Post-Weighting
mRNA-1273.222 BNT162b2 Bivalent SMD mRNA-1273.222 BNT162b2 Bivalent SMD

Time since last
COVID-19 infection

≤120 days 34,542 (3.3) 56,609 (3.3)

0.0219

34,348 (3.3) 55,608 (3.3)

0.0059
121–180 days 19,610 (1.9) 31,653 (1.9) 19,479 (1.9) 31,327 (1.9)

>180 days 72,675 (6.9) 127,046 (7.5) 74,147 (7.2) 122,306 (7.3)
Not reported 922,748 (87.9) 1,483,475 (87.3) 906,564 (87.6) 1,461,425 (87.5)

Follow-up duration, days,
median (IQR) 106 (70–134) 108 (71–137) 108 (70–135) 107 (71–137)

Underlying medical conditions

Asthma 89,784 (8.6) 146,786 (8.6) 0.0031 88,608 (8.6) 143,799 (8.6) 0.0015
Cancer 331,893 (31.6) 507,975 (29.9) 0.0373 317,902 (30.7) 506,655 (30.3) 0.0087

Cerebrovascular disease 57,932 (5.5) 89,250 (5.3) 0.0118 55,150 (5.3) 88,816 (5.3) 0.0007
Chronic lung disease 82,755 (7.9) 126,674 (7.5) 0.0161 78,570 (7.6) 126,028 (7.5) 0.0019
Chronic liver disease 11,770 (1.1) 18,988 (1.1) 0.0003 11,499 (1.1) 18,673 (1.1) 0.0006

CKD 90,134 (8.6) 138,166 (8.1) 0.0164 85,505 (8.3) 137,539 (8.2) 0.0012
Cystic fibrosis 235 (<0.1) 343 (<0.1) 0.0015 217 (<0.1) 342 (<0.1) 0.0004

Diabetes type 1 or 2 210,600 (20.1) 325,656 (19.2) 0.0225 201,683 (19.5) 323,800 (19.4) 0.0029
Disability 69,181 (6.6) 117,573 (6.9) 0.0131 69,582 (6.7) 114,107 (6.8) 0.0041

Heart conditions 145,354 (13.8) 220,523 (13.0) 0.0255 137,513 (13.3) 220,348 (13.2) 0.0030
HIV 5471 (0.5) 8770 (0.5) 0.0007 5397 (0.5) 8639 (0.5) 0.0006

Mental health disorders 166,566 (15.9) 284,385 (16.7) 0.0236 167,713 (16.2) 275,635 (16.5) 0.0078
Neurological conditions 21,962 (2.1) 39,359 (2.3) 0.0153 22,279 (2.2) 37,628 (2.3) 0.0067

Obesity 210,605 (20.1) 339,268 (20.0) 0.0024 206,336 (19.9) 333,651 (20.0) 0.0007
Primary immunodeficiencies 69,102 (6.6) 107,213 (6.3) 0.0111 66,569 (6.4) 106,563 (6.4) 0.0023

Pregnancy a 2861 (0.3) 5465 (0.3) 0.0090 3109 (0.3) 5160 (0.3) 0.0015
Physical inactivity 975 (0.1) 1608 (0.1) 0.0006 962 (<0.1) 1566 (<0.1) 0.0003

Smoking b 125,869 (12) 202,673 (11.9) 0.0019 122,902 (11.9) 199,274 (11.9) 0.0015
Solid organ or hematopoietic

stem cell transplant 9038 (0.9) 14,493 (0.9) 0.0009 8727 (0.8) 14,231 (0.9) 0.0009

Tuberculosis 325 (<0.1) 537 (<0.1) 0.0004 323 (<0.1) 523 (<0.1) 0.0001
Use of immunosuppressants 54,552 (5.2) 84,577 (5.0) 0.0100 52,537 (5.1) 84,130 (5.0) 0.0019

Data are presented as n (%) unless otherwise stated. CKD, chronic kidney disease; IQR, interquartile range; SD, standard deviation; SMD, standardized mean difference a Includes recent
pregnancy. b Includes current and former smokers.
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3.1. rVE against Hospitalized and Outpatient COVID-19

Overall, 1032 (0.10%) individuals who had received mRNA-1273.222 and 1855 (0.11%)
who had received BNT162b2 Bivalent were hospitalized for COVID-19. Of these, 91.2% and
92.5% were ≥50 years of age, and 71.6% and 74.5% were ≥65 years of age at the index date
for the two vaccines, respectively. Over three-quarters reported no previous documented
COVID-19 infection (78.2% and 76.2% for the mRNA-1273.222 and BNT162b2 Bivalent
vaccines, respectively), and 49.0% and 47.0%, respectively, had last received a monovalent
COVID-19 vaccine >180 days previously. The most common underlying medical conditions
with increased risk for severe COVID-19 outcomes in hospitalized patients were cancer
(mRNA-1273.222: 42.3%; BNT162b2 Bivalent: 44.6%), heart conditions (46.6%; 49.0%), and
diabetes (40.4%; 44.0%) (Table S6).

The rVE against COVID-19-related hospitalizations was 9.8% (95% CI: 2.6–16.4%;
p = 0.008) for mRNA-1273.222 compared with BNT162b2 Bivalent across the entire study
population. Differences between vaccines persisted over the 6 months post-vaccination
(Figure S3). The estimate of the rVE against COVID-19-related outpatient visits was
5.1% (95% CI: 3.2–6.9%; p < 0.001) for mRNA-1273.222 compared with BNT162b2 Bivalent
(Table 2). As cohorts were well-matched after inverse probability of treatment weighting, no
covariates were included in the multivariable models for the overall population; therefore,
estimates for both the unadjusted and adjusted rVE were equal.

Table 2. Unadjusted and adjusted rVEs for mRNA-1273.222 versus BNT162b2 Bivalent for the overall
study population.

COVID-19-Related Outcome Unadjusted rVE Adjusted rVE p Value a

Hospitalization 9.8% (2.6–16.4%) 9.8% (2.6–16.4%) 0.008
Outpatient 5.1% (3.2–6.9%) 5.1% (3.2–6.9%) <0.0001

rVE, relative vaccine effectiveness. a Associated p values are given for the adjusted rVE, with secondary outcomes
adjusted for multiple testing.

3.2. rVE by Age Group

As the study met both the primary and secondary endpoints for the overall population,
subgroup analysis was performed by age group. The rVE against both COVID-19-related
hospitalizations and outpatient visits increased with increasing age, with adjusted rVEs of
11.0% (95% CI: 3.7–17.7%; p = 0.004) and 7.3% (5.3–9.3%; p < 0.0001) for hospitalizations and
outpatient visits, respectively, in the ≥50 years subgroup, and 13.5% (95% CI: 5.5–20.8%;
p = 0.001) and 10.7% (8.2–13.1%; p < 0.001) in the ≥65 years subgroup, respectively (Table 3).

3.3. Sensitivity Analyses

Point estimates of rVEs from evaluation of open claims were similar to those seen
in the closed claims analysis (n = 3,065,980 for mRNA-1273.222 and n = 4,703,189 for
BNT162b2 Bivalent): 12.9% (95% CI: 9.1–16.4%) and 5.8% (4.7–6.9%) against COVID-19-
related hospitalizations and outpatient visits, respectively (Table 3).

Extending the time between vaccination (index date) and cohort entry date from
7 to 14 days in the closed claims analysis resulted in rVE estimates of 10.6% (95% CI:
3.1–17.5%) and 4.6% (2.6–6.5%) against COVID-19-related hospitalizations and outpatient
visits, respectively (Table 3).
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Table 3. Unadjusted and adjusted rVEs for mRNA-1273.222 versus BNT162b2 Bivalent for the
subgroups and sensitivity outcomes.

COVID-19-Related Outcome Unadjusted rVE Adjusted rVE p Value a

Subgroup analysis by age
≥50 years

Hospitalization 11.0% (3.7–17.7%) 11.0% (3.7–17.7%) 0.004
Outpatient 7.3% (5.3–9.3%) 7.3% (5.3–9.3%) <0.0001
≥65 years

Hospitalization 13.5% (5.5–20.8%) 13.5% (5.5–20.8%) 0.001
Outpatient 10.7% (8.2–13.1%) 10.7% (8.2–13.1%) <0.0001

Sensitivity analysis
Open claims

Hospitalization 12.9% (9.1–16.4%) 12.9% (9.1–16.4%) <0.0001
Outpatient 5.8% (4.7–6.9%) 5.8% (4.7–6.9%) <0.0001

Cohort entry date 14 days
post-vaccination closed

claims
Hospitalization 10.6% (3.1–17.5%) 10.6% (3.1–17.5%) 0.006

Outpatient 4.6% (2.6–6.5%) 4.6% (2.6–6.5%) <0.0001

rVE, relative vaccine effectiveness a Associated p values are given for the adjusted rVE, with secondary outcomes
adjusted for multiple testing.

4. Discussion

This is the first study that directly evaluates the rVE of bivalent mRNA vaccines
containing the ancestral (original) and omicron (BA.4/BA.5) strains in the prevention of
COVID-19-related hospitalizations and outpatient visits. In this retrospective analysis
of real-world data on more than 2.5 million vaccinated individuals, the mRNA-1273.222
bivalent vaccine (Original/ Omicron BA.4/BA.5) appears significantly more effective than
the BNT162b2 Bivalent vaccine (Original/ Omicron BA.4/BA.5) in preventing COVID-19-
related hospitalizations and outpatient visits in adults. The rVEs against both outcomes
increased with increasing age. This is particularly important given the disproportionate
burden of COVID-19-related morbidity and mortality in older adults and expands on the
recent findings of the reduced risk of potential vaccine-related adverse events following
mRNA-1273 monovalent vaccination compared with BNT162b2 in community-dwelling
older adults in the US [26].

The results of this study echo those observed following analysis of the primary series
and monovalent booster in the same dataset [25]. Similar to the current study, incremental
benefits in rVE against hospitalizations were observed following the monovalent booster
with increasing age, with rVEs of 40% (95% CI: 11–60%) in adults ≥65 years and 12%
(0–30%) in the 18 to 64 age group. Other studies have also shown the increased effectiveness
of mRNA-1273 versus BNT162b2 boosters against symptomatic infections and severe
outcomes [22,24]. In a matched cohort study comparing the effectiveness of a single
monovalent booster dose of mRNA-1273 and BNT162b2 using the OpenSAFELY-TPP
research platform in the UK, the hazard ratio of the risk of hospital admission at 20 weeks
post-booster was 0.89 (95% CI: 0.82 to 0.95), indicating a modest benefit of mRNA-1273 [22].
In a similar matched cohort study of US veterans, risks of 16-week COVID-19 outcomes
were also lower for mRNA-1273 compared with the BNT162b2 monovalent booster, with an
excess number of COVID-19 hospitalization events over the 16-week post-booster period
of 10.6 (95% CI: 5.1–19.7) for BNT162b2 compared with mRNA-1273 [24]. Moreover, while
there was no formal comparison between the vaccines, a study evaluating the effectiveness
of bivalent vaccines containing any omicron subvariant also showed higher effectiveness
for mRNA-1273.222 versus BNT162b2 Bivalent against infection [28].

The observed differences in effectiveness between the mRNA bivalent vaccines, par-
ticularly in older adults, may be explained at least in part by differences in vaccine hu-
moral and T-cell immunity. In terms of humoral immunity, mRNA-1273 induces a sig-
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nificantly greater antibody immune response compared with BNT162b2 [29], which is
consistent against different variants of concern, persisting even 6–8 months following
vaccination [30–33]. Moreover, this greater and more durable immune response has been
demonstrated among older adults, with studies showing that age is negatively correlated
with antibody levels in participants who were vaccinated with BNT162b2, but not among
mRNA-1273 vaccinees. Vaccination with mRNA-1273 induced higher antibody levels
with a corresponding lower waning rate that was not age-dependent, as opposed to the
BNT162b2 cohort, in which older individuals generated lower antibody levels with a higher
waning ratio when compared to young adults [31,34].

Antibodies that can rapidly opsonize pathogens and drive pathogen clearance via
opsinophagocytosis or killing are key to protection against many other respiratory
pathogens [35]. Thus, in addition to neutralizing antibodies, antibodies that bind to viral
proteins may also contribute to the immune control of infection through the increased
clearance of free viruses or by targeting infected cells for immune clearance [36]. Indeed,
there is emerging evidence describing functional antibody differences between the vaccines,
beyond neutralization, that may account for differential mucosal protection. mRNA-1273
has been shown to induce more opsonophagocytic and cytotoxic antibodies compared to
BNT162b2, which may be important in the rapid capture and clearance of the virus from the
mucosal tract [37]. Furthermore, following mRNA-1273 vaccination, higher levels of IgA
were measured systemically compared to BNT162b2, which may be important for mucosal
protection, aiding the immune response even when new viral variants may emerge that sub-
vert the neutralizing antibody response [38]. Along these lines, systemic vaccine-induced
IgA levels have been identified as a strong correlate of protection against viral breakthrough
following boosting in the setting of high neutralizing antibody responses [39].

In addition to the humoral response, several studies have shown that mRNA-1273
elicits more robust and long-term T-cells response compared with BNT162b2 [40–43], with
significantly greater memory CD4+ T-cell frequencies following immunization with mRNA-
1273 compared with BNT162b2 [41]. The enhanced functional humoral immune response
and T-cell immunity observed following vaccination with mRNA-1273 may contribute to
the differences in effectiveness observed, especially in the older age groups who often have
lower responses to immunization, in part related to immunosenescence [44,45].

In this study, we used data from two integrated sources. Utilization of a comprehen-
sive real-world dataset that integrates various sources of patient information enables the
assessment of outcomes that are not always examined in clinical trials and offers a broader
perspective on effectiveness in a real-world setting. Combining integrated databases that
link both EHR and claims data can provide a well-rounded perspective on an individual’s
health status and utilization of health care services [46], together with allowing robust
adjustments of the data for well-established confounders. In this study, the information on
exposure, outcome, and covariates was retrospectively collected from patient records in
a consistent manner across all exposure cohorts using specific codes, which reduces the
likelihood of differential misclassification. and the conclusions from the main analysis were
confirmed by planned sensitivity analyses.

As with all observational or quasi-experimental studies, this study also has limitations.
First, we did not evaluate long-term vaccine effectiveness, as we had a follow-up period
of up to 6 months post-booster available. Given the differences in antibody waning and
durability observed in immunogenicity studies of earlier vaccine formulations [7,30,47], it
might be that the rVE becomes more pronounced over a longer follow-up period. Future
longer-term analysis could provide a broader overview of long-term comparative vaccine
performance and help guide decision-making on the optimal interval. Additionally, the
current primary analysis was restricted to closed claims, which provide a comprehensive
overview of a patient’s healthcare interactions but may not capture all cases and can be
limited in terms of the sample size. However, sensitivity analysis performed on the open
claims database supported the findings from the closed claims database. Furthermore, in
this study, we included individuals who had consulted healthcare providers during the
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previous 365 days, which excluded healthy individuals who received a vaccine but did
not use healthcare services during the year prior to receipt, potentially biasing towards a
more at-risk population. Older adults and those with underlying chronic health conditions,
who have an increased risk of more severe COVID-19 outcomes, are more likely than
average healthy adults to utilize healthcare services [48]. Thus, while our results may not
be representative of a population of healthy individuals, they include the most vulnerable
population. Finally, the results of the study should be interpreted within the context of its
retrospective nature. As with the previous analysis on the primary series and monovalent
boosters [25], there may have been differences between the two vaccine groups that were
not fully accounted for by the pre-defined covariates and thereby confounded the rVE
estimates. It is possible that individuals with greater risk for COVID-19-related severe
outcomes were vaccinated with BNT162b2 Bivalent compared to mRNA-1273.222 due to
its earlier availability. While this could introduce some residual bias, we do not believe
that it is a significant concern. Our negative control test results demonstrated no difference
between the groups in terms of hospitalizations, suggesting that patient behavior bias may
not have influenced our findings. Additionally, the propensity scoring analysis ensured the
groups were well-balanced in terms of known comorbidities, reducing the likelihood of
differences in patient behavior based on risk factors.

In summary, both bivalent vaccines have been shown to provide substantial pro-
tection against COVID-19-related hospitalizations and outpatient visits. In this analysis,
the mRNA-1273.222 vaccine (Original/ Omicron BA.4/BA.5) provided greater protection
against hospitalizations and outpatient visits compared with BNT162b2 Bivalent (Origi-
nal/ Omicron BA.4/BA.5) during a period of omicron BA.4/BA.5 predominance. On 11
September 2023, the US FDA authorized the updated XBB1.5 containing mRNA vaccines,
and on 12 September 2023, the US ACIP recommended these vaccines for all individu-
als ages 6 months and older. These updated vaccines are consistent in terms of dosage
(50 µg for Moderna and 30 µg for Pfizer) with the bivalent formulations evaluated in this
study. Moreover, the vaccine compositions differ only in the mRNA sequence between the
bivalent and updated vaccines for 2023 [49,50]. The results of this study can help guide
decision-makers and raise the need to evaluate vaccine differences of current and future
formulations to ensure optimized protection against continually emerging SARS-CoV-2
variants and subvariants.
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COVID-19-related medical encounters identified from individuals’ primary care EHRs, pharmacy,
and medical claims. Table S3. List of potential confounding baseline variables which were weighted
using propensity weighting scoring prior to data analysis. Table S4. Baseline characteristics (post-
weighting) of individuals ≥50 years vaccinated with the mRNA-1273.222 or BNT162b2 Bivalent
vaccine. Table S5. Baseline characteristics (post-weighting) of individuals ≥65 years vaccinated with
the mRNA-1273.222 or BNT162b2 Bivalent vaccine. Table S6. Baseline characteristics (post-weighting)
of individuals hospitalized for COVID-19 vaccinated with the mRNA-1273.222 or BNT162b2 Biva-
lent vaccine. Figure S1. Percentage of individuals included in the weighted analysis by month of
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